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          Abstract 
 

In this study, we propose a method in order to estimate the strength of a cryptographic 

algorithm. The method combines the evaluation of the cryptographic key length and the evaluation 

of the success rate of the randomness tests in the algorithm output samples. In the first step the 

algorithm is classified into one of four general categories, according to its key size, taking into 

account the current computer power which a cryptanalyst can use for exhaustive key search. In the 

second step we examine the success rate of the tests on the output samples. For this, the maximum 

accepted number of the rejected samples is calculated, taking as parameters the total number of 

samples (which depends from the selected sampling error) and the desired significance level and 

confidence interval for the success rate of the tests. If the rejected samples do not exceed the 

maximum number, the algorithm is considered as “random” and it is rated in the initial strength 

category due to its key size. If the rejected samples exceed the maximum number, the algorithm is 

submitted to further tests under certain conditions. 

 

Keywords: Cryptography, Data encryption, Communication security, Computer security, Data 

security, Information security.  

 

1. Introduction 
 

Due to the huge size of cryptographic keys (usually from 128 to 256 bits), it is practically 

impossible to test the algorithm for all key combinations (from 2128 to 2256 respectively). Therefore, 

the sampling method is used, in which from the total number of the N  key combinations, a much 

smaller number of n keys is selected. Using a software simulation of the algorithm, for each of the 

n sampling keys, a sample output of the algorithm is generated and these n samples are submitted 

to statistical randomness tests. Then, the tests results are processed for the calculation of the total 

performance of the algorithm for all the keys, using a predetermined sampling error. The final 

decision of the algorithm cryptographic strength is made based on the overall success rate of the 

tests, which are extremely time consuming. Therefore, if we want a reliable sampling (small 

sampling error) but also a practically feasible time to perform the tests, the main problems are:  

a. How many output samples should we check? 

b. What should be the size of each sample? 

c. How can we reduce the extremely long time required for the tests? 

d. What criteria should we use in order to select the sampling keys? 

e. How do we rate the strength of the algorithm based on the test results of its samples? 
 

Solutions to the problems (a), (b), (c) were addressed in (Marinakis, May 2021) [1] and 

solutions to the problem (d) were addressed in (Marinakis, July 2021) [2]. The problem (e) which 

remains, will be addressed in the present study. 
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The methods which will be proposed are focused on symmetric cryptographic algorithms 

(block ciphers and stream ciphers), but similar methods can be applied for asymmetric 

cryptographic algorithms.  

 

2. Length of the Key 
 

The security of a cryptographic algorithm is based on its internal complexity and its key 

length. But when the algorithm does not have a known and exploitable defect in its internal 

structure, then the only cryptanalytic attack that can be applied to it is the method of the exhaustive 

search of its key (known as Exhaustive Key Search or Brute Force Attack). This attack process is 

extremely time consuming and if the length of the key is big enough, then the exhaustive search 

is practically impossible and therefore we can say that the algorithm is practically secure. 
 

Table 1 gives the relative strengths of symmetric and asymmetric algorithms based on their 

key length and known cryptanalytic attacks, according to (NIST.SP.800-57 pt1r4, 2016) [3].  It is 

obvious that Table 1 is valid when the algorithm does not have a vulnerability (the  exploitation of 

which can reduce the number of keys or totally bypass them), so the only possible attack to it is 

the exhaustive key search 
1.     

 

       Table 1. Correspondence of symmetric and asymmetric algorithms security strength, 

                       based on their key length (from NIST SP800-57 pt1r4). 
  

 

          

  Security         

  strength      
        

 

       Symmetric  

            key 

       algorithms 

      

               Asymmetric key algorithms          

        

          FFC 

(e.g., DSA, D-H) 

       

       IFC 

 (e.g., RSA) 

       

      ECC 

(e.g., ECDSA) 

 

     < 80 
  
 2TDEA (2-DES)  

 

      L = 1024 

       N = 160 

 

     1024 
 

    160-223 

 

      112 
 

 3TDEA (3-DES) 

 

      L = 2048 

       N = 224 

 

     2048 
 

    224-255 

 

      128 
 

 AES-128 

 

      L = 3072 

       N = 256 

 

     3072 
 

    256-383 

 

      192 
 

 AES-192 

 

      L = 7680 

      N = 384 

 

     7680 
 

    384-511 

   
      256 

 

 AES-256 

 

     L = 15360 

      N = 512 

 

   15360 
 

       512+ 

               

          
 

 

1
 The first column of Table 1 expresses the active (actual) length of the key, which may be shorter 

than the nominal. E.g. while 3DES has a theoretical key length of 3x56 = 168 bits, however there is a 

cryptanalytic attack which reduces its active length to 112 bits. Similarly, for 2DES it has been found that 

if the cryptanalyst has at its disposal about 2^40 pairs of plain / crypto texts, the active key is reduced from 

the nominal value of 112 bits to 80 bits, while if the cryptanalyst knows 2^56 pairs of plain / crypto texts, 

the active key is reduced to 56 bits. (In the third column, L is the public key and N is the private key). 
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As is it shown, Table 1 contains only specific key lengths, from cryptographic algorithms 

which are designed in the US (excluding AES) and approved by NIST. In order to classify the 

security strength of the algorithms including all possible intermediate lengths of the keys between 

80 bits and 256 bits, we constructed Table 2, in which we classified the strength of the algorithms 

into four strength categories: Low, Medium, High and Very High, based on the value range to 

which their key length falls. 

 

      Table 2. Comparative strength of symmetric cryptographic algorithms based on the length 

       of their key, according to current cryptanalytic and technological data (year 2022).  
 

 

          KEY   

   LENGTH (Κ) 

 

 80 ≤ Κ ≤ 112 

 

112 < Κ < 128 

 

128 ≤ Κ ≤ 192 

 

192 < Κ ≤ 256 

        

  ALGORITHM    

    STRENGTH 

 

       LOW 

 

     MEDIUM 

 

       HIGH 

 

       VERY        

       HIGH 

 

We note that the above strength classification of cryptographic algorithms mainly shows 

the comparison between them, i.e. it is relative and not absolute. For example, for current computer 

technology, the 128-bit key length it is considered to give a high strength against the Exhaustive 

Key Search. However, the length of 128 bits compared to 256 bits should be considered at least 

one degree lower. In this study, we consider the key length of 256 bits as the upper limit for today 

symmetric ciphers, but it is obvious that an algorithm with a longer key length, from a cryptanalytic 

point of view, can "withstand" the Exhaustive Key Search attack over a longer period of time. 
 

Table 2 shows the strength of cryptographic algorithms, based on current cryptanalytic and 

technological data (year 2022). But as it is mentioned in (Marinakis, 2013) [4], in order to 

compensate for the constant evolution of integrated circuits (due to the Moore's law) and the 

relative increase of computer power, the key must increase by one bit each year. In this way the 

cryptographic algorithm will be safe from the evolution of the exhaustive key search. 
 

As a comparative example, we designed Table 3, which shows the key lengths that must 

be applied after 20 years, in order the cryptographic algorithms be secure against the exhaustive 

key search, according to the expected technological development (year 2042). We see that 

compared to Table 2, the values of the keys have increased by 20 (one bit increment for each year). 

 

     Table 3. Comparative strength of symmetric cryptographic algorithms based on the length 

      of their key, after 20 years, due to the expected technological evolution (year 2042).  
 

 

          KEY   

   LENGTH (Κ) 

 

 100 ≤ Κ ≤ 132 

 

132 < Κ < 148 

 

148 ≤ Κ ≤ 212 

 

212 < Κ ≤ 276 

        

  ALGORITHM    

    STRENGTH 

 

       LOW 

 

     MEDIUM 

 

       HIGH 

 

       VERY        

       HIGH 
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In any case, the final choice of the appropriate cryptographic algorithm (or the 

cryptographic system in general), must be made based on the desired duration of the protection of 

the encrypted information, combined with the analysis of the risks that the cryptographic system 

faces from potential threats which will take advantage of its weaknesses. These issues will be 

considered in a future study. 

 

3. Calculation of the Success Rate 
 

As mentioned in paragraph 1, in order to investigate the required randomness, 

independence and unpredictability of the generated digital sequences of an algorithm, special 

statistical and cryptanalytic tests are performed on its output bits. Three suites of these statistical 

tests are shown in Table 4, as they are referred to (Marinakis, 2015) [5].  These tests, essentially 

examine the randomness in the output bitstreams of  Random Number Generators (RNG), Pseudo 

Random Number Generators (PRNG) and symmetric cryptographic algorithms (Stream and Block 

Ciphers). 
 

Table 4. Three suites of statistical tests for randomness (available in software) 
 

 

          

        NIST SP 800-22 

    (for RNG and PRNG) 

      

          DIEHARD (Marsaglia)   

                   (for RNG) 

     

         CRYPT-X 
(Stream / Block Ciphers) 

 
 

1) Frequency  

2) Cumulative Sum  

3) Runs  

4) Rank  

5) Spectral  

6) Templates Matching  

7) Universal Statistical   

8) Approximate Entropy   

9) Random Excursions  

10) Moving Averages  

11) Lempel-Ziv Compression  

12) Linear Complexity  

13) Bayes  

 

1) Birthday Spacings  

2) Overlapping 5-permutation  

3) Binary Rank (6x8 Matrices) 

4) Binary Rank (31x31 & 32x32 Matrices) 

5) Monkey tests (20-bit words) 

6) Monkey tests (OPSO, OQSO,DNA) 

7) Number of 1’s in stream of bytes 

8) Number of 1’s in specific bytes 

9) Parking Lot  

10) Overlapping Sums  

11) Squeeze  

12) Minimum Distance  

13) Random Sphere’s  

14) Runs 

15) Craps 

             

 STREAM CIPHERS 

1) Frequency  

2) Binary derivatives  

3) Change points  

4) Runs  

5) Sequence complexity  

6) Linear complexity  
 

  BLOCK CIPHERS 

(1) Frequency   

(2) Binary Derivative  

(3) Linear  

(4) Affine  

(5) Avalanche 

(Plaintext)  

(6) Complementation   

 
 

For each statistical test suite from those that will be selected from Table 4, we must 

examine as many output samples of the algorithm as possible and then calculate the overall success 

rate, i.e. how many of the samples successfully passed each individual statistical test of the suite. 

As it is mentioned in (NIST.SP.800-22, 2010) [6] , for each statistical test we must define 

a success criterion, which is called significance level and is denoted by α. The α expresses the 

probability that a Type 1 error occurs, i.e. the test shows that the sequence is not random, when in 

fact it is random. For example, if we set α = 0.03 , it means that an algorithm successfully passes 

the test, if out of the 100 output samples that we have examined, at most three are not random. 
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(1) 

 

 

 

 

 

 

The standard values of the significance level α for cryptography are around 0.01, which 

means that at most one in 100 algorithm output sequences we accept that it is not random. 

However, as it is mentioned in (Soto, 1999) [7], in practice any set of digital sequences of an 

algorithm that we will choose, it will most likely deviate from this ideal case. 
 

A more realistic approach is to use a confidence interval (CI) for the percentage of the 

sequences that are expected to pass the desired α = 0.01. In this case the most appropriate 

confidence interval (CI) is 95%. This means that if more than 5% of the samples fail a test, then 

the algorithm is considered "suspicious" for generating non-random outputs. The maximum 

number of the rejected samples m  that can be accepted in each test with a 95% confidence interval 

is given in (Soto, 1999) [7] by the formula (1): 
 

 

 
where n is the total number of samples 

tested and α is the significance level (the 

formula is derived from the normal 

distribution curve, which approximates the 

binomial distribution curve for large n ). 

Table 5 shows the maximum accepted number of the rejected samples, based on the desired 

sampling error e (column 1) and the corresponding number of the samples n that must be tested 

(column 2). The first and second column of Table 5 were taken from (Marinakis, 2021) [1]. The 

maximum accepted number of the rejected samples, are calculated first taking into account only 

the significance level (column 3) and then taking into account both the significance level and the 

confidence interval CI (column 4) based on formula (1).  
 

Table 5. Maximum accepted number of samples to be rejected, based on the desired       

 sampling error e and the corresponding number of samples n that must be tested. 
 

 

 

 

 

 

       
 SAMPLING        

    ERROR 

       ( e ) 

  

 

 

 

 

 

 

    NUMBER 

OF SAMPLES                

          ( n ) 

             

               MAXIMUM ACCEPTED NUMBER 

          OF  REJECTED SAMPLES ( m ) 
 

   (the integer part of the number is taken into account) 

   

               For     

     significance level 

           α = 0.01 

 

              For     

      significance level 

            α = 0.01 

     and CI = 95% 

        5   %           384               3,84                9,689 

        4   %           600               6,00              13,311 

        3   %         1067             10,67              20,420 

        2   %         2401             24,01              38,636 

        1   %         9604             96,04            125,292 
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Example: Suppose that during a randomness test we want to have a very small sampling 

error of 1%. Therefore, from the second column of Table 5 we see that we will need to examine 

9604 samples. If we want the test to be strict, we must choose a success rate of 99%. This will give 

a failure rate of 1% (significance level α = 0.01), which means that up to 96 samples can be 

accepted as rejected (third column of Table 5). But since, as mentioned, an absolute success rate 

of 99% of the samples is almost impossible in practice, a more realistic approach is to use a 

confidence interval in which the desired success rate will most likely be found. So, if we choose a 

95% confidence interval, from the fourth column of  Table 5 we find that in this test we can accept 

up to 125 rejected samples. 

 

4. Algorithm Rating Process 
 

The security strength of a cryptographic algorithm (hereafter will be referred as 

cryptographic strength), concerns the randomness, independence and unpredictability of its output 

bitstreams and is essentially the measure of the difficulty that an cryptanalyst pays to break it. The 

process of strength rating of a cryptographic algorithm that we propose in the present study is as 

follows:  

In the first step, the algorithm is classified into one of four general cryptographic strength 

categories, based on its key size (Low, Medium, High, Very High). In the second step, the final 

degree of cryptographic strength is determined gradually, based on the results of the statistical 

randomness tests on its output bitstream samples, using one of the test suites from these that are 

shown in Table 4. It is at the discretion of the evaluator to use more than one test suite, but this 

will take much more time. 

We must emphasize that the final strength degree cannot be larger than the initial strength 

degree of the cryptographic algorithm due to the size of its key. On the contrary, it is very likely 

that the strength degree will be lower than the initial degree, due to significant weaknesses that the 

algorithm may present either in its internal structure (e.g. known cryptanalytic attacks against the 

whole structure or against a reduced structure of the algorithm), or in the possible non randomness 

of its digital output sequences. 
The rating process of the algorithm strength is summarized in Figure 1: Initially, the 

cryptographic algorithm is classified into one of four general strength categories, based on its key 

size K, as they were presented in paragraph 2 (Table 2): 
 

1st    category :    80 ≤ Κ ≤ 112    3rd   category :  128 ≤ Κ ≤ 192 

2nd   category :  112 < Κ < 128  4th   category :  192 < Κ ≤ 256 
 

After classifying the tested algorithm in one of the above categories, then we examine the 

success rate of the randomness tests on its n output samples. If the randomness test is positive, i.e. 

if the rejected samples do not exceed the maximum accepted number m which is calculated from 

formula (1) of the previous paragraph, then we classify the algorithm in the strength category 

resulting from its key size (Low, Medium, High, Very High), as shown in Figure 1. If the 

randomness test of the algorithm is negative, i.e. if the rejected samples exceed the maximum 

accepted number m, then we generate a new set of n output samples and perform for a second time 

the statistical randomness tests, with the procedures which are described in the next paragraph 4.1. 
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YES 

NO 

YES YES YES 

NO NO NO 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 
  
                   

         Figure 1. Process for the grading of cryptographic algorithm strength 

 

4.1. Testing of new samples 
 

If during the procedure shown in Figure 1, the total result of the algorithm randomness 

tests is negative, this does not necessarily mean that the algorithm has low cryptographic quality. 

According to (NIST.SP.800-22, 2010) [6] , the failure of a test may not be due to the low quality 

of the algorithm, but due to another cause, which may be one of the following: 

a. Incorrect implementation of the tested cryptographic algorithm or its Random Number 

Generator (in hardware or software). 

b. Incorrect software implementation of a statistical test or incorrect selection of its input 

parameters. 

c. Inadequately designed statistical test (e.g. insufficient analysis and implementation 

based on probability theory or complexity theory). 

d. Incorrect software for processing the input data of the statistical test. 

e. Inaccurate mathematical calculation of constants (a, p), mainly in terms of the most 

perfect numerical approximation of their values. 

f. Wrong selection in the characteristics of the samples (e.g. inappropriate number or size 

of the samples, inappropriate size of the blocks and patterns of the tests, etc.). 
 

Because of the above, if the randomness tests of the first group of n algorithm samples are 

negative, it makes sense to give the algorithm a “second chance” in order to rule out the possibility 

that the failure is not due to a defective design of the algorithm but due to one of the above causes. 

To address this problem, we propose to generate a new set of n algorithm output samples and to 

 

 80 ≤ Κ ≤ 112 
 

112 < Κ < 128 
 

128 ≤ Κ ≤ 192 
 

192 < Κ ≤ 256 

  

  

     VERY        

     HIGH 

STRENGTH 

     

     HIGH 

STRENGTH 

                  

   MEDIUM 

STRENGTH 

    

                 Produce a new set of  n  algorithm output samples 

                and conduct new randomness tests  (paragraph 4.1) 

                  

      LOW 

STRENGTH 

Randomness 
       tests 
   positive ? 

      Randomness 
       tests 
   positive ? 

Randomness 
       tests 
   positive ? 

Randomness 
       tests 
   positive ? 
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perform again a randomness test under certain conditions. Thus, in the case of the “re-testing” we 

will have the following two possibilities: 

a. The re-testing is negative: The algorithm is considered as “non-random” (since it failed 

twice in a row and for total 2n samples). 

b. The re-testing is positive: In this case, if m1 and m2 are the numbers of the rejected 

samples of the first and second test respectively, then their sum must not exceed the total m which 

is calculated from formula (1) of paragraph 3, where in the place of n we have to put 2n (because 

we performed two tests with n samples each). Therefore, if the sum of the rejected samples is less 

than m, the algorithm is considered as “random” and it is rated in the strength category resulting 

from its key size (Low, Medium, High, Very High). If the sum of the rejected samples is greater 

than m, the algorithm is considered as “non-random” and it is not rated to a specific strength 

category. 
 

Example: Suppose during the initial test of an algorithm we examine 600 samples and from 

them 15 are rejected. According to Table 5 (column 4) the maximum accepted number of rejected 

samples is 13, so the first test is negative. So, we perform a second test, during which, out of the 

new 600 samples, 6 are rejected (i.e. the second test is positive). Thus, out of a total of 1200 tested 

samples, a total of 21 samples were rejected. Applying formula (1) for n = 1200, we find that the 

maximum number of the rejected samples is m = 22. Therefore, the algorithm passes the tests 

successfully, since a total of 21 samples were rejected (less than 22 which is the limit). 
 

Alternatively, if an algorithm failed twice at the tests, instead of considered as “non-

random” and not rated, can be rated to a lower strength category than this which is based on its 

key length. This decision is up to the evaluator, who may take into account some additional 

parameters (such as details which concern the design and implementation of the algorithm etc.).  
 

 In order to save time, the re-testing can be performed only for the specific statistical test 

(from the suites of Table 4) in which the samples failed. Also, we must note that a second, maybe 

a third re-testing could be carried out according to the above procedure. This, of course, is at the 

discretion of the evaluator. For example, an evaluator may want to repeat the tests in order to see 

if and when the results of the re-tests will "correct" the results of the first test. However, the number 

of the re-tests for an algorithm cannot be excessive, for practical and ethical reasons. The practical 

reasons concern the extremely time-consuming process for the production of the samples and the 

execution of the tests. The ethical reasons concern the avoidance of a more “favorable” treatment 

of the tested algorithm, compared to some other algorithms which may have succeeded with the 

first testing. For the above reasons, during a comparative evaluation between different algorithms, 

we propose that an optimal rule is that the re-tests should not exceed the number of two. 

 

5. Conclusion 
 

In this study we proposed a method in order to rate the strength of a cryptographic 

algorithm. The first step is to classify the algorithm into one of four general strength categories, 

based on its key size (Low, Medium, High, Very High). The second step is to examine the success 

rate of the randomness tests on its output samples, calculating the maximum accepted number of 

the rejected samples, based on the number of samples (according to the selected sampling error) 

and based on the desired significance level and confidence interval for the success rate of the tests. 

If the randomness test is positive (the rejected samples do not exceed the maximum number), the 

algorithm is considered as “random” and we rate it in the strength category resulting from its key 

size. If the randomness test is negative (the rejected samples exceed the maximum number), we 



9 

 

 

 

generate a new set of  n output samples and perform the tests for a second time. With this                

“re-testing”, we rule out the possibility that the failure is not due to the algorithm but due to other 

causes. If the second set of n output samples fails again (the rejected samples exceed again the 

maximum number), then the algorithm is considered as “non- random” and it is not rated or it can 

be rated to a lower strength category than this which is based on its key length. If the second set 

of n output samples passes the tests, we examine if the sum of the rejected samples of the two tests 

exceeds the maximum number (which is calculated for 2n). If the sum exceeds the maximum 

number, the algorithm is considered as “non- random” and it is not rated or rated to a lower strength 

category. If the sum does not exceed the maximum number, the algorithm is considered as 

“random”, therefore it is rated based on its key length.     

When an algorithm fails at the first re-test, it is at the discretion of the evaluator to perform 

a second re-test. However, the number of the re-tests cannot be excessive, firstly because the tests 

procedures are extremely time-consuming and secondly in order to avoid a “favorable” treatment 

of the tested algorithm, compared to other algorithms which may have succeeded with the first 

test. Therefore, during a comparative evaluation between different algorithms, an optimal rule is 

to perform not more than two re-tests. 
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