Reducing Modified Formulas For Sinh-Gordon Equation to the Painleve Equations

Nada Abdul Huseen Laabi
University of Thi-Qar, Faculty of Computer Science and Mathematics, Mathematics Department, Thi-Qar, Iraq

Abstract

: By using the mixed variable transformation $\varphi=\ln y(X) ; X=a x+b t+\gamma$ we derived some modified formulas for sinh-Gordon equation reducible to the Painleve equations and we found the exact solutions for them and for other equations derived from them.

Keyword: Sinh-Gordon Equation; Painleve equations.

1. Introduction

Investigation of exact solutions of nonlinear evolution equations [7] has been a hot topic of research for several decades. The powerful methods used for this purpose are for example, Backlund transformation[4], inverse scattering technique[1],Hirota's direct method [8], tanh method [11],series method [3,10], Jacobian elliptic function expansion method and its extension $[9,12,13]$, and the algebraic method[2]. For importance of Painleve equations (Ptype equations) [14,15], some researchers tried using transformations to transform the partial differential equations or new modified equations to P-type equations, In [5], new modified forms for Sine-Gordon equation $\phi_{x x}-\phi_{t t}=\sin \phi$ reduced to the p-type equations by using mixed variables transformation (MVT):

$$
\phi=4 \tan ^{-1} u(X) ; X=\frac{x-c t}{\sqrt{1-c^{2}}}
$$

The general form of ordinary differential equation with no movable critical points of order two is[6]:

$$
\begin{equation*}
\frac{d^{2} w}{d x^{2}}=L(x, w)\left(\frac{d w}{d x}\right)^{2}+M(x, w) \frac{d w}{d x}+N(x, w) \tag{1.1}
\end{equation*}
$$

where L, M and N are fractional functions in w.
There are two basic conditions to determine L, M and N :
a. $L(x, w)=0$ or one of the following forms:
$L(x, w)=\frac{m+1}{m\left(w-a_{1}\right)}+\frac{m-1}{m\left(w-a_{2}\right)} \quad, m \geq 1$
$L(x, w)=\frac{1}{2} \sum_{n=1}^{4} \frac{1}{w-a_{n}}$
$L(x, w)=\frac{2}{3} \sum_{n=1}^{3} \frac{1}{w-a_{n}}$
$L(x, w)=\frac{3}{4}\left(\frac{1}{w-a_{1}}+\frac{1}{w-a_{2}}\right)+\frac{1}{2}\left(\frac{1}{w-a_{3}}\right)$
$L(x, w)=\frac{1}{6} \sum_{n=1}^{3} \frac{n+2}{w-a_{n}}$
where a_{n} are arbitrary function for x
b. M and N must be as the following forms:
$M(x, w)=\frac{m(x, w)}{l(x, w)}$ and $N(x, w)=\frac{n(x, w)}{l(x, w)}$
Where $l(x, w)$ with l degree in w is a least common denominator(LCD) for partial fractions in $L(x, w)$ and $m(x, w), n(x, w)$ are polynomials in w with degree greater than or equal $l+l$ and $l+3$ respectively.

2. Main Result

Consider the nonlinear partial differential equation:

$$
\begin{equation*}
\varphi_{t t}-\varphi_{x x}=\sinh \varphi \tag{2.1}
\end{equation*}
$$

Let the modified formula of the equation (2.1) as:
$\varphi_{t t}-\varphi_{x x}-\sinh \varphi=H\left(\varphi, \varphi_{x}\right)$
Let we take the mixed variables transformation:
$\varphi=\ln y(X) ; X=a x+b t+\gamma$
Where a, b and γ are constants and $a^{2} \neq b^{2}$.
By inserting (2.3) in (2.2) we have:
$y_{X X}=\frac{1}{y} y_{X}^{2}+\frac{1}{2\left(b^{2}-a^{2}\right)}\left(y^{2}-1\right)+\frac{y}{\left(b^{2}-a^{2}\right)} G\left(y, y_{X}\right)$
Where $G\left(y, y_{x}\right)$ is the result function from inserting (2.3) in $H\left(\varphi, \varphi_{x}\right)$.
Let $G\left(y, y_{X}\right)=G_{1}(y) y_{X}^{2}+G_{2}(y) y_{X}+G_{3}(y)$
By inserting (2.5) in (2.4) we have:
$y_{X X}=\left(\frac{1}{y}+\frac{y}{\left(b^{2}-a^{2}\right)} G_{1}(y)\right) y_{X}^{2}+\frac{y}{\left(b^{2}-a^{2}\right)} G_{2}(y) y_{X}+\frac{y^{2}-1}{2\left(b^{2}-a^{2}\right)}+\frac{y}{\left(b^{2}-a^{2}\right)} G_{3}(y)$
From compare equation (2.6) with equation (1.1) we have:
$L(X, y)=\frac{1}{y}+\frac{y}{\left(b^{2}-a^{2}\right)} G_{1}(y)$
$M(X, y)=\frac{y}{\left(b^{2}-a^{2}\right)} G_{2}(y)$
$N(X, y)=\frac{y^{2}-1}{2\left(b^{2}-a^{2}\right)}+\frac{y}{\left(b^{2}-a^{2}\right)} G_{3}(y)$

Case1:

If $L(X, y)=0$, then $M(X, y)$ and $N(X, y)$ are polynomials of degree 1 and 3 respectively, that is mean:

$$
\begin{aligned}
& \frac{1}{y}+\frac{y}{\left(b^{2}-a^{2}\right)} G_{1}(y)=0 \\
& \frac{y}{\left(b^{2}-a^{2}\right)} G_{2}(y)=A y+B
\end{aligned}
$$

$\frac{y^{2}-1}{2\left(b^{2}-a^{2}\right)}+\frac{y}{\left(b^{2}-a^{2}\right)} G_{3}(y)=C y^{3}+D y^{2}+E y+F$
Where A, B, C, D, E, F are arbitrary functions of X only and A, C takes the following special values.
a) $A=0, C=0$
b) $A=-2, C=0$
c) $A=-3, C=-1$
d)) $A=-1, C=1$
e) $A=0, C=2$

Substituting $G_{1}(y), G_{2}(y), G_{3}(y)$ in (2.5), we have:
$G\left(y, y_{X}\right)=\frac{\left(a^{2}-b^{2}\right)}{y^{2}} y_{X}^{2}+\frac{\left(b^{2}-a^{2}\right)}{y}(A y+B)+\frac{\left(b^{2}-a^{2}\right)\left(C y^{3}+D y^{2}+E y+F\right)}{y}-\frac{y^{2}-1}{2 y}$
Since from (2.3) we have $y=e^{\varphi}$ then :
$H\left(\varphi, \varphi_{x}\right)=\frac{\left(a^{2}-b^{2}\right)}{a^{2}} \varphi_{x}^{2}+\left(A_{1} e^{\varphi}+B_{1}\right) \varphi_{x}+C_{1} e^{2 \varphi}+D_{1} e^{\varphi}+F_{1} e^{-\varphi}+E_{1}-\sinh \varphi$
Where $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}, F_{1}$ are the new functions.
(i) If $A_{1}=B_{1}=C_{1}=D_{1}=E_{1}=F_{1}=0$, then equation (2.8) will be:

$$
H\left(\varphi, \varphi_{x}\right)=\frac{\left(a^{2}-b^{2}\right)}{a^{2}} \varphi_{x}^{2}-\sinh \varphi
$$

That is mean under the transformation (2.3) the partial differential equation obtained is:
$\varphi_{t t}-\varphi_{x x}=\frac{\left(a^{2}-b^{2}\right)}{a^{2}} \varphi_{x}^{2}$
And this will be reducible to the following P-type equation:
$y_{X X}=0$
The general solution for (2.10) in terms of x and t is:
$y(x, t)=a_{1} x+b_{1} t+\theta$
Exact solution for (2.9) is:

$$
\varphi(x, t)=\ln \left(a_{1} x+b_{1} t+\theta\right)
$$

From the transformation (2.3), we obtain:
$\varphi_{x}=\frac{a}{y} y_{X}$
And since the first integral of (2.10) is $y_{X}=c$, where c is arbitrary constant this leads to
$\varphi_{x}=\frac{a c}{e^{\varphi}}$
Substituting (2.11) in equation (2.9) we obtain the partial differential equation:
$\varphi_{t t}-\varphi_{x x}=\left(a_{1}^{2}-b_{1}^{2}\right) e^{-2 \varphi}$
Where a_{1}, b_{1} are new constants.
An exact solution for (2.12) can be obtained if we integrate (2.11) as:
$\int e^{\varphi} d \varphi=\int a c d x$
Therefore:
$\varphi(x, t)=\ln \left(a_{1} x+k\right)$
Where k is constant.
(ii) If $A_{1}=B_{1}=D_{1}=E_{1}=F_{1}=0$ and $C_{1}=6$ then:
$H\left(\varphi, \varphi_{x}\right)=\frac{\left(a^{2}-b^{2}\right)}{a^{2}} \varphi_{x}^{2}+C_{1} e^{2 \varphi}-\sinh \varphi$
That is mean under the transformation (2.3) the partial differential equation obtained is:
$\varphi_{t t}-\varphi_{x x}=\frac{\left(a^{2}-b^{2}\right)}{a^{2}} \varphi_{x}^{2}+6 e^{2 \varphi}$
And this will be reducible to the following P-type equation:
$y_{X X}=6 y^{2}$
From the transformation (2.3), we obtain:
$\varphi_{x}=\frac{a}{y} y_{X}$
And since the first integral of (2.14) is $y_{X}=\sqrt{4 y^{3}+k}$, where k is arbitrary constant, this leads to
$\varphi_{x}=\frac{a}{e^{\varphi}} \sqrt{4 e^{3 \varphi}+k}$
Substituting (2.15) in equation (2.13) we obtain the partial differential equation:
$\varphi_{t t}-\varphi_{x x}=4\left(a^{2}-b^{2}\right) e^{\varphi}+k\left(a^{2}-b^{2}\right) e^{-2 \varphi}+6 e^{2 \varphi}$
An exact solution for (2.16) can be obtained as:
If $k=0$ in (2.16), then:
$\int e^{\frac{-\varphi}{2}} d \varphi=2 a \int d x$
$\varphi(x, t)=2 \ln \left(\frac{1}{a x+w(t)}\right)^{2}$
Where $w(t)$ is arbitrary function.

Case2:

$L(X, y) \neq 0$
If we take the P-type equation
$y_{X X}=\frac{1}{y} y_{X}^{2}$
And compare it with the equation (2.4) we obtain:
$G\left(y, y_{X}\right)=\frac{1-y^{2}}{2 y}$
Therefore:
$H\left(\varphi, \varphi_{x}\right)=-\sinh \varphi$
That is mean under the transformation (2.3) the partial differential equation obtained is:

$$
\begin{equation*}
\varphi_{t t}-\varphi_{x x}=0 \tag{2.18}
\end{equation*}
$$

An exact solution for (2.18) can be obtained as:
From equation (2.17), we have:
$y=c_{1} e^{c_{2} x}$
Therefore:
$\varphi(x, t)=k_{1} x+k_{2} t+\mu$
Where k_{1}, k_{2} and μ are constants.

References

[1] C.S.Gardner, J.M.Greene, M.D.Kruskal and R.M.Miura, method for solving the Korteweg-de Vries equation,phys.Rev.lett.19(1967),1095-1097.
[2] E.G.Fan,Multiple travelling wave solutions of nonlinear evolution equations using a unified algebric method,J phys 35 (2002) 6853-6872.
[3] E.V.Krishnan,series solutions for a coupled wave equation,International J of Diff eqs and applics 8(2003) 13-22.
[4] G.L.Lamb, Analytical description of ultra short optical pulse propagation in a resonant medium, Rev Mod phys 43 (1971) 99-124.
[5] Inaam A.Maloki and Shaheed N.Shimasawi, Derivation of some modified SineGordon equations and their exact solutions using Painleve equations, Al-Mustansiriya J.Sci.vol.10,no.3,1999.
[6] Ince, E.L." Ordinary Differential Equations", Dover, Publ, Newyork,(1956).
[7] M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, Cambridge, 1991.
[8] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collision of solitons, Phys Rev Lett 27 (1971) 1192-1194.
[9] S.K. Liu, Z. Fu, S.D. Liu and Q. Zhao, Jacobi elliptic function method and periodic wave solutions of nonlinear wave equations, Phys Lett A 289(2001)69-74.
[10] W. Hereman, A. Korpel, P.P.Banerjee, A general physical approach to solitary Wave construction from linear solutions 7 (1985) 283-290.
[11] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am J Phys 60 (1992) 650-655.
[12] Z. Fu, S.K Liu, S.D. Liu and Q. Zhao, New Jacobi elliptic function expansion and new periodic solution of nonlinear wave equation, Phys Lett A 290 (2001) 72-76.
[13] Z.Y. Yan, New Jacobian elliptic function solutions to modified KdV equation I, Commun Theor Physics 38 (2002) 143-146.
[14] A. Ghose Choudhury, Partha Guha, Nikolay A. Kudryashov, A Lagrangian description of the higher-order Painleve' equations, Applied Mathematics and Computation, 218 (2012) 6612-6619.
[15] Yuri Fedorov, Pilar R. Gordoa, Andrew Pickering, Auto-Bäcklund transformations and special integrals for differential-delay Painleve' hierarchies, Commun Nonlinear Sci Numer Simulat, 19 (2014) 3462- 3468.

