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Abstract:

Rank correlations currently in use have a resistance-to-change which appears to be of li-

mited value for the purposes of ranking comparisons. It is plain that a given value of a rank

correlation does not define a specific pair of permutations, except perhaps for the extreme

values. Nevertheless, a coefficient that condenses comparison of rankings into too few

values renders difficult the assessment of the strength of their association. Recently, Tar-

sitano & Lombardo [2013] proposed a new statistic of rank correlation, called r4, based on

the intuitive appeal of quotients, which achieves greater sensitivity to changes in rankings

than any other known coefficient; and this without causing additional difficulty in inter-

pretation or affecting the implementation in hypothesis testing. In there, the authors do

not discuss the finite and limiting behavior of the new coefficient. In the present paper we

show that the exact null distribution of r4 is well approximated by the t-Student ad that,

its asymptotic distribution, is a standard Gaussian distribution. Computational results for

empirical and simulated data sets reveal that r4 is very efficient in evaluating strength and

pattern of the agreement between pairs of rankings.
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1. Introduction

Dependence between rankings is a topic that persistently occurs throughout statistical

practice and it is the subject of the present paper. Our point of departure is the fact

that, though the Pearson’s product-moment correlation coefficient (here denoted r0) is

widely used to measure the linear relation between two variables, it can perform poorly

when the relationship is thought to be non-linear and/or the data are affected by errors of

measurement and outliers. For example, it needs only one abnormal value to shift r0 to

any value in the interval [−1,1]. For these and many other reasons, we may turn to more

resistant, albeit less efficient non-parametric measure of association.

Consider n independent pairs of scores (xi,yi) , i = 1,2,· · ·,n. The pairs are sorted

into ascending order of their first coordinate and then transformed into the ranks π =

{π1,π2, · · · ,πn}. Likewise, the yi, i= 1,2,· · ·,n are placed in correspondence with the

ranks η = {η1,η2, · · · ,ηn}. Both π and η are elements of Sn, the set of all n! permutations

of the integers {1,2, · · · ,n}. With no essential loss of generality we assume that πi is the

rank of xi after η has been arranged in its natural order, that is ηi = i, i = 1,2, · · · ,n. Note,

also, that we assume there are no ties throughout.

A rank correlation r (η ,π) is a statistic summarizing the degree of agreement between

η and π . Three of the more popular rank correlation coefficients are:

Spearman r1 (π,η) =
12

n3−n

n

∑
i=1

iπi−3
(

n+1
n−1

)
Kendall r2 (π,η) =

2∑
n−1
i=1 ∑

n
j=i+1 sgn

(
π j−πi

)
n(n−1)

Gini r3 (π,η) =
4
[

∑n+1−i≤πi [πi−(n+1−i)]−∑i≤πi (πi−i)
]

n2− kn

(1)

with kn =n mod2 and sgn(.) equals to −1,0 or 1 according to whether its argument is

negative, zero or positive. We note that r1 takes values on a lattice with
(
n3−n

)
/6+ 1

distinct values. The sum ∑
n
i=1 iπi in the first term of r1 covers all the integers between
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n(n+1)(n+2)/6 and n(n+1)(2n+1)/6. When n > 3, r1 can be zero if, and only if, n

is not of the form n = 4 ∗m+ 2 where m is a positive integer (see Marshall, 1994). The

possible values of r2 are
(
n2−n

)
/2+ 1. The coefficient is zero or even if, and only if,

n = 4∗m or n = m∗4+1 where m is any positive integer; r2 only takes on odd values if

n is not in that form. When n > 3, zero is always a value of Gini’s coefficient r3, which

can assume other 2
(
n2/4+ kn

)
distinct values. In each case, the expression within square

brackets in r3 only takes on even values. According to Kendall [1938], the disparity in

the potential number of values among rank correlations is not a great disadvantage to

their sensitivity. Nonetheless, Kendall & Gibbons [1990][p. 37-38] used this argument to

dismiss Spearman’s footrule as a feasible measure of association.

The choice of a rank correlation is fundamentally based on two antithetical require-

ments: resistance and sensitivity. Resistance refers to the ability of a coefficient to remain

constant when data are changed slightly. However, since stability is achieved at the cost of

a loss in precision, it can become a problem if the same value is applied to describe very

different patterns. Sensitive coefficients offer a richer source of information regarding the

association structure, but sensitivity is a drawback when substantially similar rankings

are mapped onto distant coefficient values. A reasonable compromise may be achieved

by considering that, since ranks rely on the relative ordering of elements, they are, by con-

struction, very tolerant of noise and disturbances that do not affect the actual order. Thus,

particular consideration should be given to the discriminatory power of a coefficient rather

than to its resistance. From this point of view, many robust rank correlations such those

proposed by Dallal & Hartigan [1980], Blomqvist [1950]) or Gideon & Hollister [1987]

are largely insufficient for ranking comparisons when the range of possible relationships

between the underlying variables is wide.

Apparently, coefficients in (1) have the right characteristics to act as valid substitutes

of Pearson’s correlation whenever it is necessary. Nonetheless, the spectrum of their

values is still relatively small and concentrated on a reduced set of points. Tarsitano
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& Lombardo [2013], proposed a new rank correlation coefficient based on the intuitive

appeal of quotients

r4 (π,η)=
(bη ,π∗)

t bη∗,π−(bη∗,π∗)
t bη ,π

Mn
, Mn=

[
kn+2

bn/2c

∑
i=1

(n+1−i)/i

]2

−n2. (2)

where bxc denotes the largest integer not greater than x. The symbols π∗=n+1−π and

η∗=n+1−η are the reverse permutations of π and η , respectively. The n×1 vector bη ,π

is formed with the components of the matrix A occupying the positions identified by the

elements in η as first index and those in π as second index. The generic element of A

is ai j =max(i, j)/min(i, j) , i, j = 1,2, · · · ,n. The coefficient r4 can assume a number of

distinct values of the order 0.25n! more or less uniformly spaced from each other.

Coefficients rh (η ,π) ,h= 1, · · · ,4 share several properties, notably monotonicity, sym-

metry, right-invariance and antisymmetry under reversal. See Gideon & Hollister [1987]

and Brown & Eagleson [1984]. All the coefficients vary within the range: [−1,1]. The

extremes are achieved if and only if there is perfect association for all pairs: rh (η ,η)=

rh (π,π)=1, rh (η ,η∗) = rh (π,π
∗)=−1. The closer rh (for brevity, the arguments π,η

are dropped unless ambiguity occurs) is to one, ignoring the sign, the stronger the rela-

tionship between rankings is. At the other extreme, rh = 0 or near-zero implies that the

two rankings are not related according to the association concept embodied in rh.

In Figure 1 the exact null distributions of r1, · · · ,r4 are shown as frequency polygons

for n = 10. The profiles show some resemblances to and some differences from one

another. The frequency polygons of r2 and r3 exhibit high levels of irregularities. We

attribute this to the lattice of values available for these coefficients, which is much sparser

than that of r1 or r4. In fact, the space between possible values of r2 and r3 decreases

monotonically, but slowly as n increases. A good sign, however, is that the serration is

more noticeable in the middle of the range [−1,1] than near the extremes where they

have a greater importance for hypothesis testing. The varying size of serrations in the
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frequency polygon of r1 is less intense than those in r2 and r3, but much more sharp than

that of r4. The profile of r4 shows the slightest degree of fluctuation and the tails of its

null distribution smooth out first and more than any of the other coefficients.

Figure 1: Frequency polygons (based on binned counts) for n=10.

2. Sampling distribution of r4 under independence

In this section, we are concerned with the distribution of r4 when all rankings are equally

probable with probability 1/n!. Firstly, the denominator of r4 is unaffected by any per-

mutation of the ranks so that it is sufficient to consider the random variable Mnr4 =

bt
η ,π∗bη∗,π − bt

η∗,π∗bη ,π , which has support in [−Mn,Mn]. The properties of r4 ensure

that, for each pair of permutations such that bt
η ,π∗bη∗,π = x, there must be another pair of

permutations for which also bt
η∗,π∗bη ,π = x and, consequently, bt

η ,π∗bη∗,π and bt
η∗,π∗bη ,π

share the same codomain. If follows that E
(

bt
η ,π∗bη∗,π

)
= E

(
bt

η∗,π∗bη ,π

)
which, in

turn, implies that E (r4) = 0. Hence, under the null hypothesis of independent rankings,
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the distribution of r4 is symmetrical around zero and has support in [−1,1]. All the odd

moments are zero because of the symmetry.

The calculation of the variance is more difficult than that of the mean. We have

M2
nV (r4) =V

(
bt

η ,π∗bη∗,π −bt
η∗,π∗bη ,π

)
=V

(
bt

η ,π∗bη∗,π
)
+V

(
bt

η∗,π∗bη ,π

)
−2Cov

(
bt

η ,π∗bη∗,π ,bt
η∗,π∗bη ,π

)
.

(3)

By virtue of the same reasoning as used above for the derivation of the expected value,

we obtain V
(

bt
η ,π∗bη∗,π

)
=V

(
bt

η∗,π∗bη ,π

)
. Then, expression (3) specializes to

V (r4) =
2
[
V
(

bt
η ,π∗bη∗,π

)
−Cov

(
bt

η ,π∗bη∗,π ,bt
η∗,π∗bη ,π

)]
M2

n
. (4)

We have empirically explored (4) by evaluating it over all possible pairs of permutations

with n up to 15 and found that, under independence, the Pearson correlation coefficient

cor
(

bt
η ,π∗bη∗,π ,bt

η∗,π∗bη ,π

)
converges towards−1 as n increases. Based on this premise,

(4) can be reasonably approximated by

σ
2
n (r4)≈

4
[
V
(

bt
η ,π∗bη∗,π

)]
M2

n
. (5)

It remains to evaluate the variance of the dot-product V
(

bt
η ,π∗bη∗,π

)
. One limitation of

our paper is that we were not able to write (5) in a simplified manner, even exploiting

the relationships developed by Bohrnstedt & Goldberger [1969] and Brown & Eagleson

[1984] on the exact variance and covariance of a product of random variables. To circum-

vent this problem, we apply a simply linear regression model

σ
2
n (r4) =

β

n−1
+ ε. (6)

The regression function has no intercept to allow the variance to reach zero as n goes
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to infinity. In passing we note that (6) coincides with the asymptotic variance of Spear-

man’s coefficient r1 when β = 1. The true values of σ2
n (r4) are determined by complete

enumeration of all rankings. The unknown parameter β is estimated by the linear least

squares method applied to the 11 points
[
σ2 (r4) ,n

]
,n= 5, · · · ,15. The resulting estimate

is σ2
n (r4)≈ 1.00762/(n−1) with an adjusted R2 of 0.9994. This approximation is quite

good even for small values of n as it is shown in the first two rows of Table 1.

Table 1: Exact and approximate values of σ2
n (r4).

n 7 8 9 10 11 12 13 14 15

σ2
n (r4) 0.1677 0.1423 0.1275 0.1131 0.1037 0.0945 0.0879 0.0815 0.0766

σ̂2
n (r4) 0.1679 0.1439 0.1260 0.1120 0.1008 0.0916 0.0840 0.0775 0.0720

σ2
n (r1) 0.1667 0.1429 0.1250 0.1111 0.1000 0.0909 0.0833 0.0769 0.0714

σ2
n (r2) 0.1005 0.0833 0.0710 0.0617 0.0545 0.0488 0.0442 0.0403 0.0370

σ2
n (r3) 0.1204 0.0982 0.0875 0.0756 0.0689 0.0614 0.0569 0.0518 0.0485

In the last three rows Table 1 we report the variances of the Spearman, Kendall and Gini

coefficients, which show that the distribution of r4 is relatively more disperse than that of

the other rank correlations.

The coefficient of kurtosis of r4 can also be obtained through the same regression

strategy. The corresponding least squares estimate is

γ̂n (r4)≈ 2.929894− 5.889006
n

+
8.559322

n2 − 11.617287
n3 (7)

with an adjusted R2 virtually equal to one and a residual standard error of 0.000116.

Thus, γn (r4) converges to a limit value near three (the value of kurtosis for a Gaussian

distribution) as n goes to infinity. We show in Table 2 the results of the fitting procedure.

The interpolation of γn (r4) is excellent and would be quite satisfactory in practice. This

result is particularly important in the present work, since there does not appear to be any

simple way in which either moments or cumulants of r4 can be determined. The last rows
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in Table 2 reports the kurtosis values of r1, r2 and r3, which confirm that r4 is slightly

more platykurtic than the other coefficients

Table 2: Exact and approximate values of γn (r4).

n 7 8 9 10 11 12 13 14 15
γn (r4) 2.2292 2.3049 2.3653 2.4150 2.4565 2.4918 2.5222 2.5487 2.5719
γ̂n (r4) 2.2294 2.3048 2.3653 2.4150 2.4565 2.4919 2.5223 2.5487 2.5719
γn (r1) 2.3357 2.4190 2.4840 2.5360 2.5785 2.6140 2.6440 2.6696 2.6919
γn (r2) 2.6833 2.7262 2.7586 2.7839 2.8043 2.8211 2.8351 2.8471 2.8574
γn (r3) 2.5238 2.5310 2.6213 2.6078 2.6869 2.6615 2.7335 2.7007 2.7682

2.1. t-Student approximation

In consideration of the affinities between r4 and r1, at least for the first three moments, we

suggest a procedure similar to that used by Zar [1972] and Landenna et al. [1989]. Let r

be a random variable with a Pearson type II density

f (r,λ ) =

(
1− r2)(λ−1)

B(0.5,λ )
with |r| ≤ 1; λ > 0. (8)

where B is the well-known beta function and λ is a parameter positively related to the

number of ranks n. The variance and kurtosis of r are

σ
2 (λ ) = 1/(2λ +1) , γ (λ ) =−6/(2λ +3) (9)

The variance decreases monotonically as λ , and hence n, increases. The kurtosis is neg-

ative denoting that (8) is less peaked and has thinner tails than the Gaussian distribution.

For λ → ∞, the Pearson type II density becomes quite close to the standardized Gaus-

sian density. See Devroye [1986][p. 433]. On the other hand, for λ → 0+, the general

lower bound on symmetrical densities: γ (λ ) > −2 is verified. See Devroye [1986][p.

688]. In summary, curve (8) is symmetrical, unimodal with mode at zero, supported

within interval [−1,1] and has a tendency towards the Gaussian distribution. If we set
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σ2 (r)=1.00762/(n−1) and solve the first equation in (9) for λ then r has approximately

the same variance as r4 and a kurtosis roughly equal to γ (r)=−6.04572/(n+2.01524).

The difference between the kurtosis of r4 and that of r becomes negligible as n→ ∞.

One key factor behind the wide diffusion of (8) is its strict relationship with the Stu-

dent’s t density function, which allows for the use of easy tables and hence ensures com-

putational convenience and simple checking of results. In particular, the following statis-

tic r′4 = r4

√
2m/

(
1− r2

4
)
∼ tb2mcwith m=(n−1.00762)/2.01524 can be used to test the

significance of r4. See, for example, Willink [2009]. The quality of the approximations is

illustrated in Table 3. For the given α , we report the exact conservative critical value, the

approximated critical value and their absolute difference.

Table 3: Comparison of t-Student approximation to the exact distribution of r4.

n α Exact Approx. Abs. Dif. α Exact Approx. Abs. Dif.

12 0.0001 0.8815 0.8947 0.0133 0.0100 0.6647 0.6851 0.0204
0.0005 0.8295 0.8470 0.0175 0.0250 0.5833 0.6021 0.0188
0.0010 0.8009 0.8199 0.0190 0.0500 0.5053 0.5214 0.0161
0.0025 0.7556 0.7759 0.0203 0.1000 0.4065 0.4187 0.0122
0.0050 0.7142 0.7348 0.0206 0.2500 0.2229 0.2281 0.0052

13 0.0001 0.8649 0.8742 0.0093 0.0100 0.6448 0.6581 0.0132
0.0005 0.8111 0.8233 0.0122 0.0250 0.5643 0.5760 0.0117
0.0010 0.7819 0.7950 0.0130 0.0500 0.4877 0.4973 0.0096
0.0025 0.7360 0.7496 0.0136 0.1000 0.3913 0.3981 0.0067
0.0050 0.6943 0.7079 0.0136 0.2500 0.2138 0.2161 0.0023

14 0.0001 0.8451 0.8544 0.0092 0.0100 0.6239 0.6339 0.0100
0.0005 0.7902 0.8010 0.0108 0.0250 0.5446 0.5529 0.0083
0.0010 0.7607 0.7717 0.0110 0.0500 0.4697 0.4762 0.0065
0.0025 0.7145 0.7255 0.0110 0.1000 0.3761 0.3802 0.0041
0.0050 0.6729 0.6835 0.0107 0.2500 0.2048 0.2058 0.0009

15 0.0001 0.8302 0.8353 0.0051 0.0100 0.6076 0.6120 0.0045
0.0005 0.7743 0.7800 0.0057 0.0250 0.5293 0.5324 0.0032
0.0010 0.7444 0.7501 0.0058 0.0500 0.4557 0.4575 0.0018
0.0025 0.6979 0.7034 0.0055 0.1000 0.3642 0.3646 0.0003
0.0050 0.6563 0.6614 0.0051 0.2500 0.1979 0.1968 0.0010

From Table 3 it can be seen that the accuracy of approximation tends to be lower for

smaller α . When n increases, the general quality of approximation improves and turns to

be higher where it is most needed, that is, in the tails of the distribution.
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3. Large-sample distribution of r4

In case n is too large for complete enumeration to be feasible, the distribution of r4 can be

approximate by using a continuous curve such as the t-Student density. If, however, there

is no special reason (other than a good fit) to use a particular probability density, we can

resort to the Gaussian density and rely on some form of the central limit theorem.

Let us define ζ
(
ηi,η j,πi,π j

)
=g(ηi,π

∗
i )g

(
n+1−η j,π j

)
−g(n+1−ηi,π

∗
i )g

(
η j,π j

)
.

The quantity gi (π,η)= exp{|log(πi)−log(ηi)|} , i = 1,2, · · · ,n expresses the disagree-

ment between two rankings due to the distance from πi to ηi. By construction, E (Gn) = 0.

It is important to notice that Gn clearly falls within the class of double-indexed permuta-

tion statistics studied by Zhao et al. [1997] (see also Barbour & Chen, 2005). The crucial

result, for our purposes, is Theorem 2 in Zhao et al. [1997] in which the authors, by using

the Stein’s method, prove that there is a constant K > 0 such that for n≥ 2

sup
x

∣∣∣∣P(Gn ≤ σ (Gn)x)−Φ(x)
∣∣∣∣≤ K

σ (Gn)
3

{
n−1

∑
i,k

∣∣a∗i,k∣∣3 + ∑
i, j,k,l

∣∣∣ζ ∗i, j,k,l∣∣∣3} (10)

where Φ(x) is the standard Gaussian distribution and

ai,k = ζ
∗
i,i,k,k +n−1

∑
j,l

ζi, j,k,l +n−1
∑
j,l

ζ j,i,l,k

a∗i,k = ai,k−
n

∑
k=1

ai,k−
n

∑
i=1

ai,k +
n

∑
k=1

n

∑
i=1

ai,k

(11)

with

ζ
∗
i, j,k,l = ζi, j,k,l−n−1

[
∑

l
ζi, j,k,l +∑

k
ζi, j,k,l +∑

j
ζi, j,k,l +∑

i
ζi, j,k,l

]
+

+n−2

[
∑
k,l

ζi, j,k,l +∑
j,l

ζi, j,k,l +∑
j,k

ζi, j,k,l +∑
i,l

ζi, j,k,l +∑
i,k

ζi, j,k,l +∑
i, j

ζi, j,k,l

]

−n−3

[
∑
k, j,l

ζi, j,k,l +∑
i,k,l

ζi, j,k,l + ∑
i, j,l

ζi, j,k,l + ∑
i,k, j

ζi, j,k,l

]
. (12)
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The condition to be satisfied for the validity of (10) is Mnσ2 (Gn)=∑
n
k=1 ∑

n
i=1

(
a∗i,k
)2

> 0.

This is simply an estimate of the variance of Gn, which, as we have argued, can be asymp-

totically approximated by σ2 (Gn) ≈Mn (n−1)−1. Applying (10), we can conclude that

the null distribution of r∗4 = r4/σn (r4) converges to Φ(x) with the rate O(1/
√

n).

The point that we want to emphasize is that the large-sample approximation to the

exact null distribution of r4, suitably standardized, can be based on the Gaussian distri-

bution. For this standardization, it is necessary to know expected value and variance of

r4 when the hypothesis of independence is true. We have shown in the previous section

that, under such hypothesis, E (r4) = 0 and σ2 (r4) ≈ 1.00762(n−1)−1. It follows that

r∗4 = 1.003803r4
√

n−1 has, for n tending to infinity, an asymptotic Gaussian distribution.

To demonstrate the applicability of the limiting distribution to the null, we investigate

r4 together with Spearman’s r1. This coefficient is taken as benchmark reference because

it is very widely known, but above all, because an important aim of our article is to

understand whether there is any evidence that a large number of potential values give an

advantage to the discriminatory power of a rank correlation. In this sense, the variety of

values of r1 is the richest among the statistics commonly in use at the present time.

From Figure 2 we see that, while the agreement between the frequency polygon of

r4 and the Gaussian curve is not adequate in the middle, it is satisfactory in the wings

i.e. precisely where it is more necessary for testing independence. However, since the

frequency polygon of r4 is shorter in the tails than the corresponding Gaussian curve,

using this as an approximation can lead to a test that is more liberal than necessary, that

is, the null hypothesis of independence will tend to be rejected more frequently than it

should be.

Further insights can be gained by Table 4 in which the proportions of total frequencies

falling outside the ranges [−a,a] for a = 1,1.25,2,2.5,3 predicted by the Gaussian model
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Figure 2: Comparison of the Gaussian approximation (thick line) with the exact null
distribution of r4 (dashed lines) andr1 (dotted line) for n = 12.

are compared with those observed in the exact null distribution of r4 and r1.

Table 4: Proportion of frequencies of the distribution of r4 and r1 falling in certain ranges.

n Coefficient ±σ ±1.25σ ±2σ ±2.5σ ±3σ

Gaussian 0.6827 0.8944 0.9545 0.9876 0.9973

11 r4 0.6419 0.7589 0.9598 0.9955 1.0000
r1 0.6585 0.7750 0.9598 0.9945 1.0000

12 r4 0.6440 0.7599 0.9583 0.9946 0.9999
r1 0.6690 0.7724 0.9601 0.9938 0.9999

13 r4 0.6423 0.7574 0.9555 0.9933 0.9998
r1 0.6658 0.7760 0.9598 0.9933 0.9997

14 r4 0.6431 0.7575 0.9542 0.9925 0.9997
r1 0.6668 0.7790 0.9581 0.9928 0.9996

15 r4 0.6415 0.7553 0.9519 0.9914 0.9995
r1 0.6665 0.7788 0.9578 0.9924 0.9995

The Gaussian density yields liberal results especially for high values (in absolute terms)
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of the transformed rank correlations and it is conservative within intervals roughly from

±− 0.75 to ±− 2.25. The frequency polygons of r∗4 and r∗1 deviate quite considerably

from Gaussianity in the interval [−1.25,1.25] implying that significance levels at around

20 percent are largely overestimated. The approximation is acceptably accurate for signif-

icance levels barely above 5%, but fails, although not so spectacularly, for smaller levels.

4. Experimental results

In the preceding sections, we have discussed the exact null distribution of r4, the new

rank correlation proposed by Tarsitano & Lombardo [2013], as well as the Gaussian and

t-Student approximations. The aim of the present section is to provide a guide to the

correct use of r4 in empirical research and to highlight some potential misuse through

applying it to real and simulated data sets.

The algorithms described in this section are implemented in the a package pvrank in

the R system (R Development Core Team [2013]), which is available from the authors on

request.

4.1. Real data examples

We have selected four data sets that are briefly described below. For each of these, we

provide the scatter plot with a vertical and horizontal line drawn at the mean values of

the variables. In addition, we create a summary table of the test: H0 : rh = 0 against the

two-sided alternative H0 : rh 6= 0,h = 0,1, · · · ,4. It should be recalled that, as correctly

observe Iman & Conover [1978], the discreteness of rank correlations often leads into

situations where no critical region has exactly the size α . Rather there will be a choice of

using the next smaller exact size called conservative p-value (denoted by Cα ) or the next

larger exact size called liberal p-value (Lα ). Clearly, this consideration does not apply

when the null distribution is approximated by a continuous distribution.
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Example 1. Hollander & Wolfe [1999][p. 39]. Hamilton depression scale factor mea-

surements in n = 9 patients with mixed anxiety and depression, taken at the first and

second visit after initiation of a therapy. See graph a) in Figure 3. Apparently, there are

no outliers, so that rank correlations and significance levels should not fall too far from

the values obtained for r0. The results in Table 5 confirm that this is the case for r4 and

only partially for r1. What is more serious still is that the p-values associated with r2 are

doubtful at α = 0.05 (those of r3 are doubtful at α = 0.10).

Example 2. In this case, we use the data set CWD (Hothorn et al., 2013). An infrared

gas analyzer and a clear chamber sealed to the wood surface were used to measure the

flux of carbon out of the wood. Measurements were repeated n = 13 times. Although

not necessarily linear, there is a general decrease in Y as X increases. See graph b).

The findings reported in Table 5 send contradictory signals as to the association strength.

Specifically, r1, r2 and r3 suggest that there is a more significant relationship between the

ranks of X and Y than what is suggested by r4. On the other hand, coefficient r4 gives the

most similar results to those of Pearson’s r0.

Example 3. Here, we consider the data set in Berk [1990] including data on the average

number of births and deaths by the time of the day for a particular hospital in Brussels.

We have discarded pairs in which at least one element is repeated and remained with

n = 19 valid data points. As evident from the graphs c) and d), seventeen observations

are clustered and show little association. Two observations (for noon and midnight) are

dramatically smaller in both the y-direction and x-direction. With these two included,

there is obviously a positive correlation in the data. However, a direct association between

the two variables is questionable, for if the outliers are removed then all correlations

decrease and the associated p-values increase up to the point where the hypothesis of

independence cannot be rejected at any reasonable level. Note that, r4 achieves, in both

testing situations, the nearest proximity to r0 while conserving a good degree of robustness

against the effect of outliers. Furthermore, when the outliers are removed, r4 has the
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Table 5: Measure of correlation/association and p-values

Index symbol obs. Cα Lα obs. Cα Lα

Hamilton data CWD data
Pearson r0 0.8479 0.00388 0.00388 -0.5256 0.06507 0.06507
Spearman r1 0.6500 0.06656 0.07604 -0.6484 0.01816 0.01941
Kendall r2 0.5000 0.04462 0.07518 -0.4872 0.01495 0.02158
Gini r3 0.5250 0.07447 0.11079 -0.5238 0.02062 0.02801

r4 0.6918 0.03923 0.03925 -0.5782 0.04335 0.04335

Births and deaths by the hour Outliers removed
Pearson r0 0.6802 0.00135 0.00135 0.1556 0.55100 0.55100
Spearman r1 0.3877 0.10190 0.10356 0.1446 0.57886 0.58544
Kendall r2 0.2865 0.08007 0.09330 0.1029 0.54233 0.59764
Gini r3 0.2778 0.14596 0.16301 0.0694 0.71715 0.76700

r4 0.5319 0.02026 0.02026 0.2269 0.38020 0.38020

Urban percentage Outlier removed
Pearson r0 -0.6212 0.01774 0.01774 -0.7882 0.00137 0.00137
Spearman r1 -0.5385 0.04786 0.04996 -0.7418 0.00461 0.00508
Kendall r2 -0.3846 0.04718 0.06166 -0.5385 0.00668 0.01012
Gini r3 -0.4898 0.02438 0.03174 -0.6190 0.00475 0.00716

r4 -0.5231 0.06191 0.06191 -0.7207 0.00654 0.00654

lowest (albeit non significant) p-value among all the statistics based on ranks, which is an

indicator of its sensitivity to changes in rankings.

Example 4. This example is taken from Birkes & Dodge [1993]. The data set report

birth rate and urban percentage for n = 14 countries in North and Central America. The

data point 13 (corresponding to Trinidad-Tobago) stands far apart from the rest of the

points. The possible effect on the measures of correlation and association is a low value

of the statistics even if there is a very apparent association between variables. In fact,

once the outlier is excluded from the data set, the p-values of all the coefficients decrease

of a factor of ten. Actually, if the outlier is included, only coefficient r4 is not significantly

different from zero (at the 5% level or lower), whereas the p-values of the other statistics

seem scarcely affected by the outlier. Rather than a defect, we consider this low resistance

to the impact of outliers as a virtue that adds flexibility to the use of r4.
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Figure 3: Type of association discussed in the examples.

The findings in Table 5 suggest that r4 (based on ranks) is an admissible substitute for

r0, (based on scores). A useful feature of r4 is that, because of its high resolution over the

set of all permutations, conservative and liberal p-values almost coincide and, therefore,

the risk of doubtful testing is reduced with respect to the other three rank correlations.

Furthermore, the richness of the range of values renders its intrinsic discrete nature so

marginal that the effect of a continuity correction, either beneficial or detrimental, is neg-

ligible.
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4.2. Simulation

To assess the power performance of the test corresponding to r4 we carried out the fol-

lowing experiments. First, we generate independent samples (xi,yi) , i = 1, · · · ,n of size

n = 10 and n = 15 from bivariate Gaussian populations with means zero, variances of one

and zero correlation. The generation is repeated until N = 10,000 samples are formed.

To avoid occasionally significant correlation, we have excluded samples with an r0

outside [−0.20,0.20]. Second, k outliers are introduced. Let (i1, · · · , ih) be the set of

integers from 1, · · · ,n such that xi1yi1 > 0, · · · ,xihyih > 0. If h < k, then the sample is dis-

carded. The pairs
(
xi j ,yi j

)
, j = 1, · · · ,h are sorted into descending order of their Euclidean

distance from the origin. The first k pairs of observations are contaminated by displacing

their values by m standard deviations in both the x- and y-direction. This induces spurious

positive correlation that tends to increase with the numbers of outliers and the amount of

displacement. In Table 6 we compare the numbers of samples declared significant at the

alpha level (one-tail) of 1%, 5% and 10% by using the t-student distribution with (n−2)

degrees of freedom in the case of r0 and the exact null distributions for rh, h = 1, · · · ,4.

The number of rejections of H0 : r0 = 0 against H1 : r0 > 0 at level α is greater with

n = 10 than with n = 15. This result is to be expected because the exceptional nature

of some observations is more perceivable when the same numbers of outliers occur in a

wider and otherwise homogeneous sample. In addition, the numbers of samples produc-

ing a false positive correlation increase with the magnitude of the shift. Even this result

is not surprising given that a large displacement makes the artificial outliers manifestly

inconsistent with the regression model (a line parallel to the x axis) that is called on im-

plicitly. Furthermore, in line with the expectations, the numbers of wrong claims become

more severe with a greater numbers of abnormal data points.

The behavior described above is also exhibited by rank correlations, but with one

fundamental difference: the number of wrong rejections is now much less than with Pear-

son’s correlation. In this regard, we observe a different behavior for mild contamination,
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i.e. m = 1,2, and wider contamination, i.e. m = 3,4. In the former case, the statistic that

has the smallest number of improper rejections is most often r3. In the latter case is r2.

Perhaps it is helpful to note that r2 and r3 have the smallest range of possible values.

Table 6: Number of significant samples (over 10,000) for r0, · · · ,r4.

Pearson r0 Spearman r1 Kendall r2 Gini r3 r4
α level α level α level α level α level

n k m 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
10 1 1 0 11 263 0 1 7 0 4 9 0 4 10 0 3 22

2 148 2096 3843 0 1 13 0 7 13 0 4 13 0 6 50
3 1921 5074 6353 0 3 21 0 7 16 0 8 20 0 8 69
4 4243 6604 7410 0 5 29 0 10 28 0 11 24 0 12 91

2 1 0 56 691 0 2 28 0 10 37 0 6 22 0 27 139
2 346 2749 4626 0 8 93 1 27 74 0 14 48 1 71 401
3 2036 5014 6479 0 16 151 1 42 113 0 27 71 1 118 635
4 3491 6052 7242 0 27 199 2 55 138 0 39 89 6 159 789

3 1 0 106 914 0 14 112 0 32 75 0 17 45 2 85 427
2 355 2800 4883 2 63 405 7 96 243 0 52 134 8 372 1509
3 1746 4858 6513 3 118 687 8 152 409 1 89 223 12 660 2394
4 2849 5711 7104 4 178 897 8 212 538 1 121 296 19 892 3021

15 1 1 0 153 1006 0 3 17 0 7 33 0 9 49 0 8 55
2 1006 5402 8600 0 4 26 0 11 50 0 11 61 0 18 114
3 5617 11035 13162 0 6 36 0 12 58 0 16 75 0 27 159
4 9918 13720 15167 0 9 45 0 16 73 0 20 82 0 32 195

2 1 2 636 2367 0 6 60 0 19 95 0 18 87 1 72 442
2 1921 7097 10609 0 13 166 2 43 187 1 35 159 2 212 1094
3 5976 11500 14152 0 22 257 2 62 268 1 50 214 2 335 1605
4 8761 13428 15512 0 37 325 3 79 314 1 65 259 7 433 1943

3 1 7 951 3170 0 24 210 0 51 211 0 35 171 5 285 1215
2 2124 7600 11484 2 97 683 8 146 572 1 84 382 22 1053 3576
3 5611 11518 14482 3 184 1097 9 257 871 2 153 561 41 1747 5347
4 7806 13119 15555 4 269 1408 10 336 1108 2 203 698 60 2265 6577

In general, the figures in Table 6 simply reaffirm, what is already well known, that the

Pearson correlation coefficient can produce incorrect indications if outliers affect data.

More importantly, in the presence of anomalies, rank correlations are more reliable in the

assessment of evidence of a relationship between two variables. The coefficient r4 occu-

pies an intermediate position between Pearson’s product-moment correlation and the stan-

dard statistics of rank-order association: Spearman, Kendall and Gini. On one hand, r4

may sporadically produce erroneous, significant associations as it is shown by the slightly

inflated alpha level for the some combinations k and m. On the other hand, it is capable
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of capturing even weak relationship between the variables otherwise lost in case other

measures of association are applied.
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