
Journal of Applied Mathematics and Bioinformatics, Vol. x, No. xx, 2021, xxx-xxx

ISSN: 1792-6602(print), 1792- 6939(online)

Scientific Press International Limited

Article Info: Received: …. .., 2022. Revised: …. .., 2022.

Published online: …. .., 2022.

 Rating the Security Strength of Cryptographic Algorithms

 George Marinakis 1

 Abstract

In this study, we propose a method in order to estimate the strength of a cryptographic

algorithm. The method combines the evaluation of the cryptographic key length and the evaluation

of the success rate of the randomness tests in the algorithm output samples. In the first step the

algorithm is classified into one of four general categories, according to its key size, taking into

account the current computer power which a cryptanalyst can use for exhaustive key search. In the

second step we examine the success rate of the tests on the output samples. For this, the maximum

accepted number of the rejected samples is calculated, taking as parameters the total number of

samples (which depends from the selected sampling error) and the desired significance level and

confidence interval for the success rate of the tests. If the rejected samples do not exceed the

maximum number, the algorithm is considered as “random” and it is rated in the initial strength

category due to its key size. If the rejected samples exceed the maximum number, the algorithm is

submitted to further tests under certain conditions.

Keywords: Cryptography, Data encryption, Communication security, Computer security, Data

security, Information security.

1. Introduction

Due to the huge size of cryptographic keys (usually from 128 to 256 bits), it is practically

impossible to test the algorithm for all key combinations (from 2128 to 2256 respectively). Therefore,

the sampling method is used, in which from the total number of the N key combinations, a much

smaller number of n keys is selected. Using a software simulation of the algorithm, for each of the

n sampling keys, a sample output of the algorithm is generated and these n samples are submitted

to statistical randomness tests. Then, the tests results are processed for the calculation of the total

performance of the algorithm for all the keys, using a predetermined sampling error. The final

decision of the algorithm cryptographic strength is made based on the overall success rate of the

tests, which are extremely time consuming. Therefore, if we want a reliable sampling (small

sampling error) but also a practically feasible time to perform the tests, the main problems are:

a. How many output samples should we check?

b. What should be the size of each sample?

c. How can we reduce the extremely long time required for the tests?

d. What criteria should we use in order to select the sampling keys?

e. How do we rate the strength of the algorithm based on the test results of its samples?

Solutions to the problems (a), (b), (c) were addressed in (Marinakis, May 2021) [1] and

solutions to the problem (d) were addressed in (Marinakis, July 2021) [2]. The problem (e) which

remains, will be addressed in the present study.

1 Hellenic Army Academy - gmari@tee.gr

2 George Marinakis

The methods which will be proposed are focused on symmetric cryptographic algorithms

(block ciphers and stream ciphers), but similar methods can be applied for asymmetric

cryptographic algorithms.

2. Length of the Key

The security of a cryptographic algorithm is based on its internal complexity and its key

length. But when the algorithm does not have a known and exploitable defect in its internal

structure, then the only cryptanalytic attack that can be applied to it is the method of the exhaustive

search of its key (known as Exhaustive Key Search or Brute Force Attack). This attack process is

extremely time consuming and if the length of the key is big enough, then the exhaustive search

is practically impossible and therefore we can say that the algorithm is practically secure.

Table 1 gives the relative strengths of symmetric and asymmetric algorithms based on their

key length and known cryptanalytic attacks, according to (NIST.SP.800-57 pt1r4, 2016) [3]. It is

obvious that Table 1 is valid when the algorithm does not have a vulnerability (the exploitation of

which can reduce the number of keys or totally bypass them), so the only possible attack to it is

the exhaustive key search
1.

 Table 1. Correspondence of symmetric and asymmetric algorithms security strength,

 based on their key length (from NIST SP800-57 pt1r4).

 Security

 strength

 Symmetric

 key

 algorithms

 Asymmetric key algorithms

 FFC

(e.g., DSA, D-H)

 IFC

 (e.g., RSA)

 ECC

(e.g., ECDSA)

 < 80

 2TDEA (2-DES)

 L = 1024

 N = 160

 1024

 160-223

 112

 3TDEA (3-DES)

 L = 2048

 N = 224

 2048

 224-255

 128

 AES-128

 L = 3072

 N = 256

 3072

 256-383

 192

 AES-192

 L = 7680

 N = 384

 7680

 384-511

 256

 AES-256

 L = 15360

 N = 512

 15360

 512+

1
 The first column of Table 1 expresses the active (actual) length of the key, which may be shorter

than the nominal. E.g. while 3DES has a theoretical key length of 3x56 = 168 bits, however there is a

cryptanalytic attack which reduces its active length to 112 bits. Similarly, for 2DES it has been found that

if the cryptanalyst has at its disposal about 2^40 pairs of plain / crypto texts, the active key is reduced from

the nominal value of 112 bits to 80 bits, while if the cryptanalyst knows 2^56 pairs of plain / crypto texts,

the active key is reduced to 56 bits. (In the third column, L is the public key and N is the private key).

3

As is it shown, Table 1 contains only specific key lengths, from cryptographic algorithms

which are designed in the US (excluding AES) and approved by NIST. In order to classify the

security strength of the algorithms including all possible intermediate lengths of the keys between

80 bits and 256 bits, we constructed Table 2, in which we classified the strength of the algorithms

into four strength categories: Low, Medium, High and Very High, based on the value range to

which their key length falls.

 Table 2. Comparative strength of symmetric cryptographic algorithms based on the length

 of their key, according to current cryptanalytic and technological data (year 2022).

 KEY

 LENGTH (Κ)

 80 ≤ Κ ≤ 112

112 < Κ < 128

128 ≤ Κ ≤ 192

192 < Κ ≤ 256

 ALGORITHM

 STRENGTH

 LOW

 MEDIUM

 HIGH

 VERY

 HIGH

We note that the above strength classification of cryptographic algorithms mainly shows

the comparison between them, i.e. it is relative and not absolute. For example, for current computer

technology, the 128-bit key length it is considered to give a high strength against the Exhaustive

Key Search. However, the length of 128 bits compared to 256 bits should be considered at least

one degree lower. In this study, we consider the key length of 256 bits as the upper limit for today

symmetric ciphers, but it is obvious that an algorithm with a longer key length, from a cryptanalytic

point of view, can "withstand" the Exhaustive Key Search attack over a longer period of time.

Table 2 shows the strength of cryptographic algorithms, based on current cryptanalytic and

technological data (year 2022). But as it is mentioned in (Marinakis, 2013) [4], in order to

compensate for the constant evolution of integrated circuits (due to the Moore's law) and the

relative increase of computer power, the key must increase by one bit each year. In this way the

cryptographic algorithm will be safe from the evolution of the exhaustive key search.

As a comparative example, we designed Table 3, which shows the key lengths that must

be applied after 20 years, in order the cryptographic algorithms be secure against the exhaustive

key search, according to the expected technological development (year 2042). We see that

compared to Table 2, the values of the keys have increased by 20 (one bit increment for each year).

 Table 3. Comparative strength of symmetric cryptographic algorithms based on the length

 of their key, after 20 years, due to the expected technological evolution (year 2042).

 KEY

 LENGTH (Κ)

 100 ≤ Κ ≤ 132

132 < Κ < 148

148 ≤ Κ ≤ 212

212 < Κ ≤ 276

 ALGORITHM

 STRENGTH

 LOW

 MEDIUM

 HIGH

 VERY

 HIGH

4 George Marinakis

In any case, the final choice of the appropriate cryptographic algorithm (or the

cryptographic system in general), must be made based on the desired duration of the protection of

the encrypted information, combined with the analysis of the risks that the cryptographic system

faces from potential threats which will take advantage of its weaknesses. These issues will be

considered in a future study.

3. Calculation of the Success Rate

As mentioned in paragraph 1, in order to investigate the required randomness,

independence and unpredictability of the generated digital sequences of an algorithm, special

statistical and cryptanalytic tests are performed on its output bits. Three suites of these statistical

tests are shown in Table 4, as they are referred to (Marinakis, 2015) [5]. These tests, essentially

examine the randomness in the output bitstreams of Random Number Generators (RNG), Pseudo

Random Number Generators (PRNG) and symmetric cryptographic algorithms (Stream and Block

Ciphers).

Table 4. Three suites of statistical tests for randomness (available in software)

 NIST SP 800-22

 (for RNG and PRNG)

 DIEHARD (Marsaglia)

 (for RNG)

 CRYPT-X
(Stream / Block Ciphers)

1) Frequency

2) Cumulative Sum

3) Runs

4) Rank

5) Spectral

6) Templates Matching

7) Universal Statistical

8) Approximate Entropy

9) Random Excursions

10) Moving Averages

11) Lempel-Ziv Compression

12) Linear Complexity

13) Bayes

1) Birthday Spacings

2) Overlapping 5-permutation

3) Binary Rank (6x8 Matrices)

4) Binary Rank (31x31 & 32x32 Matrices)

5) Monkey tests (20-bit words)

6) Monkey tests (OPSO, OQSO,DNA)

7) Number of 1’s in stream of bytes

8) Number of 1’s in specific bytes

9) Parking Lot

10) Overlapping Sums

11) Squeeze

12) Minimum Distance

13) Random Sphere’s

14) Runs

15) Craps

 STREAM CIPHERS

1) Frequency

2) Binary derivatives

3) Change points

4) Runs

5) Sequence complexity

6) Linear complexity

 BLOCK CIPHERS

(1) Frequency

(2) Binary Derivative

(3) Linear

(4) Affine

(5) Avalanche

(Plaintext)

(6) Complementation

For each statistical test suite from those that will be selected from Table 4, we must

examine as many output samples of the algorithm as possible and then calculate the overall success

rate, i.e. how many of the samples successfully passed each individual statistical test of the suite.

As it is mentioned in (NIST.SP.800-22, 2010) [6] , for each statistical test we must define

a success criterion, which is called significance level and is denoted by α. The α expresses the

probability that a Type 1 error occurs, i.e. the test shows that the sequence is not random, when in

fact it is random. For example, if we set α = 0.03 , it means that an algorithm successfully passes

the test, if out of the 100 output samples that we have examined, at most three are not random.

5

(1)

The standard values of the significance level α for cryptography are around 0.01, which

means that at most one in 100 algorithm output sequences we accept that it is not random.

However, as it is mentioned in (Soto, 1999) [7], in practice any set of digital sequences of an

algorithm that we will choose, it will most likely deviate from this ideal case.

A more realistic approach is to use a confidence interval (CI) for the percentage of the

sequences that are expected to pass the desired α = 0.01. In this case the most appropriate

confidence interval (CI) is 95%. This means that if more than 5% of the samples fail a test, then

the algorithm is considered "suspicious" for generating non-random outputs. The maximum

number of the rejected samples m that can be accepted in each test with a 95% confidence interval

is given in (Soto, 1999) [7] by the formula (1):

where n is the total number of samples

tested and α is the significance level (the

formula is derived from the normal

distribution curve, which approximates the

binomial distribution curve for large n).

Table 5 shows the maximum accepted number of the rejected samples, based on the desired

sampling error e (column 1) and the corresponding number of the samples n that must be tested

(column 2). The first and second column of Table 5 were taken from (Marinakis, 2021) [1]. The

maximum accepted number of the rejected samples, are calculated first taking into account only

the significance level (column 3) and then taking into account both the significance level and the

confidence interval CI (column 4) based on formula (1).

Table 5. Maximum accepted number of samples to be rejected, based on the desired

 sampling error e and the corresponding number of samples n that must be tested.

 SAMPLING

 ERROR

 (e)

 NUMBER

OF SAMPLES

 (n)

 MAXIMUM ACCEPTED NUMBER

 OF REJECTED SAMPLES (m)

 (the integer part of the number is taken into account)

 For

 significance level

 α = 0.01

 For

 significance level

 α = 0.01

 and CI = 95%

 5 % 384 3,84 9,689

 4 % 600 6,00 13,311

 3 % 1067 10,67 20,420

 2 % 2401 24,01 38,636

 1 % 9604 96,04 125,292

6 George Marinakis

Example: Suppose that during a randomness test we want to have a very small sampling

error of 1%. Therefore, from the second column of Table 5 we see that we will need to examine

9604 samples. If we want the test to be strict, we must choose a success rate of 99%. This will give

a failure rate of 1% (significance level α = 0.01), which means that up to 96 samples can be

accepted as rejected (third column of Table 5). But since, as mentioned, an absolute success rate

of 99% of the samples is almost impossible in practice, a more realistic approach is to use a

confidence interval in which the desired success rate will most likely be found. So, if we choose a

95% confidence interval, from the fourth column of Table 5 we find that in this test we can accept

up to 125 rejected samples.

4. Algorithm Rating Process

The security strength of a cryptographic algorithm (hereafter will be referred as

cryptographic strength), concerns the randomness, independence and unpredictability of its output

bitstreams and is essentially the measure of the difficulty that an cryptanalyst pays to break it. The

process of strength rating of a cryptographic algorithm that we propose in the present study is as

follows:

In the first step, the algorithm is classified into one of four general cryptographic strength

categories, based on its key size (Low, Medium, High, Very High). In the second step, the final

degree of cryptographic strength is determined gradually, based on the results of the statistical

randomness tests on its output bitstream samples, using one of the test suites from these that are

shown in Table 4. It is at the discretion of the evaluator to use more than one test suite, but this

will take much more time.

We must emphasize that the final strength degree cannot be larger than the initial strength

degree of the cryptographic algorithm due to the size of its key. On the contrary, it is very likely

that the strength degree will be lower than the initial degree, due to significant weaknesses that the

algorithm may present either in its internal structure (e.g. known cryptanalytic attacks against the

whole structure or against a reduced structure of the algorithm), or in the possible non randomness

of its digital output sequences.
The rating process of the algorithm strength is summarized in Figure 1: Initially, the

cryptographic algorithm is classified into one of four general strength categories, based on its key

size K, as they were presented in paragraph 2 (Table 2):

1st category : 80 ≤ Κ ≤ 112 3rd category : 128 ≤ Κ ≤ 192

2nd category : 112 < Κ < 128 4th category : 192 < Κ ≤ 256

After classifying the tested algorithm in one of the above categories, then we examine the

success rate of the randomness tests on its n output samples. If the randomness test is positive, i.e.

if the rejected samples do not exceed the maximum accepted number m which is calculated from

formula (1) of the previous paragraph, then we classify the algorithm in the strength category

resulting from its key size (Low, Medium, High, Very High), as shown in Figure 1. If the

randomness test of the algorithm is negative, i.e. if the rejected samples exceed the maximum

accepted number m, then we generate a new set of n output samples and perform for a second time

the statistical randomness tests, with the procedures which are described in the next paragraph 4.1.

7

YES

NO

YES YES YES

NO NO NO

 Figure 1. Process for the grading of cryptographic algorithm strength

4.1. Testing of new samples

If during the procedure shown in Figure 1, the total result of the algorithm randomness

tests is negative, this does not necessarily mean that the algorithm has low cryptographic quality.

According to (NIST.SP.800-22, 2010) [6] , the failure of a test may not be due to the low quality

of the algorithm, but due to another cause, which may be one of the following:

a. Incorrect implementation of the tested cryptographic algorithm or its Random Number

Generator (in hardware or software).

b. Incorrect software implementation of a statistical test or incorrect selection of its input

parameters.

c. Inadequately designed statistical test (e.g. insufficient analysis and implementation

based on probability theory or complexity theory).

d. Incorrect software for processing the input data of the statistical test.

e. Inaccurate mathematical calculation of constants (a, p), mainly in terms of the most

perfect numerical approximation of their values.

f. Wrong selection in the characteristics of the samples (e.g. inappropriate number or size

of the samples, inappropriate size of the blocks and patterns of the tests, etc.).

Because of the above, if the randomness tests of the first group of n algorithm samples are

negative, it makes sense to give the algorithm a “second chance” in order to rule out the possibility

that the failure is not due to a defective design of the algorithm but due to one of the above causes.

To address this problem, we propose to generate a new set of n algorithm output samples and to

 80 ≤ Κ ≤ 112

112 < Κ < 128

128 ≤ Κ ≤ 192

192 < Κ ≤ 256

 VERY

 HIGH

STRENGTH

 HIGH

STRENGTH

 MEDIUM

STRENGTH

 Produce a new set of n algorithm output samples

 and conduct new randomness tests (paragraph 4.1)

 LOW

STRENGTH

Randomness
 tests
 positive ?

 Randomness
 tests
 positive ?

Randomness
 tests
 positive ?

Randomness
 tests
 positive ?

8 George Marinakis

perform again a randomness test under certain conditions. Thus, in the case of the “re-testing” we

will have the following two possibilities:

a. The re-testing is negative: The algorithm is considered as “non-random” (since it failed

twice in a row and for total 2n samples).

b. The re-testing is positive: In this case, if m1 and m2 are the numbers of the rejected

samples of the first and second test respectively, then their sum must not exceed the total m which

is calculated from formula (1) of paragraph 3, where in the place of n we have to put 2n (because

we performed two tests with n samples each). Therefore, if the sum of the rejected samples is less

than m, the algorithm is considered as “random” and it is rated in the strength category resulting

from its key size (Low, Medium, High, Very High). If the sum of the rejected samples is greater

than m, the algorithm is considered as “non-random” and it is not rated to a specific strength

category.

Example: Suppose during the initial test of an algorithm we examine 600 samples and from

them 15 are rejected. According to Table 5 (column 4) the maximum accepted number of rejected

samples is 13, so the first test is negative. So, we perform a second test, during which, out of the

new 600 samples, 6 are rejected (i.e. the second test is positive). Thus, out of a total of 1200 tested

samples, a total of 21 samples were rejected. Applying formula (1) for n = 1200, we find that the

maximum number of the rejected samples is m = 22. Therefore, the algorithm passes the tests

successfully, since a total of 21 samples were rejected (less than 22 which is the limit).

Alternatively, if an algorithm failed twice at the tests, instead of considered as “non-

random” and not rated, can be rated to a lower strength category than this which is based on its

key length. This decision is up to the evaluator, who may take into account some additional

parameters (such as details which concern the design and implementation of the algorithm etc.).

 In order to save time, the re-testing can be performed only for the specific statistical test

(from the suites of Table 4) in which the samples failed. Also, we must note that a second, maybe

a third re-testing could be carried out according to the above procedure. This, of course, is at the

discretion of the evaluator. For example, an evaluator may want to repeat the tests in order to see

if and when the results of the re-tests will "correct" the results of the first test. However, the number

of the re-tests for an algorithm cannot be excessive, for practical and ethical reasons. The practical

reasons concern the extremely time-consuming process for the production of the samples and the

execution of the tests. The ethical reasons concern the avoidance of a more “favorable” treatment

of the tested algorithm, compared to some other algorithms which may have succeeded with the

first testing. For the above reasons, during a comparative evaluation between different algorithms,

we propose that an optimal rule is that the re-tests should not exceed the number of two.

5. Conclusion

In this study we proposed a method in order to rate the strength of a cryptographic

algorithm. The first step is to classify the algorithm into one of four general strength categories,

based on its key size (Low, Medium, High, Very High). The second step is to examine the success

rate of the randomness tests on its output samples, calculating the maximum accepted number of

the rejected samples, based on the number of samples (according to the selected sampling error)

and based on the desired significance level and confidence interval for the success rate of the tests.

If the randomness test is positive (the rejected samples do not exceed the maximum number), the

algorithm is considered as “random” and we rate it in the strength category resulting from its key

size. If the randomness test is negative (the rejected samples exceed the maximum number), we

9

generate a new set of n output samples and perform the tests for a second time. With this

“re-testing”, we rule out the possibility that the failure is not due to the algorithm but due to other

causes. If the second set of n output samples fails again (the rejected samples exceed again the

maximum number), then the algorithm is considered as “non- random” and it is not rated or it can

be rated to a lower strength category than this which is based on its key length. If the second set

of n output samples passes the tests, we examine if the sum of the rejected samples of the two tests

exceeds the maximum number (which is calculated for 2n). If the sum exceeds the maximum

number, the algorithm is considered as “non- random” and it is not rated or rated to a lower strength

category. If the sum does not exceed the maximum number, the algorithm is considered as

“random”, therefore it is rated based on its key length.

When an algorithm fails at the first re-test, it is at the discretion of the evaluator to perform

a second re-test. However, the number of the re-tests cannot be excessive, firstly because the tests

procedures are extremely time-consuming and secondly in order to avoid a “favorable” treatment

of the tested algorithm, compared to other algorithms which may have succeeded with the first

test. Therefore, during a comparative evaluation between different algorithms, an optimal rule is

to perform not more than two re-tests.

References

[1]. George Marinakis, “Sampling methods for cryptographic tests”, May 2021.

 https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2143151

[2]. George Marinakis, “Selection of sampling keys for cryptographic tests”, July 2021.

 https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2202191

[3]. NIST.SP.800-57pt1r4 “Recommendation for Key Management-1”, 2016.

 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

[4]. George Marinakis “Minimum key length for cryptographic security”, March 2013.

 http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=597

[5]. George Marinakis, “Design and evaluation of random number generators”, September 2015.

 http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=1608

[6]. NIST Special Publication 800-22, “A Statistical Test Suite for Random and

 Pseudorandom Number Generators for Cryptographic Applications” National Institute of

 Standards and Technology (NIST), April 2010.

[7]. Juan Soto, Jr.,“ Randomness Testing of the Advanced Encryption Standard Candidate

 Algorithms”, NIST, IR 6390, September 1999.

https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2143151
https://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=2202191
http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=597
http://www.scienpress.com/journal_focus.asp?main_id=57&Sub_id=IV&Issue=1608

