Riesel and Sierpiński problems are solved

Robert Deloin ${ }^{1}$

Abstract

In 1956, Riesel (1929-2014) proved that there exists infinitely many positive odd numbers k such that the quantities $\mathrm{Q}_{m}=\mathrm{k} 2^{m}-1$ are composite for every $\mathrm{m} \geq 1$. In 1960, Sierpiński (1882-1969) proved that there exists infinitely many positive odd numbers k such that the quantities $\mathrm{Q}_{m}=\mathrm{k} 2^{m}+1$ are composite for every $\mathrm{m} \geq 1$. The main contribution of this paper is to present a new approach to the present conjectures which wrongly states that the smallest Riesel number is $\mathrm{R}=509203$ and that the smallest Sierpiński number is 78557. The key idea of this new approach is that both problems can be solved by using congruences only. With this approach which avoids the burden of tracking a prime value in Q_{m} values, the elementary proofs are given that the smallest Riesel number is $\mathrm{R}=31859$ and that the smallest Sierpiński number is $\mathrm{S}=22699$.

Mathematics Subject Classification : 11Y16; 11A51

Keywords: Riesel; composite; number; conjecture; congruence

1 Introduction

In 1956, Riesel proved [1] that there exists infinitely many positive odd numbers k such that the quantities $\mathrm{Q}_{m}=\mathrm{k} 2^{m}-1$ are composite for every $\mathrm{m} \geq 1$. In other words, when k is a Riesel number R , all members of the following set are composite: $\left\{\mathrm{k} 2^{m}-1: \mathrm{m} \in \mathbb{N}\right\}$. The conjecture is now that the smallest Riesel

[^0]number is $\mathrm{R}=509203$. This problem is still open in 2015.
In 1960, Sierpiński proved [4] that there exists infinitely many positive odd numbers k such that the quantities $\mathrm{Q}_{m}=\mathrm{k} 2^{m}+1$ are composite for every $\mathrm{m} \geq 1$. In other words, when k is a Sierpiński number S , all members of the following set are composite: $\left\{\mathrm{k} 2^{m}+1: \mathrm{m} \in \mathbb{N}\right\}$. In 1967, Sierpiński and Selfridge conjectured that the smallest Sierpiński number is $\mathrm{S}=78557$. This problem is still open in 2015.

2 Preliminary notes

2.1 Riesel and Sierpínski numbers can only be odd

This is due to the fact that if the even values $\mathrm{R}=\mathrm{k}_{r} 2^{\alpha}$ or $\mathrm{S}=\mathrm{k}_{s} 2^{\alpha}$ with odd k_{r} and k_{s} exist, the quantities:

$$
\begin{gathered}
\mathrm{Q}_{r}=\mathrm{R} 2^{m}-1=\left(\mathrm{k}_{r} 2^{\alpha}\right) 2^{m}-1=\mathrm{k}_{r} 2^{m+\alpha}-1 \\
\mathrm{Q}_{s}=\mathrm{S} 2^{m}+1=\left(\mathrm{k}_{s} 2^{\alpha}\right) 2^{m}+1=\mathrm{k}_{s} 2^{m+\alpha}+1
\end{gathered}
$$

are no more dealing with R or S but with k_{r} or k_{s}, which is not the purpose.

2.2 A method to characterize Riesel and Sierpiński numbers

In particular parts of this section, only Riesel numbers are dealt with, even if the result is also valid for Sierpiński numbers.
According to the fundamental property of composite natural numbers and to the convention that the number 1 is not prime, each composite natural number greater than 1 can be factorized in only one way by powers of increasing primes. A consequence of it is that any natural number greater than 1 is either a prime (2 or an odd prime) or a multiple qp of any prime p of its factorization.
This is particularly true for the quantities $\mathrm{Q}_{m}=\mathrm{k} 2^{m}-1$ and $\mathrm{Q}_{m}=\mathrm{k} 2^{m}+1$ which are used to characterize Riesel and Sierpiński numbers, so that we can write for Riesel numbers by instance, with p being a prime and q being prime or not:

$$
\begin{gathered}
\mathrm{Q}_{m}=\mathrm{R} 2^{m}-1=\mathrm{q}_{m} \mathrm{p}_{m} \\
\mathrm{Q}_{m+\alpha}=\mathrm{R}^{m+\alpha}-1=\mathrm{q}_{m+\alpha} \mathrm{p}_{m+\alpha}
\end{gathered}
$$

Now, we can look for the conditions on p_{m} and α which make that both Q_{m} and $\mathrm{Q}_{m+\alpha}$ are multiples of p_{m}. When it is the case, we have:

$$
\mathrm{p}_{m+\alpha}=\mathrm{p}_{m}
$$

so that:

$$
\begin{gathered}
\mathrm{Q}_{m}=\mathrm{R} 2^{m}-1=\mathrm{q}_{m} \mathrm{p}_{m} \\
\mathrm{Q}_{m+\alpha}=\mathrm{R} 2^{m+\alpha}-1=\mathrm{q}_{m+\alpha} \mathrm{p}_{m} \\
\text { and: } \\
\mathrm{p}_{m}=\mathrm{Q}_{m+\alpha}-\mathrm{Q}_{m} /\left(\mathrm{q}_{m+\alpha}-\mathrm{q}_{m}\right)
\end{gathered}
$$

and also:

$$
\begin{gathered}
\mathrm{Q}_{m+\alpha}=\mathrm{R} 2^{m+\alpha}-1=2^{\alpha} \mathrm{R} 2^{m}+1 \\
\mathrm{Q}_{m+\alpha}=\left(2^{\alpha}-1\right)\left(\mathrm{R} 2^{m}\right)+\mathrm{R} 2^{m}+1 \\
\mathrm{Q}_{m+\alpha}=\left(2^{\alpha}-1\right)\left(\mathrm{R} 2^{m}\right)+\mathrm{Q}_{m} \\
\mathrm{Q}_{m+\alpha}-\mathrm{Q}_{m}=\left(2^{\alpha}-1\right) \mathrm{R}\left(2^{m}\right) \\
\left(\mathrm{q}_{m+\alpha}-\mathrm{q}_{m}\right) \mathrm{p}_{m}=\left(2^{\alpha}-1\right) \mathrm{R}\left(2^{m}\right) \\
\text { and: } \\
\left(\mathrm{q}_{m+\alpha}-\mathrm{q}_{m}\right)=\left(2^{\alpha}-1\right) \mathrm{R}\left(2^{m}\right) / \mathrm{p}_{m}
\end{gathered}
$$

As the left quantity has to be an integer, so does the right one and we find the partial condition (for two indexes):

Partial condition (for two indexes):
If Q_{m} and $\mathrm{Q}_{m+\alpha}$ share a common odd prime divisor $\mathrm{d}=\mathrm{p}_{m}$, this divisor has to divide either R or $2^{\alpha}-1$.

Now, by definition, for a Riesel number R , all the quantities $\mathrm{Q}_{m+\alpha}=\mathrm{R} 2^{m+\alpha}-1$ for any $\mathrm{m} \geqslant 0$ and any $\alpha>0$ are always divisible by an odd divisor d of $2^{\alpha}-1$. We can then write the complete condition:

Complete condition (for all indexes):
For a Riesel number R, m has to be a covering set of the set \mathbb{N} of natural numbers, and:
for any $\mathrm{m}>0$ and $\alpha>0$, all the quantities $\mathrm{Q}_{m+\alpha}$ have to always be divisible by an odd divisor $\mathrm{d}=\mathrm{p}_{m}$ that divides either R or $2^{\alpha}-1$.

The difficulty here is to find a practical method that handles both parts of the complete condition.
Starting with the second part of the condition, we know that multiples αn of n are in the congruence $\mathrm{n}+\alpha n(\operatorname{or} 0 \bmod \mathrm{n})$. But the first difficulty that arises is that there exists no formula of direct factorization for $\mathrm{Q}_{m}=\mathrm{k} 2^{m}-1$ as, by instance, the well known $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})$. So, the only possible reference for the factorization of each Q_{m} is the infinite table of factorization of all natural numbers, whose existence is proved by the fundamental property of composite natural numbers, but which cannot entirely exist due to its infinite dimension. For the first part of the condition, we know that if a relation is true for all the values $\mathrm{i}=\{1, \ldots, \mu\} \bmod \mu$, indeed the relation is true for all i 's, so that this congruence i is a covering set of the set of natural numbers \mathbb{N}.
So, the practical method will be to find a module μ such that the relation:
Q_{i} is always divisible by an odd divisor $\mathrm{d}_{j}>1$
is true for all $\mathrm{i}=\{1, \ldots, \mu\} \bmod \mu$, which ensures that this congruence i is a covering set of \mathbb{N}, and that a finite set of divisors d_{j} exists for all Q_{i} values, this set being used repeatedly, infinitely many times in a periodic manner.

2.3 The number 2293 is not a Riesel number

Without tracking prime Q values, the detailed calculations are given here which prove that 2293 is not a Riesel number, just to show what happens when a number k is not a Riesel number.

Proof. To study the number 2293, we first look at the factorizations of $\mathrm{Q}_{i}=2293 \times 2^{i}$ 1 for i varying from 1 to 21 :

Table 1. Factorizations of $\mathrm{Q}_{i}=2293 \times 2^{i}-1$ for $\mathrm{i}=1,21$

$$
\begin{array}{lc}
\mathrm{Q}=2293 \times 2^{1}-1= & 4585=5 \times 7 \times 131 \\
\mathrm{Q}=2293 \times 2^{2}-1= & 9171=3^{2} \times 1019 \\
\mathrm{Q}=2293 \times 2^{3}-1= & 18343=13 \times 17 \times 83 \\
\mathrm{Q}=2293 \times 2^{4}-1= & 36687=3 \times 7 \times 1747 \\
\mathrm{Q}=2293 \times 2^{5}-1= & 73375=5^{3} \times 587 \\
\mathrm{Q}=2293 \times 2^{6}-1= & 146751=3 \times 11 \times 4447 \\
\mathrm{Q}=2293 \times 2^{7}-1= & 293503=7 \times 23 \times 1823 \\
\mathrm{Q}=2293 \times 2^{8}-1= & 587007=3^{4} \times 7247 \\
\mathrm{Q}=2293 \times 2^{9}-1= & 1174015=5 \times 234803 \\
\mathrm{Q}=2293 \times 2^{10}-1= & 2348031=3 \times 7^{2} \times 15973 \\
\mathrm{Q}=2293 \times 2^{11}-1= & 4696063=17 \times 276239 \\
\mathrm{Q}=2293 \times 2^{12}-1= & 9392127=3 \times 67 \times 46727 \\
\mathrm{Q}=2293 \times 2^{13}-1= & 18784255=5 \times 7 \times 19 \times 47 \times 601 \\
\mathrm{Q}=2293 \times 2^{14}-1= & 37568511=3^{2} \times 307 \times 13597 \\
\mathrm{Q}=2293 \times 2^{15}-1= & 75137023=13 \times 193 \times 29947 \\
\mathrm{Q}=2293 \times 2^{16}-1= & 150274047=3 \times 7 \times 11 \times 650537 \\
\mathrm{Q}=2293 \times 2^{17}-1= & 300548095=5 \times 5407 \times 11117 \\
\mathrm{Q}=2293 \times 2^{18}-1= & 601096191=3 \times 23 \times 37 \times 235447 \\
\mathrm{Q}=2293 \times 2^{19}-1= & 1202192383=7 \times 17 \times 1669 \times 6053 \\
\mathrm{Q}=2293 \times 2^{20}-1= & 2404384767=3 \times 503 \times 531121 \\
\mathrm{Q}=2293 \times 2^{21}-1= & 4808769535=5 \times 733 \times 1312079
\end{array}
$$

which proves that:

$$
\begin{gathered}
\text { when } \mathrm{i}(<22)=1+4 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}+1=5 \mathrm{~K} \\
\text { when } \mathrm{i}(<22)=2+4 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}+1=3 \mathrm{~K} \\
\text { when } \mathrm{i}(<22)=4 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}+1=3 \mathrm{~K}
\end{gathered}
$$

which cover:

$$
\begin{gathered}
\mathrm{i}(<22)=\{1,2,4\}+4 \alpha \\
\text { but not: }
\end{gathered}
$$

$$
\mathrm{i}(<22)=3+4 \alpha
$$

So, for a better understanding of what happens when $\mathrm{i}(<22)=3+4 \alpha$, the last table has to be extended as in Table 2 for $\mathrm{i}=3+4 \alpha$ with p being the last and big adequate prime factor of the Q_{i} values.

Table 2. Values of $\mathrm{Q}_{i}=2293 \times 2^{i}-1$ for $\mathrm{i}=3+4 \alpha$

$$
\begin{array}{cc}
\mathrm{Q}=2293 \times 2^{3}-1= & 13 \times 17 \times 83 \\
\mathrm{Q}=2293 \times 2^{7}-1= & 7 \times 23 \times 1823 \\
\mathrm{Q}=2293 \times 2^{11}-1= & 17 \times 276239 \\
\mathrm{Q}=2293 \times 2^{15}-1= & 13 \times 193 \times 29947 \\
\mathrm{Q}=2293 \times 2^{19}-1= & 7 \times 17 \times 1669 \times 6053 \\
\mathrm{Q}=2293 \times 2^{23}-1= & 2017 \times 9536479 \\
\mathrm{Q}=2293 \times 2^{27}-1= & 13^{3} \times 17 \times 29 \times 149 \times 1907 \\
\mathrm{Q}=2293 \times 2^{31}-1= & 7^{2} \times 19 \times \mathrm{p} \\
\mathrm{Q}=2293 \times 2^{35}-1= & 17^{2} \times 613 \times \mathrm{p} \\
\mathrm{Q}=2293 \times 2^{39}-1= & 13 \times \mathrm{p} \\
\mathrm{Q}=2293 \times 2^{43}-1= & 7 \times 17 \times 107 \times 167 \times 281 \times \mathrm{p} \\
\mathrm{Q}=2293 \times 2^{47}-1= & 19913 \times 693409 \times p \\
\mathrm{Q}=2293 \times 2^{51}-1= & 13 \times 17 \times 23 \times 439 \times p \\
\mathrm{Q}=2293 \times 2^{55}-1= & 7 \times 29 \times 3600761 \times \mathrm{p} \\
\mathrm{Q}=2293 \times 2^{59}-1= & 17 \times 47 \times 137 \times \mathrm{p} \\
\mathrm{Q}=2293 \times 2^{63-1}= & 13 \times 601 \times \mathrm{p} \\
\cdots & \\
\mathrm{Q}=2293 \times 2^{99}-1= & 13 \times 17 \times 2917 \times \mathrm{p}
\end{array}
$$

which proves that:

$$
\begin{gathered}
\text { when } \mathrm{i}(<99)=7+12 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}-1=7 \mathrm{~K} \\
\text { when } \mathrm{i}(<99)=3+12 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}-1=13 \mathrm{~K} \\
\text { when } \mathrm{i}(<99)=3+8 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}-1=17 \mathrm{~K}
\end{gathered}
$$

to which, we have to add the already found congruences:

$$
\begin{aligned}
& \text { when } \mathrm{i}(<22)=1+4 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}+1=5 \mathrm{~K} \\
& \text { when } \mathrm{i}(<22)=2+4 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}+1=3 \mathrm{~K} \\
& \text { when } \mathrm{i}(<22)=4+4 \alpha, \mathrm{Q}_{i}=2293 \times 2^{i}+1=3 \mathrm{~K}
\end{aligned}
$$

The last six congruences in i, extended and rewritten with the module $\mu=24$ which is the smallest multiple of their modules, respectively cover:

$$
\begin{gathered}
\mathrm{i}(<99)=\{7,19\} \bmod 24 \\
\mathrm{i}(<99)=\{3,15\} \bmod 24 \\
\mathrm{i}(<99)=\{3,11,19\} \bmod 24 \\
\mathrm{i}(<99)=\{1,5,9,13,17,21\} \bmod 24
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{i}(<99)=\{2,6,10,14,18,22\} \bmod 24 \\
& \mathrm{i}(<99)=\{4,8,12,16,20,24\} \bmod 24 \\
& \text { but not: } \\
& \mathrm{i}(<99)=23 \bmod 24
\end{aligned}
$$

where the Q_{i} values are coprimes (do not share a common divisor).
So, we cannot say that $\mathrm{i}=\{1, \ldots, 24\} \bmod 24$ is a covering set of the set \mathbb{N} of natural integers. As, when the above 99 limit for i is replaced by infinity, the congruence $\mathrm{i}($ not limited $)=23 \bmod 24$ generates infinitely many coprime Q_{i} values, it proves that for all m's, the set of divisors of these values is not finite, which finally proves that 2293 is not a Riesel number.

This method also proves that the numbers 9221 and 23669 are not Riesel numbers.

3 Main Result 1: Proof that $R=31859$ is the smallest Riesel number

According to the distributed computing project Primegrid [2] cited in [3], the last facts that would establish the proof that 509203 is the smallest Riesel number, are the proofs that the 50 numbers k:
2293, 9221, 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139, 107347, 121889, 129007, 143047, 146561, 161669, 192971, 206039, 206231, 215443, 226153, 234343, 245561, 250027, 273809, 315929, 319511, 324011, 325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159, 368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491, 477583, 485557, 494743
are not Riesel numbers, these proofs being based upon the fact that all of these numbers would generate some prime Q value.
Without tracking prime Q values, the detailed calculations are given here which prove that 31859 is a Riesel number.

Proof. To study the number 31859, we first look at the factorizations of $\mathrm{Q}_{i}=31859 \times 2^{i}-$ 1 for i varying from 1 to 21 :

Table 3. Factorizations of $\mathrm{Q}_{i}=31859 \times 2^{i}-1$ for $\mathrm{i}=1,21$

$$
\begin{array}{lc}
\mathrm{Q}=31859 \times 2^{1}-1= & 63717=3 \times 67 \times 317 \\
\mathrm{Q}=31859 \times 2^{2}-1= & 127435=5 \times 7 \times 11 \times 331 \\
\mathrm{Q}=31859 \times 2^{3}-1= & 254871=3^{2} \times 28319 \\
\mathrm{Q}=31859 \times 2^{4}-1= & 509743=13 \times 113 \times 347 \\
\mathrm{Q}=31859 \times 2^{5}-1= & 1019487=3 \times 7 \times 43 \times 1129 \\
\mathrm{Q}=31859 \times 2^{6}-1= & 2038975=5^{2} \times 81559 \\
\mathrm{Q}=31859 \times 2^{7}-1= & 4077951=3 \times 19 \times 29 \times 2467 \\
\mathrm{Q}=31859 \times 2^{8}-1= & 8155903=7^{2} \times 17 \times 9791 \\
\mathrm{Q}=31859 \times 2^{9}-1= & 16311807=3^{3} \times 23 \times 26267 \\
\mathrm{Q}=31859 \times 2^{10}-1= & 32623615=5 \times 569 \times 11467 \\
\mathrm{Q}=31859 \times 2^{11}-1= & 65247231=3 \times 7 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{12}-1= & 130494463=11 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{13}-1= & 260988927=3 \times 61 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{14}-1= & 521977855=5 \times 7 \times 97 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{15}-1= & 1043955711=3^{2} \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{16}-1= & 2087911423=13 \times 17^{2} \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{17}-1= & 4175822847=3 \times 7 \times 479 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{18}-1= & 8351645695=5 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{19}-1= & 16703291391=3 \times 41 \times 43 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{20}-1= & 33406582783=7 \times 23 \times 239 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{21}-1= & 66813165567=3^{2} \times 79 \times 1723 \times 54539
\end{array}
$$

which proves that:

> when $\mathrm{i}(<22)=1+2 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=3 \mathrm{~K}$
> when $\mathrm{i}(<22)=2+4 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=5 \mathrm{~K}$
> when $\mathrm{i}(<22)=2+3 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=7 \mathrm{~K}$
> when $\mathrm{i}(<22)=4+12 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=13 \mathrm{~K}$
> when $\mathrm{i}(<22)=8 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=17 \mathrm{~K}$
> when $\mathrm{i}(<22)=9+11 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=23 \mathrm{~K}$
> when $\mathrm{i}(<22)=5+14 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=43 \mathrm{~K}$
which cover:
$\mathrm{i}(<22)=\{1,2,3,4,5,6,7,8,9,10,11,-, 13,14,15,16,17,18,19,20,21\}$
but not:
$\mathrm{i}(<22)=\{12\}$

So, for a better understanding of what happens for 12 , the last table has to be extended as in Table 4 where p, q and r are big primes.

Table 4. Factorizations of Q_{i} for $\mathrm{i}=4 \alpha$

$$
\begin{array}{lc}
\mathrm{Q}=31859 \times 2^{4}-1= & 13 \times 113 \times 347 \\
\mathrm{Q}=31859 \times 2^{8}-1= & 7^{2} \times 17 \times 9791 \\
\mathrm{Q}=31859 \times 2^{12}-1= & 11 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{16}-1= & 13 \times 17^{2} \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{20}-1= & 7 \times 23 \times 239 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{24}-1= & 17 \times 397 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{28}-1= & 13 \times 617 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{32}-1= & 7 \times 11 \times 17 \times 113 \times 331 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{36}-1= & 2273 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{40}-1= & 13 \times 17 \times 191 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=31859 \times 2^{44}-1= & 7 \times 311 \times 607 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{48}-1= & 17 \times 4217 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{52}-1= & 11 \times 13 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=31859 \times 2^{56}-1= & 7 \times 17 \times 5573 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{60}-1= & 79 \times 113 \times 14321 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{64}-1= & 13 \times 17 \times 23 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=31859 \times 2^{68}-1= & 7 \times 397 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{22}-1= & 11 \times 17 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{76}-1= & 13 \times 89819 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=31859 \times 2^{80}-1= & 7 \times 17 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=31859 \times 2^{84}-1= & 1916249 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{88}-1= & 13 \times 17 \times 113 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{92}-1= & 7 \times 11 \times 331 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{96}-1= & 17 \times \mathrm{p} \\
\mathrm{Q}=31859 \times 2^{100}-1= & 13 \times 881 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=31859 \times 2^{104}-1= & 7 \times 17 \times 211 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=31859 \times 2^{108}-1= & 23{ }^{2} \times \mathrm{p} \times \mathrm{q} \times \mathrm{r}
\end{array}
$$

This proves that:

$$
\text { when } \mathrm{i}(<109)=12+20 \alpha, \mathrm{Q}_{i}=11 \mathrm{~K}
$$

so that the overall covering congruences are:

$$
\begin{gathered}
\text { when } \mathrm{i}(<109)=1+2 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=3 \mathrm{~K} \\
\text { when } \mathrm{i}(<109)=2+4 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=5 \mathrm{~K} \\
\text { when } \mathrm{i}(<109)=2+3 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=7 \mathrm{~K} \\
\text { when } \mathrm{i}(<109)=12+20 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=11 \mathrm{~K} \\
\text { when } \mathrm{i}(<109)=4+12 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=13 \mathrm{~K} \\
\text { when } \mathrm{i}(<109)=8+8 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=17 \mathrm{~K} \\
\text { when } \mathrm{i}(<109)=9+11 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=23 \mathrm{~K} \\
\text { when } \mathrm{i}(<109)=5+14 \alpha, \mathrm{Q}_{i}=31859 \times 2^{i}-1=43 \mathrm{~K}
\end{gathered}
$$

which, extended and rewritten with the module $\mu=120^{*} 77=9240$ which is the smallest multiple of the modules of the last eight congruences in i, sum up to:

$$
\begin{gathered}
\text { when } \mathrm{i}(<9240)= \\
\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, \ldots, 9240\} \bmod 9240
\end{gathered}
$$

So, as we can say that $\mathrm{i}=\{1, \ldots, 9240\} \bmod 9240$ is a covering set of the set \mathbb{N} of natural integers, the above 9240 limit for i can be replaced by infinity. This finally proves that for all m's, the set of divisors of all $\mathrm{Q}_{m}=31859 \times 2^{m}-1$ values is the finite set:

$$
\{3,5,7,11,13,23,43\}
$$

which proves that 31859 is a Riesel number. Finally, as from the Primegrid project, the remaining numbers to test have been considered in the increasing order, and as 2293 as well as 9221 and 23669 were found not to be Riesel numbers, this proves that 31859 is the smallest Riesel number.

4 Main result 2: Proof that $S=22699$ is the smallest Sierpiński number

According to the distributed computing project Seventeen or Bust [5] that is cited in [6], the last facts that would establish the proof that 78557 is the smallest Sierpiński number, are the proofs that the six numbers $\mathrm{k}=10223$, 21181, 22699, 24737, 55459, and 67607 are not Sierpiński numbers, these proofs being based upon the fact that all of these numbers would generate some prime Q value.

Without tracking prime Q values, the detailed calculations are given here which prove that 22699 is a Sierpiński number.

Proof. To study the number 22699, we first look at the factorizations of $\mathrm{Q}_{i}=22699 \times 2^{i}+1$ for i varying from 1 to 21:

Table 5. Factorizations of $\mathrm{Q}_{i}=22699 \times 2^{i}+1$ for $\mathrm{i}=1,21$

$$
\begin{array}{lc}
\mathrm{Q}=22699 \times 2^{1}+1= & 45399=3 \times 37 \times 409 \\
\mathrm{Q}=22699 \times 2^{2}+1= & 90797=7^{2} \times 17 \times 109 \\
\mathrm{Q}=22699 \times 2^{3}+1= & 181593=3^{2} \times 20177 \\
\mathrm{Q}=22699 \times 2^{4}+1= & 363185=5 \times 19 \times 3823 \\
\mathrm{Q}=22699 \times 2^{5}+1= & 726369=3 \times 7 \times 34589 \\
\mathrm{Q}=22699 \times 2^{6}+1= & 1452737=11 \times 13 \times 10159 \\
\mathrm{Q}=22699 \times 2^{7}+1= & 2905473=3 \times 73 \times 13267 \\
\mathrm{Q}=22699 \times 2^{8}+1= & 5810945=5 \times 7 \times 166027 \\
\mathrm{Q}=22699 \times 2^{9}+1= & 11621889=3^{2} \times 1291321 \\
\mathrm{Q}=22699 \times 2^{10}+1= & 23243777=17 \times 23 \times 59447 \\
\mathrm{Q}=22699 \times 2^{11}+1= & 46487553=3 \times 7 \times 83 \times 149 \times 179 \\
\mathrm{Q}=22699 \times 2^{12}+1= & 92975105=5 \times 18595021 \\
\mathrm{Q}=22699 \times 2^{13}+1= & 185950209=3 \times 431 \times 143813 \\
\mathrm{Q}=22699 \times 2^{14}+1= & 371900417=7 \times 53 \times 1002427 \\
\mathrm{Q}=22699 \times 2^{15}+1= & 743800833=3^{3} \times 1259 \times 21881 \\
\mathrm{Q}=22699 \times 2^{16}+1= & 1487601665=5 \times 11 \times 73 \times 370511 \\
\mathrm{Q}=22699 \times 2^{17}+1= & 2975203329=3 \times 7 \times 113 \times 233 \times 5381 \\
\mathrm{Q}=22699 \times 2^{18}+1= & 5950406657=13 \times 17 \times 26924917 \\
\mathrm{Q}=22699 \times 2^{19}+1= & 11900813313=3 \times 10133 \times 391487 \\
\mathrm{Q}=22699 \times 2^{20}+1= & 23801626625=5^{3} \times 7 \times 2293 \times 11863 \\
\mathrm{Q}=22699 \times 2^{21}+1= & 47603253249=3 \times 23 \times 9973 \times 23059
\end{array}
$$

which proves that:

$$
\begin{gathered}
\text { when } \mathrm{i}(<22)=\{1,3\}+4 \alpha, \mathrm{Q}_{i}=22699 \times 2^{i}+1=3 \mathrm{~K} \\
\text { when } \mathrm{i}(<22)=4+4 \alpha, \mathrm{Q}_{i}=22699 \times 2^{m}+1=5 \mathrm{~K} \\
\text { which cover: }
\end{gathered}
$$

when $\mathrm{i}(<22)=\{1,3,4\}+4 \alpha$
but not: when $\mathrm{i}(<22)=2+4 \alpha$

So, for a better understanding of what happens in that case, the last table has to be extended as in Table 6 where p and q are big primes.

Table 6. Factorizations of Q_{i} for $\mathrm{i}=2+4 \alpha$

$$
\begin{array}{lc}
\mathrm{Q}=22699 \times 2^{2}+1= & 7^{2} \times 17 \times 109 \\
\mathrm{Q}=22699 \times 2^{6}+1= & 11 \times 13 \times 10159 \\
\mathrm{Q}=22699 \times 2^{10}+1= & 17 \times 23 \times 59447 \\
\mathrm{Q}=22699 \times 2^{14}+1= & 7 \times 53 \times 1002427 \\
\mathrm{Q}=22699 \times 2^{18}+1= & 13 \times 17 \times 26924917 \\
\mathrm{Q}=22699 \times 2^{22}+1= & 19 \times 47 \times 1721 \times 61949 \\
\mathrm{Q}=22699 \times 2^{26}+1= & 7 \times 11 \times 17 \times 1163715893 \\
\mathrm{Q}=22699 \times 2^{30}+1= & 13 \times 173 \times 63841 \times 169753 \\
\mathrm{Q}=22699 \times 2^{34}+1= & 17 \times 73 \times 2711 \times \mathrm{p} \\
\mathrm{Q}=22699 \times 2^{38}+1= & 7 \times 109 \times 3539 \times p \\
\mathrm{Q}=22699 \times 2^{42}+1= & 13 \times 17 \times 67 \times 107 \times 24443 \times \mathrm{p} \\
\mathrm{Q}=22699 \times 2^{46}+1= & 11 \times 233 \times 1213 \times 5507 \times 6329 \times 14741 \\
\mathrm{Q}=22699 \times 2^{50}+1= & 7 \times 17 \times 8269 \times p \\
\mathrm{Q}=22699 \times 2^{54}+1= & 13 \times 23 \times 59 \times 2269 \times p \\
\mathrm{Q}=22699 \times 2^{58}+1= & 17^{2} \times 19 \times 3467 \times \mathrm{p} \\
\mathrm{Q}=22699 \times 2^{62}+1= & 7 \times \mathrm{p} \\
\mathrm{Q}=22699 \times 2^{66}+1= & 11 \times 13 \times 17 \times 53 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=22699 \times 2^{70}+1= & 73 \times 239 \times 3884047 \times \mathrm{p} \\
\mathrm{Q}=22699 \times 2^{74}+1= & 7 \times 17 \times 109 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=22699 \times 2^{78}+1= & 13 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=22699 \times 2^{82}+1= & 17 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=22699 \times 2^{86}+1= & 7^{2} \times 11 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=22699 \times 2^{90}+1= & 13 \times 17 \times 5741 \times 5857 \times \mathrm{p} \times \mathrm{q} \\
\mathrm{Q}=22699 \times 2^{94}+1= & 19 \times 34613 \times p \\
\mathrm{Q}=22699 \times 2^{98}+1= & 7 \times 17 \times 23 \times 1086731 \times \mathrm{p} \\
\mathrm{Q}=22699 \times 2^{102}+1= & 13 \times \mathrm{p} \times \mathrm{q}
\end{array}
$$

This proves that:

$$
\begin{aligned}
& \text { when } \mathrm{i}(<103)=2+12 \alpha, \mathrm{Q}_{i}=7 \mathrm{~K} \\
& \text { when } \mathrm{i}(<103)=6+20 \alpha, \mathrm{Q}_{i}=11 \mathrm{~K} \\
& \text { when } \mathrm{i}(<103)=6+12 \alpha, \mathrm{Q}_{i}=13 \mathrm{~K}
\end{aligned}
$$

$$
\begin{gathered}
\text { when } \mathrm{i}(<103)=2+8 \alpha, \mathrm{Q}_{i}=17 \mathrm{~K}, \\
\text { when } \mathrm{i}(<103)=22+36 \alpha, \mathrm{Q}_{i}=19 \mathrm{~K}, \\
\text { when } \mathrm{i}(<103)=\{14,66\}+72 \alpha, \mathrm{Q}_{i}=53 \mathrm{~K} \\
\text { when } \mathrm{i}(<103)=34+36 \alpha, \mathrm{Q}_{i}=73 \mathrm{~K}
\end{gathered}
$$

to which we must add the already found congruences:

$$
\begin{gathered}
\text { when } \mathrm{i}(<22)=\{1,3\}+4 \alpha, \mathrm{Q}_{i}=3 \mathrm{~K} \\
\text { when } \mathrm{i}(<22)=4+4 \alpha, \mathrm{Q}_{i}=5 \mathrm{~K}
\end{gathered}
$$

The last nine congruences in i, extended and rewritten with the module $\mu=360$ which is the smallest multiple of all their modules, respectively cover:

$$
\begin{gathered}
\text { when } \mathrm{i}(<360)=\{1,5,9,13, \ldots, 353,357\}+360 \alpha, \mathrm{Q}_{i}=3 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{3,7,11,15, \ldots, 355,359\}+360 \alpha, \mathrm{Q}_{i}=3 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{4,8,12,16, \ldots, 356,360\}+360 \alpha, \mathrm{Q}_{i}=5 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{2,14,26,38,50, \ldots, 350\}+360 \alpha, \mathrm{Q}_{i}=7 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{6,26,46,66,86, \ldots, 346\}+360 \alpha, \mathrm{Q}_{i}=11 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{6,18,30,42, ., 346,354\}+360 \alpha, \mathrm{Q}_{i}=13 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{2,10,18,26, \ldots, 346,354\}+360 \alpha, \mathrm{Q}_{i}=17 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{22,58,94,130, \ldots, 346\}+360 \alpha, \mathrm{Q}_{i}=19 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{14,66,86,138, \ldots, 354\}+360 \alpha, \mathrm{Q}_{i}=53 \mathrm{~K} \\
\text { when } \mathrm{i}(<360)=\{34,70,106, \ldots, 358\}+360 \alpha, \mathrm{Q}_{i}=73 \mathrm{~K}
\end{gathered}
$$

which sums up to:

$$
\mathrm{i}(<360)=\{1, \ldots, 360\} \bmod 360
$$

So, as we can say that $\mathrm{i}=\{1, \ldots, 360\}$ modulo 360 is a covering set of the set \mathbb{N} of natural integers, the above 360 limit for i can be replaced by infinity. This finally proves that for all m's, the set of divisors of all $\mathrm{Q}_{m}=22699 \times 2^{m}+1$ values is the finite set:

$$
\{3,5,7,11,13,17,19,53,73\}
$$

which proves that 22699 is a Sierpiński number.
Finally, as from the Primegrid project, the remaining numbers to test have been considered (out of this article) in the increasing order, and as 10223 and 21181 were found not to be Sierpiński numbers, this proves that 22699 is the smallest Sierpiński number.

Remark. A secondary result is that we can now understand that the different divisors d_{j} that constitute the finite set of divisors, are the different modules d_{j} of the different congruences $\mathrm{Q}_{a+b \alpha}=\mathrm{d}_{j} \mathrm{~K}$ generated by all the congruences in $\mathrm{i}=\mathrm{a}+\mathrm{b} \alpha$ that are necessary to cover the set \mathbb{N} of natural integers, and that the number of these divisors is the number of these different congruences.

ACKNOWLEDGEMENTS

As I am a hobbyist in mathematics, I wish to express my gratitude towards the Editors of this journal as well as towards the team of Reviewers for having welcomed, reviewed and accepted my article.

References

[1] Riesel, Hans, "Några stora primtal", Elementa 39, 258-260, 1956.
[2] Primegrid website, http://www.primegrid.com/stats_trp_llr.php
[3] Weisstein, Eric W. "Riesel Number." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/RieselNumber.html
[4] Sierpiński, W. "Sur un problème concernant les nombres k2 ${ }^{n}+1$." Elemente der Mathematik 15, 73-74, 1960.
[5] Helm, L. and Norris, D. "Seventeen or Bust: A Distributed Attack on the Sierpinski Problem." http://www.seventeenorbust.com/
[6] Weisstein, Eric W. "Sierpiński's Composite Number Theorem." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/SierpinskisCompositeNumberTheorem.html

[^0]: ${ }^{1}$ No Affiliation. e-mail: rdeloin@free.fr
 Article Info: Received : Month xx, 2015. Revised : Month xx, 2015.
 Published online : Month xx, 2015.

