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Abstract

In 1956, Riesel (1929-2014) proved that there exists infinitely many

positive odd numbers k such that the quantities Qm = k2m-1 are com-

posite for every m≥1.

In 1960, Sierpiński (1882-1969) proved that there exists infinitely many

positive odd numbers k such that the quantities Qm = k2m+1 are com-

posite for every m≥1.

The main contribution of this paper is to present a new approach to

the present conjectures which wrongly states that the smallest Riesel

number is R=509203 and that the smallest Sierpiński number is 78557.

The key idea of this new approach is that both problems can be solved

by using congruences only.

With this approach which avoids the burden of tracking a prime value

in Qm values, the elementary proofs are given that the smallest Riesel

number is R=31859 and that the smallest Sierpiński number is S=22699.
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1 Introduction

In 1956, Riesel proved [1] that there exists infinitely many positive odd numbers

k such that the quantities Qm = k2m-1 are composite for every m≥1. In other

words, when k is a Riesel number R, all members of the following set are

composite: {k 2m -1 : m ∈ N}. The conjecture is now that the smallest Riesel
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number is R=509203. This problem is still open in 2015.

In 1960, Sierpiński proved [4] that there exists infinitely many positive odd

numbers k such that the quantities Qm = k2m+1 are composite for every

m≥1. In other words, when k is a Sierpiński number S, all members of the

following set are composite: {k 2m +1 : m ∈ N}. In 1967, Sierpiński and

Selfridge conjectured that the smallest Sierpiński number is S=78557. This

problem is still open in 2015.

2 Preliminary notes

2.1 Riesel and Sierpiński numbers can only be odd

This is due to the fact that if the even values R=kr2
α or S=ks2

α with odd kr

and ks exist, the quantities:

Qr = R2m-1 = (kr2
α)2m -1 = kr2

m+α -1

Qs = S2m+1 = (ks2
α)2m +1 = ks2

m+α +1

are no more dealing with R or S but with kr or ks, which is not the purpose.

2.2 A method to characterize Riesel and Sierpiński num-

bers

In particular parts of this section, only Riesel numbers are dealt with, even if

the result is also valid for Sierpiński numbers.

According to the fundamental property of composite natural numbers and to

the convention that the number 1 is not prime, each composite natural number

greater than 1 can be factorized in only one way by powers of increasing primes.

A consequence of it is that any natural number greater than 1 is either a prime

(2 or an odd prime) or a multiple qp of any prime p of its factorization.

This is particularly true for the quantities Qm=k2m-1 and Qm=k2m+1 which

are used to characterize Riesel and Sierpiński numbers, so that we can write

for Riesel numbers by instance, with p being a prime and q being prime or

not:

Qm = R2m-1 = qm pm

Qm+α = R2m+α-1 = qm+α pm+α
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Now, we can look for the conditions on pm and α which make that both Qm

and Qm+α are multiples of pm. When it is the case, we have:

pm+α = pm

so that:

Qm = R2m-1 = qm pm

Qm+α = R2m+α-1 = qm+α pm

and:

pm = Qm+α-Qm / (qm+α-qm)

and also:

Qm+α = R2m+α-1 = 2αR2m+1

Qm+α = (2α-1)(R2m) + R2m+1

Qm+α = (2α-1)(R2m) + Qm

Qm+α - Qm = (2α-1)R(2m)

(qm+α - qm)pm = (2α-1)R(2m)

and:

(qm+α - qm) = (2α-1)R(2m)/pm

As the left quantity has to be an integer, so does the right one and we find the

partial condition (for two indexes):

Partial condition (for two indexes):

If Qm and Qm+α share a common odd prime divisor d=pm,

this divisor has to divide either R or 2α-1.

Now, by definition, for a Riesel number R, all the quantities Qm+α = R2m+α-1

for any m>0 and any α >0 are always divisible by an odd divisor d of 2α-1.

We can then write the complete condition:

Complete condition (for all indexes):

For a Riesel number R,

m has to be a covering set of the set N of natural numbers,

and:

for any m>0 and α >0, all the quantities Qm+α have to always be divisible

by an odd divisor d=pm that divides either R or 2α-1.
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The difficulty here is to find a practical method that handles both parts of the

complete condition.

Starting with the second part of the condition, we know that multiples αn of

n are in the congruence n+αn (or 0 mod n). But the first difficulty that arises

is that there exists no formula of direct factorization for Qm = k2m-1 as, by

instance, the well known a2-b2=(a-b)(a+b). So, the only possible reference for

the factorization of each Qm is the infinite table of factorization of all natural

numbers, whose existence is proved by the fundamental property of composite

natural numbers, but which cannot entirely exist due to its infinite dimension.

For the first part of the condition, we know that if a relation is true for all the

values i={1, ..., µ} mod µ, indeed the relation is true for all i’s, so that this

congruence i is a covering set of the set of natural numbers N.

So, the practical method will be to find a module µ such that the relation:

Qi is always divisible by an odd divisor dj >1

is true for all i={1, ..., µ} mod µ, which ensures that this congruence i is

a covering set of N, and that a finite set of divisors dj exists for all Qi val-

ues, this set being used repeatedly, infinitely many times in a periodic manner.

2.3 The number 2293 is not a Riesel number

Without tracking prime Q values, the detailed calculations are given here which

prove that 2293 is not a Riesel number, just to show what happens when a

number k is not a Riesel number.

Proof. To study the number 2293, we first look at the factorizations of Qi=2293×2i-

1 for i varying from 1 to 21:

Table 1. Factorizations of Qi=2293×2i-1 for i=1,21
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Q=2293×21-1 = 4585 = 5×7×131

Q=2293×22-1 = 9171 = 32×1019

Q=2293×23-1 = 18343 = 13×17×83

Q=2293×24-1 = 36687 = 3×7×1747

Q=2293×25-1 = 73375 = 53×587

Q=2293×26-1 = 146751 = 3×11×4447

Q=2293×27-1 = 293503 = 7×23×1823

Q=2293×28-1 = 587007 = 34×7247

Q=2293×29-1 = 1174015 = 5×234803

Q=2293×210-1 = 2348031 = 3×72×15973

Q=2293×211-1 = 4696063 = 17×276239

Q=2293×212-1 = 9392127 = 3×67×46727

Q=2293×213-1 = 18784255 = 5×7×19×47×601

Q=2293×214-1 = 37568511 = 32×307×13597

Q=2293×215-1 = 75137023 = 13×193×29947

Q=2293×216-1 = 150274047 = 3×7×11×650537

Q=2293×217-1 = 300548095 = 5×5407×11117

Q=2293×218-1 = 601096191 = 3×23×37×235447

Q=2293×219-1 = 1202192383 = 7×17×1669×6053

Q=2293×220-1 = 2404384767 = 32×503×531121

Q=2293×221-1 = 4808769535 = 5×733×1312079

which proves that:

when i(<22) = 1+4α, Qi=2293×2i+1 = 5K

when i(<22) = 2+4α, Qi=2293×2i+1 = 3K

when i(<22) = 4α, Qi=2293×2i+1 = 3K

which cover:

i(<22) = {1,2,4}+4α

but not:

i(<22) = 3+4α

So, for a better understanding of what happens when i(<22) = 3+4α, the last

table has to be extended as in Table 2 for i=3+4α with p being the last and

big adequate prime factor of the Qi values.

Table 2. Values of Qi=2293×2i-1 for i=3+4α
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Q=2293×23-1 = 13×17×83

Q=2293×27-1 = 7×23×1823

Q=2293×211-1 = 17×276239

Q=2293×215-1 = 13×193×29947

Q=2293×219-1 = 7×17×1669×6053

Q=2293×223-1 = 2017×9536479

Q=2293×227-1 = 133×17×29×149×1907

Q=2293×231-1 = 72×19×p

Q=2293×235-1 = 172×613×p

Q=2293×239-1 = 13×p

Q=2293×243-1 = 7×17×107×167×281×p

Q=2293×247-1 = 19913×693409×p

Q=2293×251-1 = 13×17×23×439×p

Q=2293×255-1 = 7×29×3600761×p

Q=2293×259-1 = 17×47×137×p

Q=2293×263-1 = 13×601×p

... ...

Q=2293×299-1 = 13×17×2917×p

which proves that:

when i(<99) = 7+12α, Qi=2293×2i-1 = 7K

when i(<99) = 3+12α, Qi=2293×2i-1 = 13K

when i(<99) = 3+8α, Qi=2293×2i-1 = 17K

to which, we have to add the already found congruences:

when i(<22) = 1+4α, Qi=2293×2i+1 = 5K

when i(<22) = 2+4α, Qi=2293×2i+1 = 3K

when i(<22) = 4+4α, Qi=2293×2i+1 = 3K

The last six congruences in i, extended and rewritten with the module µ=24

which is the smallest multiple of their modules, respectively cover:

i(<99) = {7,19} mod 24

i(<99) = {3,15} mod 24

i(<99) = {3,11,19} mod 24

i(<99) = {1,5,9,13,17,21} mod 24
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i(<99) = {2,6,10,14,18,22} mod 24

i(<99) = {4,8,12,16,20,24} mod 24

but not:

i(<99) = 23 mod 24

where the Qi values are coprimes (do not share a common divisor).

So, we cannot say that i = {1,...,24} mod 24 is a covering set of the set N of

natural integers. As, when the above 99 limit for i is replaced by infinity, the

congruence i(not limited) = 23 mod 24 generates infinitely many coprime Qi

values, it proves that for all m’s, the set of divisors of these values is not finite,

which finally proves that 2293 is not a Riesel number.

This method also proves that the numbers 9221 and 23669 are not Riesel

numbers.

3 Main Result 1: Proof that R=31859 is the

smallest Riesel number

According to the distributed computing project Primegrid [2] cited in [3], the

last facts that would establish the proof that 509203 is the smallest Riesel

number, are the proofs that the 50 numbers k:

2293, 9221, 23669, 31859, 38473, 46663, 67117, 74699, 81041, 93839, 97139,

107347, 121889, 129007, 143047, 146561, 161669, 192971, 206039, 206231,

215443, 226153, 234343, 245561, 250027, 273809, 315929, 319511, 324011,

325123, 327671, 336839, 342847, 344759, 362609, 363343, 364903, 365159,

368411, 371893, 384539, 386801, 397027, 409753, 444637, 470173, 474491,

477583, 485557, 494743

are not Riesel numbers, these proofs being based upon the fact that all of these

numbers would generate some prime Q value.

Without tracking prime Q values, the detailed calculations are given here which

prove that 31859 is a Riesel number.

Proof. To study the number 31859, we first look at the factorizations of Qi=31859×2i-

1 for i varying from 1 to 21:

Table 3. Factorizations of Qi=31859×2i-1 for i=1,21
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Q=31859×21-1 = 63717 = 3×67×317

Q=31859×22-1 = 127435 = 5×7×11×331

Q=31859×23-1 = 254871 = 32×28319

Q=31859×24-1 = 509743 = 13×113×347

Q=31859×25-1 = 1019487 = 3×7×43×1129

Q=31859×26-1 = 2038975 = 52×81559

Q=31859×27-1 = 4077951 = 3×19×29×2467

Q=31859×28-1 = 8155903 = 72×17×9791

Q=31859×29-1 = 16311807 = 33×23×26267

Q=31859×210-1 = 32623615 = 5×569×11467

Q=31859×211-1 = 65247231 = 3×7×p

Q=31859×212-1 = 130494463 = 11×p

Q=31859×213-1 = 260988927 = 3×61×p

Q=31859×214-1 = 521977855 = 5×7×97×p

Q=31859×215-1 = 1043955711 = 32×p

Q=31859×216-1 = 2087911423 = 13×172×p

Q=31859×217-1 = 4175822847 = 3×7×479×p

Q=31859×218-1 = 8351645695 = 5×p

Q=31859×219-1 = 16703291391 = 3×41×43×p

Q=31859×220-1 = 33406582783 = 7×23×239×p

Q=31859×221-1 = 66813165567 = 32×79×1723×54539

which proves that:

when i(<22) = 1+2α, Qi=31859×2i-1 = 3K

when i(<22) = 2+4α, Qi=31859×2i-1 = 5K

when i(<22) = 2+3α, Qi=31859×2i-1 = 7K

when i(<22) = 4+12α, Qi=31859×2i-1 = 13K

when i(<22) = 8α, Qi=31859×2i-1 = 17K

when i(<22) = 9+11α, Qi=31859×2i-1 = 23K

when i(<22) = 5+14α, Qi=31859×2i-1 = 43K

which cover:

i(<22) = {1,2,3,4,5,6,7,8,9,10,11,-,13,14,15,16,17,18,19,20,21}
but not:

i(<22) = {12}
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So, for a better understanding of what happens for 12, the last table has to be

extended as in Table 4 where p, q and r are big primes.

Table 4. Factorizations of Qi for i=4α

Q=31859×24-1 = 13×113×347

Q=31859×28-1 = 72×17×9791

Q=31859×212-1 = 11×p

Q=31859×216-1 = 13×172×p

Q=31859×220-1 = 7×23×239×p

Q=31859×224-1 = 17×397×p

Q=31859×228-1 = 13×617×p

Q=31859×232-1 = 7×11×17×113×331×p

Q=31859×236-1 = 2273×p

Q=31859×240-1 = 13×17×191×p×q

Q=31859×244-1 = 7×311×607×p

Q=31859×248-1 = 17×4217×p

Q=31859×252-1 = 11×13×p×q

Q=31859×256-1 = 7×17×5573×p

Q=31859×260-1 = 79×113×14321×p

Q=31859×264-1 = 13×17×23×p×q

Q=31859×268-1 = 7×397×p

Q=31859×272-1 = 11×17×p

Q=31859×276-1 = 13×89819×p×q

Q=31859×280-1 = 7×17×p×q

Q=31859×284-1 = 1916249×p

Q=31859×288-1 = 13×17×113×p

Q=31859×292-1 = 7×11×331×p

Q=31859×296-1 = 17×p

Q=31859×2100-1 = 13×881×p×q

Q=31859×2104-1 = 7×17×211×p×q

Q=31859×2108-1 = 232×p×q×r

This proves that:

when i(<109) = 12+20α, Qi=11K

so that the overall covering congruences are:
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when i(<109) = 1+2α, Qi=31859×2i-1 = 3K

when i(<109) = 2+4α, Qi=31859×2i-1 = 5K

when i(<109) = 2+3α, Qi=31859×2i-1 = 7K

when i(<109) = 12+20α, Qi=31859×2i-1 = 11K

when i(<109) = 4+12α, Qi=31859×2i-1 = 13K

when i(<109) = 8+8α, Qi=31859×2i-1 = 17K

when i(<109) = 9+11α, Qi=31859×2i-1 = 23K

when i(<109) = 5+14α, Qi=31859×2i-1 = 43K

which, extended and rewritten with the module µ=120*77=9240 which is the

smallest multiple of the modules of the last eight congruences in i, sum up to:

when i(<9240) =

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,...,9240} mod 9240

So, as we can say that i = {1,...,9240} mod 9240 is a covering set of the set N
of natural integers, the above 9240 limit for i can be replaced by infinity. This

finally proves that for all m’s, the set of divisors of all Qm=31859×2m-1 values

is the finite set:

{3,5,7,11,13,23,43}

which proves that 31859 is a Riesel number. Finally, as from the Primegrid

project, the remaining numbers to test have been considered in the increasing

order, and as 2293 as well as 9221 and 23669 were found not to be Riesel

numbers, this proves that 31859 is the smallest Riesel number.

4 Main result 2: Proof that S=22699 is the

smallest Sierpiński number

According to the distributed computing project Seventeen or Bust [5] that is

cited in [6], the last facts that would establish the proof that 78557 is the

smallest Sierpiński number, are the proofs that the six numbers k = 10223,

21181, 22699, 24737, 55459, and 67607 are not Sierpiński numbers, these proofs

being based upon the fact that all of these numbers would generate some prime

Q value.
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Without tracking prime Q values, the detailed calculations are given here which

prove that 22699 is a Sierpiński number.

Proof. To study the number 22699, we first look at the factorizations of Qi=22699×2i+1

for i varying from 1 to 21:

Table 5. Factorizations of Qi=22699×2i+1 for i=1,21

Q=22699×21+1 = 45399 = 3×37×409

Q=22699×22+1 = 90797 = 72×17×109

Q=22699×23+1 = 181593 = 32×20177

Q=22699×24+1 = 363185 = 5×19×3823

Q=22699×25+1 = 726369 = 3×7×34589

Q=22699×26+1 = 1452737 = 11×13×10159

Q=22699×27+1 = 2905473 = 3×73×13267

Q=22699×28+1 = 5810945 = 5×7×166027

Q=22699×29+1 = 11621889 = 32×1291321

Q=22699×210+1 = 23243777 = 17×23×59447

Q=22699×211+1 = 46487553 = 3×7×83×149×179

Q=22699×212+1 = 92975105 = 5×18595021

Q=22699×213+1 = 185950209 = 3×431×143813

Q=22699×214+1 = 371900417 = 7×53×1002427

Q=22699×215+1 = 743800833 = 33×1259×21881

Q=22699×216+1 = 1487601665 = 5×11×73×370511

Q=22699×217+1 = 2975203329 = 3×7×113×233×5381

Q=22699×218+1 = 5950406657 = 13×17×26924917

Q=22699×219+1 = 11900813313 = 3×10133×391487

Q=22699×220+1 = 23801626625 = 53×7×2293×11863

Q=22699×221+1 = 47603253249 = 3×23×9973×23059

which proves that:

when i(<22) = {1,3}+4α, Qi=22699×2i+1 = 3K

when i(<22) = 4+4α, Qi=22699×2m+1 = 5K

which cover:

when i(<22) = {1,3,4}+4α

but not:

when i(<22) = 2+4α
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So, for a better understanding of what happens in that case, the last table has

to be extended as in Table 6 where p and q are big primes.

Table 6. Factorizations of Qi for i=2 + 4α

Q=22699×22+1 = 72×17×109

Q=22699×26+1 = 11×13×10159

Q=22699×210+1 = 17×23×59447

Q=22699×214+1 = 7×53×1002427

Q=22699×218+1 = 13×17×26924917

Q=22699×222+1 = 19×47×1721×61949

Q=22699×226+1 = 7×11×17×1163715893

Q=22699×230+1 = 13×173×63841×169753

Q=22699×234+1 = 17×73×2711×p

Q=22699×238+1 = 7×109×3539×p

Q=22699×242+1 = 13×17×67×107×24443×p

Q=22699×246+1 = 11×233×1213×5507×6329×14741

Q=22699×250+1 = 7×17×8269×p

Q=22699×254+1 = 13×23×59×2269×p

Q=22699×258+1 = 172×19×3467×p

Q=22699×262+1 = 7×p

Q=22699×266+1 = 11×13×17×53×p×q

Q=22699×270+1 = 73×239×3884047×p

Q=22699×274+1 = 7×17×109×p×q

Q=22699×278+1 = 13×p×q

Q=22699×282+1 = 17×p×q

Q=22699×286+1 = 72×11×p×q

Q=22699×290+1 = 13×17×5741×5857×p×q

Q=22699×294+1 = 19×34613×p

Q=22699×298+1 = 7×17×23×1086731×p

Q=22699×2102+1 = 13×p×q

This proves that:

when i(<103) = 2+12α, Qi=7K

when i(<103) = 6+20α, Qi=11K

when i(<103) = 6+12α, Qi=13K
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when i(<103) = 2+8α, Qi=17K,

when i(<103) = 22+36α, Qi=19K,

when i(<103) = {14, 66}+72α, Qi=53K

when i(<103) = 34+36α, Qi=73K

to which we must add the already found congruences:

when i(<22) = {1, 3}+4α, Qi=3K

when i(<22) = 4+4α, Qi=5K

The last nine congruences in i, extended and rewritten with the module µ=360

which is the smallest multiple of all their modules, respectively cover:

when i(<360) = {1,5,9,13,...,353,357}+360α, Qi=3K

when i(<360) = {3,7,11,15,...,355,359}+360α, Qi=3K

when i(<360) = {4,8,12,16,...,356,360}+360α, Qi=5K

when i(<360) = {2,14,26,38,50,...,350}+360α, Qi=7K

when i(<360) = {6,26,46,66,86,...,346}+360α, Qi=11K

when i(<360) = {6,18,30,42,..,346,354}+360α, Qi=13K

when i(<360) = {2,10,18,26,..,346,354}+360α, Qi=17K

when i(<360) = {22,58,94,130,...,346}+360α, Qi=19K

when i(<360) = {14,66,86,138,...,354}+360α, Qi=53K

when i(<360) = {34,70,106,...,358}+360α, Qi=73K

which sums up to:

i(<360) = {1,...,360} mod 360

So, as we can say that i = {1,...,360} modulo 360 is a covering set of the set

N of natural integers, the above 360 limit for i can be replaced by infinity.

This finally proves that for all m’s, the set of divisors of all Qm=22699×2m+1

values is the finite set:

{3,5,7,11,13,17,19,53,73}

which proves that 22699 is a Sierpiński number.

Finally, as from the Primegrid project, the remaining numbers to test have

been considered (out of this article) in the increasing order, and as 10223 and

21181 were found not to be Sierpiński numbers, this proves that 22699 is the

smallest Sierpiński number.
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Remark. A secondary result is that we can now understand that the dif-

ferent divisors dj that constitute the finite set of divisors, are the different

modules dj of the different congruences Qa+bα=djK generated by all the con-

gruences in i=a+bα that are necessary to cover the set N of natural integers,

and that the number of these divisors is the number of these different congru-

ences.
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