Riesel and Sierpinski problems are solved

Robert Deloin!

Abstract

In 1956, Riesel (1929-2014) proved that there exists infinitely many
positive odd numbers k such that the quantities Q,, = k2™-1 are com-
posite for every m>1.

In 1960, Sierpinski (1882-1969) proved that there exists infinitely many
positive odd numbers k such that the quantities Q,, = k2™+1 are com-
posite for every m>1.

The main contribution of this paper is to present a new approach to
the present conjectures which wrongly states that the smallest Riesel
number is R=509203 and that the smallest Sierpinski number is 78557.
The key idea of this new approach is that both problems can be solved
by using congruences only.

With this approach which avoids the burden of tracking a prime value
in Q,, values, the elementary proofs are given that the smallest Riesel
number is R=31859 and that the smallest Sierpinski number is S=22699.
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1 Introduction

In 1956, Riesel proved [1] that there exists infinitely many positive odd numbers
k such that the quantities Q,,, = k2™-1 are composite for every m>1. In other
words, when k is a Riesel number R, all members of the following set are

composite: {k 2™ -1 : m € N}. The conjecture is now that the smallest Riesel
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number is R=509203. This problem is still open in 2015.

In 1960, Sierpinski proved [4] that there exists infinitely many positive odd
numbers k such that the quantities Q,, = k2™+1 are composite for every
m>1. In other words, when k is a Sierpinski number S, all members of the
following set are composite: {k 2™ +1 : m € N}. In 1967, Sierpinski and
Selfridge conjectured that the smallest Sierpinski number is S=78557. This
problem is still open in 2015.

2 Preliminary notes

2.1 Riesel and Sierpinski numbers can only be odd

This is due to the fact that if the even values R=k,2% or S=k,2% with odd k,

and kg exist, the quantities:

Q. = R2™-1 = (k,.2%)2™ -1 = k,2mF* -1
Qs = S2M+1 = (ks2%)2™ +1 = k2™ +1

are no more dealing with R or S but with k, or k, which is not the purpose.

2.2 A method to characterize Riesel and Sierpinski num-

bers

In particular parts of this section, only Riesel numbers are dealt with, even if
the result is also valid for Sierpinski numbers.

According to the fundamental property of composite natural numbers and to
the convention that the number 1 is not prime, each composite natural number
greater than 1 can be factorized in only one way by powers of increasing primes.
A consequence of it is that any natural number greater than 1 is either a prime
(2 or an odd prime) or a multiple qp of any prime p of its factorization.

This is particularly true for the quantities Q,,=k2™-1 and Q,,=k2"™+1 which
are used to characterize Riesel and Sierpinski numbers, so that we can write
for Riesel numbers by instance, with p being a prime and q being prime or

not:

Qmn = R2™-1 = ¢, P
Qm+a = R2mte-1 = dm+a Pm+a
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Now, we can look for the conditions on p,, and a which make that both Q,,

and Q1+ are multiples of p,,. When it is the case, we have:

Pm4+a = Pm
so that:
Qm = R2™-1 = qm Pm
Qm+ta = R2mFe-] = dm+a Pm

and:

Pm = QumiaQm / (dmta-Gm)

and also:

Quta = R2™Fo ] = 20R2m 41
Qmia = (2%-1)(R2™) + R2™+1
Qmta = (2%-1)(R2™) + Qn
Qmia - Qm = (2%-1)R(2™)
(Amta - Gm)Pm = (2%-1)R(2™)
and:

(Gnta = dm) = (2%-1R(2™)/pm

As the left quantity has to be an integer, so does the right one and we find the

partial condition (for two indexes):

Partial condition (for two indexes):
If Q,, and Q1o share a common odd prime divisor d=p,,,
this divisor has to divide either R or 2¢-1.

Now, by definition, for a Riesel number R, all the quantities Q,,,, = R2™"*-1
for any m>0 and any o >0 are always divisible by an odd divisor d of 2¢-1.

We can then write the complete condition:

Complete condition (for all indexes):
For a Riesel number R,
m has to be a covering set of the set N of natural numbers,
and:
for any m>0 and a >0, all the quantities Q,,., have to always be divisible
by an odd divisor d=p,, that divides either R or 2¢-1.
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The difficulty here is to find a practical method that handles both parts of the
complete condition.

Starting with the second part of the condition, we know that multiples an of
n are in the congruence n+an (or 0 mod n). But the first difficulty that arises
is that there exists no formula of direct factorization for Q,, = k2™-1 as, by
instance, the well known a?-b?=(a-b)(a+b). So, the only possible reference for
the factorization of each Q,, is the infinite table of factorization of all natural
numbers, whose existence is proved by the fundamental property of composite
natural numbers, but which cannot entirely exist due to its infinite dimension.
For the first part of the condition, we know that if a relation is true for all the
values i={1, ..., u} mod p, indeed the relation is true for all i’s, so that this
congruence i is a covering set of the set of natural numbers N.

So, the practical method will be to find a module x such that the relation:

Q; is always divisible by an odd divisor d; >1

is true for all i={1, ..., u} mod g, which ensures that this congruence i is
a covering set of N, and that a finite set of divisors d; exists for all Q; val-

ues, this set being used repeatedly, infinitely many times in a periodic manner.

2.3 The number 2293 is not a Riesel number

Without tracking prime Q values, the detailed calculations are given here which
prove that 2293 is not a Riesel number, just to show what happens when a

number k is not a Riesel number.

Proof. To study the number 2293, we first look at the factorizations of Q;=2293 x 2¢-

1 for i varying from 1 to 21:

Table 1. Factorizations of Q;=2293x2%-1 for i=1,21
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Q=2293x21-1 = 4585 = 5xTx 131
Q=2293x22-1 = 9171 = 32x1019
Q=2293x23-1 = 18343 = 13x17x83
Q=2293x21-1 = 36687 = 3x7x 1747
Q=2293x25-1 = 73375 = 53x 587
Q)=2293x26-1 = 146751 = 3x 11x4447
Q=2293x27-1 = 293503 = Tx23x 1823
Q=2293x25-1 = 587007 = 34x 7247
Q=2293x29-1 = 1174015 = 5x 234803

2348031 = 3x7?x 15973
4696063 = 17x276239
9392127 = 3x67x46727
18784255 = Hx7x19x47x601
37568511 = 3%x307x13597
75137023 = 13x193x29947
150274047 = 3x7x11x650537
300548095 = 5x5407x 11117
601096191 = 3x23x37x235447
1202192383 = 7x17x1669x6053
2404384767 = 32x503x531121
4808769535 = 5x733x1312079

Q=2293x210-1 =
Q=2293x2!1.1 =
Q=2293x212-1 =
Q=2293x215.1 =
Q=2293x21.1 =
Q=2293x215-1 =
Q=2293x216_1 =
Q=2293x217-1 =
Q=2293x218.1 =
Q=2293x219-1 =
Q=2293x220_1 =
Q=2293x221-1 =

which proves that:

when i(<22) = 1+4a, Q;=2293x2'+1 = 5K
when i(<22) = 2+4a, Q;=2293x2'+1 = 3K
when i(<22) = 4a, Q;=2293x2'+1 = 3K
which cover:
i(<22) = {1,24}+4«
but not:
i(<22) = 344«

So, for a better understanding of what happens when i(<22) = 3+4a, the last
table has to be extended as in Table 2 for i=3+4« with p being the last and

big adequate prime factor of the Q; values.

Table 2. Values of Q;=2293x2%-1 for i=3+4«
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Q=2293x23-1 = 13x17x83
Q=2293x27-1 = Tx23%x1823
Q=2293x2'1-1 = 17x276239
Q=2293x21-1 = 13x193x29947
Q=2293x2%19-1 = Tx17x1669x6053
Q=2293x2%-1 = 2017%x9536479
Q=2293x2%"-1 = 13*x17x29x149x1907
Q=2293x 2311 = 72%19%p
Q=2293%2%-1 = 172%613xp
Q=2293%x2%-1 = 13xp
Q=2293x2%1-1 = 7x17x107x167x281xp
Q=2293x27-1 = 19913x693409%p
Q=2293x2°1-1 = 13x17x23x439%xp
Q=2293x2%-1 =  7x29x3600761xp
Q=2293x2%-1 = 17x47x137xp
Q=2293x 2631 = 13x601xp
Q=2293%x2%-1 = 13x17%2917xp

which proves that:

when i(<99) = 7+12a, Q;=2293x2-1 = 7K
when i(<99) = 3+12a, Q;=2293x2/-1 = 13K
when i(<99) = 3+8a, Q;=2293x2-1 = 17K

to which, we have to add the already found congruences:

when i(<22) = 1+4a, Qi=2293x2+1 = 5K
when i(<22) = 2+4a, Q;=2293x21+1 = 3K
when i(<22) = 4+4a, Q;=2293x2'+1 = 3K

The last six congruences in i, extended and rewritten with the module p=24

which is the smallest multiple of their modules, respectively cover:

i(<99) = {7,19} mod 24
1(<99) = {3,15} mod 24
i(<99) = {3,11,19} mod 24
i(<99) = {1,5,9,13,17,21} mod 24
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i(<99) = {2,6,10,14,18,22} mod 24
i(<99) = {4,8,12,16,20,24} mod 24
but not:
1(<99) = 23 mod 24

where the Q; values are coprimes (do not share a common divisor).

So, we cannot say that i = {1,...,24} mod 24 is a covering set of the set N of
natural integers. As, when the above 99 limit for i is replaced by infinity, the
congruence i(not limited) = 23 mod 24 generates infinitely many coprime Q;
values, it proves that for all m’s, the set of divisors of these values is not finite,

which finally proves that 2293 is not a Riesel number. [

This method also proves that the numbers 9221 and 23669 are not Riesel

numbers.

3 Main Result 1: Proof that R=31859 is the

smallest Riesel number

According to the distributed computing project Primegrid [2] cited in [3], the
last facts that would establish the proof that 509203 is the smallest Riesel
number, are the proofs that the 50 numbers k:

2293, 9221, 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139,
107347, 121889, 129007, 143047, 146561, 161669, 192971, 206039, 206231,
215443, 226153, 234343, 245561, 250027, 273809, 315929, 319511, 324011,
325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159,
368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491,
477583, 485557, 494743

are not Riesel numbers, these proofs being based upon the fact that all of these
numbers would generate some prime Q value.

Without tracking prime Q values, the detailed calculations are given here which

prove that 31859 is a Riesel number.

Proof. To study the number 31859, we first look at the factorizations of Q;=31859 x 2!-

1 for i varying from 1 to 21:

Table 3. Factorizations of Q;=31859x2i-1 for i=1,21
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Q=31859x2!-1 = 63717 = 3x67x317
Q=31859%2%-1 = 127435 = 5x7x11x331
Q=31859%25-1 = 254871 = 32x 28319
Q=31859%24-1 = 509743 = 13x113x347
Q=31859%25-1 = 1019487 = 3x7x43x1129
Q=31859%26-1 = 2038075 = 52x81559
Q=31859%27-1 = 4077951 = 3% 19x29x 2467
Q=31859%285-1 = 8155903 = 72x17x 9791
Q=31859%2%-1 = 16311807 = 33x23x 26267
Q=31859x210-1 = 32623615 = 5x569x 11467
Q=31859x2!1-1 = 65247231 = 3x 7D
Q=31859x2!%1 = 130494463 = 11xp
Q=31859x2!3.1 = 260988927 = 3x61xp
Q=31859x24.1 = 521977855 = 5XT7x97xp
Q=31859x2-1 = 1043955711 = 3%xp
Q=31859x216_1 = 2087911423 = 13x 172 xp
Q=31859x2!7-1 = 4175822847 = 3xTxATIxp
Q=31859x218.1 = 8351645695 = 5xp
Q=31859x219-1 = 16703291391 = 3x41x43xp
Q=31859x220-1 = 33406582783 = Tx23x239xp

Q=31859x2%!-1 = 66813165567 = 3*x79x 1723 x 54539

which proves that:

when i(<22) = 1+2a, Q;=31859x2-1 = 3K
when i(<22) = 2+4a, Q;=31859x2-1 = 5K
when i(<22) = 2+3a, Q;=31859x2-1 = TK
when i(<22) = 4+12q, Q;=31859x2"-1 = 13K
when i(<22) = 8a, Q;=31859x2-1 = 17K
when i(<22) = 9+11a, Q;=31859x2-1 = 23K
when i(<22) = 5+14a, Q;=31859x2-1 = 43K
which cover:
i(<22) = {1,2,3,4,5,6,7,8,9,10,11,-,13,14,15,16,17,18,19,20,21}
but not:
i(<22) = {12}



Riesel and Sierpinski problems are solved

So, for a better understanding of what happens for 12, the last table has to be

extended as in Table 4 where p, q and r are big primes.

Table 4. Factorizations of Q; for i=4«

Q=31859x2*1 = 13x113x347
Q=31859x28-1 = 72x17%x9791
Q=31859x2"2-1 = 11xp
Q=31859x2%6-1 = 13x17?xp
Q=31859x2%-1 = Tx23%239%p
Q=31859% 2241 — 17%397Xp
Q=31859x2%-1 = 13x617xp
Q=31859x2%-1 = Tx11x17x113x331xp
Q=31859x2%-1 — 2273 %
Q=31859x2%0-1 = 13x17x191xpxq
Q=31859x2%-1 = 7x311x607xp
Q=31859x2%-1 = 17x4217xp
Q=31859x2%2-1 = 11x13xpxq
Q=31859x2%-1 = TX17x5573xp
Q=31859x2%0-1 = T9%x113x14321 xp
Q=31859% 2041 = 13x17x23XpXq
Q=31859x2%-1 = Tx397xp
Q=31859x2"™-1 = 11x17xp
Q=31859%276.1 — 13%89819Xpxq
Q=31859x2%0-1 = Tx1Txpxq
Q=31859% 251 = 1916249 xp
Q=31859x2%-1 = 13x17x113%xp
Q=31859x2%-1 = 7x11x331xp
Q=31859%2%-1 — 17xp
Q=31859% 21001 — 13x881Xpxq
Q=31859x2101.1 = Tx17x211xpxq
Q=31859x2198._1 = 232X pxqxT

This proves that:
when i(<109) = 12+420«, Q,=11K

so that the overall covering congruences are:
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when i(<109) = 142, Q;=31859x2¢-1 = 3K

when i(<109) = 2+4a, Q;=31859x2i-1 = 5K

when i(<109) = 24+3a, Q;=31859x2i-1 = TK
when i(<109) = 124+20q, Q;=31859x2-1 = 11K
when i(<109) = 44+12a, Q;=31859x2:-1 = 13K
when i(<109) = 848a, Q;=31859x2i-1 = 17K
when i(<109) = 9+11a, Q;=31859x2-1 = 23K
when i(<109) = 5+14a, Q;=31859x2:-1 = 43K

which, extended and rewritten with the module y=120*77=9240 which is the

smallest multiple of the modules of the last eight congruences in i, sum up to:

when 1(<9240) =
(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...,9240} mod 9240

So, as we can say that i = {1,...,9240} mod 9240 is a covering set of the set N
of natural integers, the above 9240 limit for i can be replaced by infinity. This
finally proves that for all m’s, the set of divisors of all ,,=31859x2™-1 values
is the finite set:

{3,5,7,11,13,23,43}

which proves that 31859 is a Riesel number. Finally, as from the Primegrid
project, the remaining numbers to test have been considered in the increasing
order, and as 2293 as well as 9221 and 23669 were found not to be Riesel
numbers, this proves that 31859 is the smallest Riesel number.

m

4 Main result 2: Proof that S=22699 is the

smallest Sierpinski number

According to the distributed computing project Seventeen or Bust [5] that is
cited in [6], the last facts that would establish the proof that 78557 is the
smallest Sierpinski number, are the proofs that the six numbers k = 10223,
21181, 22699, 24737, 55459, and 67607 are not Sierpinski numbers, these proofs
being based upon the fact that all of these numbers would generate some prime

Q value.
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Without tracking prime Q values, the detailed calculations are given here which

prove that 22699 is a Sierpinski number.

Proof. To study the number 22699, we first look at the factorizations of Q;=22699 x 2'+1
for i varying from 1 to 21:

Table 5. Factorizations of Q;=22699x2!+1 for i=1,21

Q=22699x2'+1 = 45399 = 3x37x409
Q=22699x2%2+1 = 90797 = 7?x17x109
Q=22699x23+1 = 181593 = 32x 20177
Q=22699x2*+1 = 363185 = 5x19x3823
Q=22699x2°+1 = 726369 = 3x7x 34589
Q=22699x20+1 = 1452737 = 11x13x10159
Q=22699x27+1 = 2905473 = 3x73x 13267
Q=22699x28+1 = 5810945 = 5x7x 166027
Q=22699x2°+1 = 11621889 = 32x1291321
Q=22699x2'041 = 23243777 = 17x23x59447
Q=22699x2"4+1 = 46487553 = 3x7x83x149x179
Q=22699x2'1241 = 92975105 = 5x 18595021
Q=22699x21341 = 185950209 = 3x431x143813
Q=22699x2"41 = 371900417 = 7x53x 1002427
Q=22699x2+1 = 743800833 = 3°x1259x21881
Q=22699x2%+1 = 1487601665 = 5x11x73x370511
Q=22699x2"4+1 = 2975203329 = 3x7x113x233x5381
Q=22699x2¥+1 = 5950406657 = 13x17x26924917
Q=22699x2"¥+1 = 11900813313 = 3x10133x391487

Q=22699x2%0+1 = 23801626625 = 53x 7x2293x 11863
Q=22699x2*+1 = 47603253249 = 3x23x9973x23059

which proves that:

when i(<22) = {1,3}+4a, Qi=22699x21+1 = 3K
when i(<22) = 44+4a, Q;=22699x2"+1 = 5K
which cover:
when i(<22) = {1,3,4}+4«a
but not:
when i(<22) = 2+4a
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So, for a better understanding of what happens in that case, the last table has

to be extended as in Table 6 where p and q are big primes.

Table 6. Factorizations of Q; for i=2 + 4«

Q=22699x2%2+1 =

Q=22699x2°+1 =

Q=22699x2104+1 =
Q=22699x2"+1 =
Q=22699x2"¥8+1 =
Q=22699x2%2+1 =
Q=22699x2%641 =
Q=22699x2%04+1 =
Q=22699x2%+1 =
Q=22699x2%+1 =
Q=22699x2*24+1 =
Q=22699x2%641 =
Q=22699x2°0+1 =
Q=22699x 2441 =
Q=22699x2%+1 =
Q=22699x2%24+1 =
Q=22699x2%6+1 =
Q=22699x270+1 =
Q=22699x2™+1 =
Q=22699x2™+1 =
Q=22699x2%24+1 =
Q=22699x2%6+1 =
Q=22699x2%4+1 =
Q=22699x2% 41 =
Q=22699x2%+1 =
Q=22699x210%2 41 =

This proves that:

7?x17x109
11x13x10159
17%x23x59447
7x53x1002427
13x17x26924917
19x47x1721x61949
Tx11x17%x1163715893
13x173x63841%x169753
17x73x2711xp
7x109%x3539xp
13x17x67x107%x24443 Xp
11x233x1213x5507x6329%x 14741
Tx17x8269%xp
13x23x59x2269xp
172x19x 3467 xp
TXp
11x13x17x53xpxq
73x239x 3884047 xp
Tx17x109xpxq
13xpxq
17xpxq
7?>x11xpxq
13x17x5741x5857xpxq
19x34613xp
Tx17x23%x1086731 xp
13xpxq

when i(<103) = 2+12a, Q,=7K
when i(<103) = 6420, Qi=11K
when i(<103) = 6+12a, Q,;=13K



Riesel and Sierpinski problems are solved 13

when i(<103) = 24+8«, Q;=17K,
when i(<103) = 224360, Qi=19K,
when i(<103) = {14, 66}+72a, Q;=53K
when i(<103) = 34+36a, Q:=73K

to which we must add the already found congruences:

when i(<22) = {1, 3}+4a, Q;=3K
when i(<22) = 4+4a, Q;=5K

The last nine congruences in i, extended and rewritten with the module y=360

which is the smallest multiple of all their modules, respectively cover:

when i(<360) = {1,5,9,13,...,353,357}+360c, Q;=3K

when i(<360) = {3,7,11,15....,355,359}+360c, Q;=3K
when 1(<360) = {4,8,12,16,...,356,360}+360c, Q;=5K
when 1(<360) = {2,14,26,38,50,...,350}+360c, Q;=7K
when i(<360) = {6,26,46,66,86,...,346} +360c, Q,=11K
when i(<360) = {6,18,30,42,..,346,354} +360c, Q;=13K
when i(<360) = {2,10,18,26,..,346,354} +360c, Q;=17K
when 1(<360) = {22,58,94,130....,346}4+360c, Q;=19K
when i(<360) = {14,66,86,138,...,354} +360c, Q;=53K

when i(<360) = {34,70,106....,358}+360c, Q;=73K

which sums up to:
i(<360) = {1,...,360} mod 360

So, as we can say that i = {1,...,360} modulo 360 is a covering set of the set
N of natural integers, the above 360 limit for i can be replaced by infinity.
This finally proves that for all m’s, the set of divisors of all Q,,=22699x2™+1

values is the finite set:
{3,5,7,11,13,17,19,53,73}

which proves that 22699 is a Sierpinski number.
Finally, as from the Primegrid project, the remaining numbers to test have
been considered (out of this article) in the increasing order, and as 10223 and
21181 were found not to be Sierpinski numbers, this proves that 22699 is the
smallest Sierpinski number.

O
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Remark. A secondary result is that we can now understand that the dif-
ferent divisors d; that constitute the finite set of divisors, are the different
modules d; of the different congruences Qq15,=d;K generated by all the con-
gruences in i=a+ba that are necessary to cover the set N of natural integers,
and that the number of these divisors is the number of these different congru-

ences.
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