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Abstract

In this paper, two local structure-preserving algorithms for solving the regularized long wave (RLW) equa-
tion are constructed. By using the implicit midpoint method and the AVF method for the temporal and
spatial discretization respectively, we present a local momentum-preserving algorithm for the RLW equa-
tion. Furthermore, by alternating the above two methods for the discretization in different direction, we
get a local energy-preserving algorithm. The first algorithm is proved to be local momentum preserving
and the second is local energy preserving. With periodic boundary conditions, the algorithms admit global
momentum and energy conservation law. Propagation of single, double and triple solitary waves, the con-
servation properties of mass, energy and momentum of the RLW equation are presented to demonstrate the
conservation properties of the two schemes.

Keywords: RLW equation; Local structure-preserving; Average Vector Field (AVF) method; Momentum;
Energy.

1. Introduction

The regularized long wave (RLW) equation

u,+ux—0'uxx,+§(u2)x:0, a<x<b0<t<T, (1.1)

subject to the initial and boundary condition

u(a,t) = ulb,t), 0<t<T, (1.2)
u(x,0) = up(x), a<x<bnb.
was first put forward by Peregrine [1] to describe a model for long waves on the surface of water in a
channel, and later by Benjamin et al. [2]. P. J. Olver [3] presented that the RLW equation posses only three

independent conservation laws:
Mass conservation law

b
S:f udx = Cy. (1.3)
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Global momentum conservation law (GMCL)
1
M= 3 f u? + o(uy)’dx = C,. (1.4)
a
Global energy conservation law (GECL)
1 b
E=3 f vi® + 3u*)dx = C;. (1.5)
a

This equation has drawn much attention for decades and has motivated a series of studies in physics and
mathematics. Various numerical methods have been used to investigate the solutions for the RLW equation
[4-7]. In particularly the finite difference method in [8], finite element methods such as the Galerkin method
in [9], collocation methods in [10] and so on.

As is well known, a basic principle to design proper numerical methods is constructing structure pre-
serving or conservative numerical methods that preserve intrinsic properties of the original system as well
as possible. The numerical method which can preserve at least some structural properties of the system is
called structure-preserving numerical method or geometric integrator.

In recent years much work have been devoted to finding unified frameworks for the structure-preserving
methods. For example, the discrete variational derivative (DVD) method in [11], the average vector field
(AVF) method in [12] and the discrete partial derivative (DPD) method in [13]. Theoretical analysis and
practical computations shown that these methods have superior performance in long time simulations.

Lots of conservation PDEs have the properties of multi-symplectic structure, energy, mass and momen-
tum conservations [14—17]. To inherit the multi-symplectic structure, many authors have paid attention to
multi-symplectic scheme in recent years. The authors discussed the multi-symplectic scheme for the RLW
equation, such as the multi-symplectic Preissman scheme in [18], the multi-symplectic Rung-kutta scheme
in [19], the multi-symplectic Euler-box scheme in [20] and so on. All of these methods focus on the p-
reservation of some kinds of discrete multi-symplecticity. Except the multi-symplectic conservation law,
the RLW equation also preserve the energy and momentum conservation law. In [19] the authors proposed
a multi-symplectic Euler-box scheme which can preserve the mass, energy and moment conservation law.

The conservation of energy and momentum are crucial properties for the Hamiltonian system. It should
be noted that the structure preserving property has its own constrain. The reason is that the conservation law
is defined on the global times level and it inevitably depends on the boundary conditions. In other words, if
the boundary conditions are not suitable, the energy-preserving algorithms can not be applied to the problem.
Therefore, whether and how to construct local energy preserving algorithms are interesting. In reference [21]
Wang et al. proposed the concept of the local structure-preserving algorithms for PDEs and then constructed
some algorithms preserved the multi-symplectic conservation law, local energy and momentum conservation
laws for the Klein-Gordon-Schrodinger (KGS) equation. The outstanding advantage of the local structure-
preserving algorithms is that they conserve the local structures of PDEs in any local time-space region. For
example local energy-preserving algorithms preserve the discrete global energy under suitable boundary
conditions such as periodic or homogenous boundary conditions. Thus in the case of multi-symplectic
PDEs they cover the traditional global energy-preserving algorithms. In [22] Cai et al. and in [23] Chen et
al. constructed some local structure-preserving algorithms for special multi-symplectic PDEs. In [24], Gong
et al. developed a general approach to constructing local structure-preserving algorithms by using the AVF
methods. In this paper we want to construct new local multi-symplectic structure-preserving algorithms for
the RLW equation.

The AVF method is first written down in [25] and identified as energy-preserving and as a B-series
method in [26]. For the differential equation



y=f@), yeR",

the AVF method is the map y +— y’ defined by

yl

1
2= f (U =€)y + &)y,
T 0
where 7 is the time step. The AVF method is a B-series method, is affine-covariant, self-adjoint and of
order 2. When f is Hamiltonian with respect to a constant symplectic structure, i.e. f = Q 'VH with
Q) a nonsingular skew-symmetric matrix, the AVF method preserves the energy Q. By using the AVF
method, Ref. [12] gave a class of systematic energy-preserving methods based on symplectic formulation
of Hamiltonian PDEs. Basic idea of the method is to first discrete PDEs with uniform spatial-discretization
resulting in a large system of Hamiltonian ODEs. The resulting ODEs are then integrated by the AVF
method. Currently the second-order AVF method

_ 1
Yl = Yn _ f F(A = Eyn + Eyns1)dy,
T 0

attracts many attentions, see Ref. [15-18] and the references therein.

In this paper, we will focus on the local preserving algorithm for the RLW equation, including a local
momentum-preserving scheme and a local energy preserving scheme. First we propose a local momentum-
preserving scheme with implicit midpoint scheme in time and the AVF method in space for the RLW e-
quation. Then we construct a local energy-preserving scheme with the AVF method in time and implicit
midpoint scheme in space.

The remainder of this paper is organized as follows: In section 2, we introduce some operator defini-
tions and its properties. In section 3, the local momentum-preserving algorithm is developed for the RLW
equation. In section 4, the local energy-preserving algorithm is proposed for the RLW equation. We also
prove some conservation properties of the methods. The numerical experiments are presented in section 5
to illustrate our theoretical predictions.

2. Preliminaries

2.1. Operator definitions and properties

In this section, we give some operator definitions and its properties. We first introduce some notations:
the spatial domain I = [a,b]and L = b —a, x; =a+hj, j=0,1,2,---N — 1, where h = (b — a)/N is the
spatial length. #, = k7 ,k=0,1,2,---, where 7 is temporal step span.

Some operators are also defined. Let ulj‘. be the approximation of u(x, t) at the node (x;, #;). We define
the finite difference operators

1 1
6iff =~ =) Sy = (= )
and averaging operators
1 1
Afy = U I AT = S+ 1.

Besides, the following properties of discrete Leibnitz rules are also useful for us to proving the local
energy conservation law in our next work

5x(f - @ = (@ffy + (=) ff) - 6:8s + 0uf} - (1 —)gh, +ag)), YO<a<l.
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Especially, we have
1
Ox(f - 8)) = Ac} - 0xgj + Ouf - Asgy = 5. 2.1)
Similarly, we can obtain a series of analogous discrete Leibnitz rules in the time direction

Si(f - g)j = @ff* + (L —a)f}) - bigl +6uff (1 —)gf™ +ag) VO s < 1

and
1
Sif - 8)) = Adfy - 6ugj + 6uf - Aiglp = 5.

2.2. Multisymplectic structure of the RLW equation
First we introduce the conjugate variables u = ¢y, v = Uy, w = u, and p = %cpt + %gox + ‘E’goj% — 0@y, let
Z = (p,u,v,w, p)T, equation (1.1) can be reformulated into the following PDEs

1 1
_Eul - E”x -px=0,
1 . 1 o Vo,
—_ —_ — —_ — — Wy = —_—
290t 2Vt 290x 5 Wx p 2” ,
o o
Eu, = 5(1), (22)
o o
Eux = EV,
Px = U.
Thus it can be written as a multi-symplectic system
MZ, + KZ, =VzS(Z)
where
S(Z)=up - gu3 + %vw,
0 -1 0 00 0 -1 0 0 -1
1 1
7 0 -3 00 7 0 0 -7 0
M=10 5 0 0 O0O|,K=[{0 0 0 0 O
0O 0 0 00O 0 0 0 O
0O 0 0 0O 1 0 0 0 O
Proposition 2.1. The system (2.2) possesses a local momentum conservation law (LMCL)
o v 1 o 1 o
0/(up + va - 8”3 + Eux<p + pep + wau) + ﬁx(—zutgo — P — Ewtu) =0. (2.3)
Proof. Multiplying (2.2) by ¢y, us, v;, w; and p; respectively gives
1 1
TP T SUfr T Papr = 0,
1 Tt 1 o vV 5
—Qilly — = Villy + = QU — —Wxlly = Py — —U"U
2‘ptt 2Vtt290xt 5 Wxlht Pt2 ts
o o
Eu,v, = vat, (24)
o o
Eux(l)t = EV(A)I,
YxPr = Upz.



Adding the above equations (2.4) together, we have

1

+ T sty + Ly, + Y 2+ Seovi + Sveoy +
—— Uy — — @yl — —Wylly + —U = puy— —uu + = —V up;.
> xPr = DxPr 290x 17 Wally T S Uy $xPt = PUs F Ut T WV SV Pr

Noting that

1 N 1 o 1 N 1 )
- —u - = 0/(—=u —u
5 xPt 290):”! t 5 x¥ 3 1),

— Dx@r + @xpr = —01(pxp) + 0x(pip),
(on g (o (on
— S Wl + S Uy = 81(—5wxu) + ax(szu),

u Y Zu, + 6wv + 6vcu + 0/(up + O—wv Vu3)
- —u = = up; = 0:(u —wv— —=u’),
put FU T S WV E SV, Pt Hup ) 6
we obtain (2.3).

O

If the boundary conditions are suitable, such as periodic boundary conditions (1.2), integration LMCL
(2.3) over domain I = [a, b], we obtain the GMCL (1.4).

Proposition 2.2. The system (2.2) possesses a local energy conservation law (LECL)

1 o o \% 1 o
ﬁz(—zux‘#’ - EWX) +0x(up + va - 8M3 + Eut‘p + Euvz) = 0. (2.5)
Proof. Multiplying (2.2) by ¢y, uy, vy, w, and py respectively gives
1 1
_Eut‘px - Eux(px — pxpx =0,
1 o N 1 o B vV 5
2§0tux ) Villy 2§0xux 2wxux = puy 2” Uy,
o
Eu,vx > WVy, (2.6)
o o
Euxa)x = Eva)x,
PxPx = UDx.

Adding the above equations (2.6) together, we have

o +0' N 1, +o- +o- N
- — —wxU —UxW =pUy— <-uU —wV —Vw u
PxPx 3 xUx 3 xWx T @xPx = PUy 3 X 3 X ) X Px
a 4
— 0uup+ Zov -2
(up 2wv 6u)

According the commutative law and discrete Leibnitz rules, we can obtain local energy conservation law
(2.5). m]

With the initial and periodic boundary conditions (1.2), we obtain the global energy conservation law
(GECL) (1.5).

3. Local structure-preserving schemes

In this section, we propose two new local sructure-preserving schemes for the RLW equation.



3.1. Local momentum-preserving algorithm

Now we apply the implicit midpoint scheme in space and the AVF method in time to construct the local
momentum-preserving algorithm for RLW equation.

LMP scheme: First we use the implicit midpoint scheme in space and obtain semi-discrete system

1 1
EatAxMj - Eéxuj - 6xp] = O,

1 o 1 loa %
F0iApj = S0AW; + S0:p) — 50w = Axpj = E(Ax”j)za
o o

EatAxuj = EAij,

Eéxuj = EAij,

5x(pj S Axuj.

By using the AVF method in time one can get that

1 1
- EatAxu’; - E(SxAtu';. -6, Aph =0,

1
SO A —

o 1 o ! %
5 S0A; + S0Ag, = S0 AW = fo (1= AP+ EADT) = S((1 = HAul + EA TV dE,

o k_ 9 : k k+1
20l = 5 | (1= DA + A e,

o

1
o
Toaat =7 [ (1= oank+eant e
1
SxAwg = f (1 = HA W + EA W de.
0 4
The full-discrete system can be written as

1 1
_561‘Axulj - EéxAtM§ - 6xAtplj = 0’

1 fon 1 o v

SOA = SOAY, + S0 A = T8 AW = A = LAl + (A" + (Aa(Aad D],
SOl = ZAAW, 3.1)
(o o

EéxAtu];' = EAtAxV];'a

S A = AA .
Eliminating the auxiliary variables ¢, v, w and p yields the system
SAVANL_ + 8, ATAT ) — 0636, A Al + 65 CAANAE ) + (Al ) + (Ads_y)(Aw)] =
Omitting the average operator A, and A, we can get a two time level scheme

ARSuls_y + 8iA A — o6roul_ g 25 A )7 + (Al + (Al AT = (3.2)



Theorem 3.1. The scheme (3.1) or (3.2) preserve the discrete local momentum conservation law

loa v 1 loa
M(xj, 1) =6,[Axp - A + EAxa)lj‘. A - E(Axu]]‘.)3 + Eéxu];- A+ 0.ph - A+ Eaxw’; - A

1 o
+ 6x(=Awp - iy — SOl - A - =

5 Atulj‘. -5,0/}) =0.

2
(3.3)
Proof. Multiplying (3.1) by 6tAx<p’;., 5,Axu’;., 6tAxv’j‘., 5,Axw’;. and §,A p’; respectively, we have
—%&Axulj‘. - 61Ax; — %@Atu’; -6 Axk — . Aph - 51AL = 0,
SO - Al - %5,Axv’; GA il + %5XA,¢’; - GAulk — %5xAtw’; 5iA
= AAp - GiAaly - g[(Axuﬁ-)2 + (Al + (Aad)A ] - 6,408,
%&Axul; - GiAk = %Alew’J‘. L GA, (3.4)

o o
EéxA,u'J‘. - 6A W = EAtAxv’J‘. - 6A W,
S A - AP = A - 5iAph.
Summing the above equations (3.4)together, we obtain
1
= S0:A - A = S AP B +

1 o
EéxA,galj‘. - ,A il — EéxA,w’J‘. - 6,A il +

o

5 ScAuls - 5,A W
1
+ O A G = AAD] - A = <A + (At ) + (Aud)(A i D] - 514l

a (o
+ EA,Axw’J‘. -6 AS + EA,AXVI; 61 ALW + AA il - 8A P

(3.5)
By using the discrete Leibniz rule and commutative law we can deduce

1 1 1
=50xA - S + SOAG - SiA iy = 058 Avg)) + 5500 - A,
—6. AP - S A, + 6 A, - S, A = (=P - Augh) + 6.6 - A,

g
> Sk - Al + 5x(55,w’; - Audb),
AAPS - S A S + A A - 5,A DS = 5,(Aph - A,

_%6XA[CL)§ . 6[Ax1/l§ + %-6XAﬂ/t§ . 6[Axa)]; = 6[(_0-

v
LA + (Al + (Al A ™D] - 0,40l = Z6(A),
o o o
>A Al - 5 A + EA,Axvf; - 51A0 = 6,(5Axa)'j‘- A,

So we can reduce the equation (3.5) to discrete local momentum conservation law (3.3). O
Remark 3.2. In the above derivations, we use the Leibnite rules (2.1). The discrete LMCL (3.3) is inde-

pendent of the boundary conditions and preserved in any local time-space region. It is consist with the
continuous LMCL (2.3).



Summing the discrete momentum conservation law (3.3) over index j reads

N

o v 1 o

S § [ALpf - Al + EAW’; A - E(Axu§)3 + E(qu/j‘- A+ 0.ph - A+ Eaxwf; - Aal]
=1

o

2A;M]; . ()}a)f) =0.

N
1
+ 0y ) (~0uls - A — Agl - 51
=1
With the initial and periodic boundary conditions (1.2), we obtain the following global momentum conser-
vation law.

Corollary 3.3. For the initial and periodic boundary conditions (1.2), the LMP scheme preserves the dis-
crete GMCL

M = ME= = M= M, (3.6)
where MK = hZ?’:l[AxPl; -Axul]‘. + %Axwlj‘. -Axv’J‘. - é(Axu’J‘.)3 + %6)(141]‘. . Ax<p’;. + 6xplj‘. -Ax<plj‘. + %(5xwlj‘. . Axu’;].

3.2. Local energy-preserving algorithm

Now we apply the implicit midpoint scheme in time and the AVF method in space to construct the local
energy-preserving algorithm for RLW equation.
LEP scheme: First we use the implicit midpoint scheme in time and obtain semi-discrete system

1 1
- E(Stuk - EaxAtuk — axA,pk = 0,

1 loa 1 o %

E(Stsﬂk - E(Stvk + zaxAtSDk - EaxAt(,()k = Atpk - E(Atuk)z,
o o

Eétuk = EAt(L)k,

o a

EaxAﬂ/lk = EA[Vk,

3xAtcpk = Atuk.

Then we use the AVF method in space

1 1
- 5(s,Axu’; - E5xA,u’; - 5,Aip =0,

1 o 1 o
S0A = S0 AN, + S0 A - S

1
k _ k k 4 k kN2
> > > 5 OxAi = fo (1= DA, + AP, ) = S (1 = DA + EAuS, .

o k_ 9 ! k k

EétAx”j = 5 o (1= f)AtCUj + fAtij)df,
1

a g

Tout=7 fo (1= DA + EADE, e,

1
5= [ (1= oAb+ e e



The full-discrete system can be written as

1 1

_E(StAxuf- - §6xAtu’j‘. —8:Apk =0,

1 o 1 o v

E(StAx‘p];' - EétAxv’j- + EéxAtsofj - EéxAtw’; = AAp; - g[(A,u’;.)2 + (Al ) + (Al (Al )],
%5,Axu’; = %A,Axw’]‘., 3.7)
a a

EéxAtu’j‘. = EA,AXV’;-,

S A = AA .
Eliminating the auxiliary variables ¢, v, w and p yields the system

v
SAVANL_ + 8, ATAT ) — 0636, A Al + 65XAXA,[(A,u’]‘._2)2 + (Al + (Al ) (Auds_y)] = 0.
Omitting the average operator A, and A, we can get a two time level scheme

v
ARSuls_y + S A AW — o636l + gax[(A,uf;_l)z + (Al + (Al )(Aud)] = 0,

(3.8)
Theorem 3.4. The scheme (3.7) or (3.8) preserve the discrete local energy conservation law
1
ECxjs 1) =0,(~5 0t - Augly = TAuls - 5,0%)
(3.9)
o v 1 o
+ 8 Aiph - Al + EA,w’J‘. AV, - E(Atu]]‘.)3 + Eé,uI; A+ Ea,v’; A1 =0
Proof. Multiplying (3.7) by 6XA,<,0’;, 6xA,u’j‘., (5xAtv’;, 6xAta)’j‘. and 6,4, p’;. respectively, we have
1 1
—50A L - SxA = SOAM - 6:AW = 6:AD] - SxA = 0,
LAk 5. Ak — oA S A + 25,400 - 5.k — L6 Ak - 5, Aulk
ztxéojxtjztxj XAl zxt‘Pj xtjzxtjxtj
)4
= AAD| - SxAuty = (A + (At ) + At (Al )] - SxA i,
a ag
EétAxul; -6 AV = EAtAxw’]‘. -6 A, (3.10)
g (oa
EéxA,ulJ‘. - 6,AW = EA,Axv’J‘. - 6,AW,
S A, - 6, A DS = Al - 5,A Dk,
Summing the above equations (3.10)
1 1 o o
- EétAxul; N 6XA190§ + EétAx(p]]( * (5xA[M1; - Eélevl; * 6xAﬂ/l§ + 56XA[V§ * 5[Axu§
4
= AAD - SxAy + Adal; - A = ZIAG) + (Al ) + Aal)And 1 - 6,40, B.1D)

+ %AtAxw’J‘. SuAk + %A,Axv’; - 5uA k.

By using the discrete Leibniz rule and commutative law we can deduce

1 1 1 1
—50A - S A + SO A - SeAly = 0580 Aug)) + 5150 - A,

9



o o o o
—EétAxvlj‘. - Al + EéxA,v’J‘. -6 A s = 6x(—§6tvl]‘. - Aul) + 6,(§Axulj‘. - 605),
AAPS - AN + A A - 5. A DS = 5.(A P - A,
v v
LA + (Al P + Aud)(Ands, )] - 6,40l = 26.(Au)’,
o o o
EA,Axw’; - OxANS + EA,Axv’; - 6xA W = 5x(§Ata)’; LAY,
So we can reduce the equation (3.11) to discrete local energy conservation law (3.9). O

Remark 3.5. The discrete LECL (3.9) is independent of boundary conditions and is consist with the contin-
uous LECL (2.5).

Summing the discrete energy conservation law (3.9) over index j reads

N
o 14 1 o
6 D A Audy + SAW - Ak — Z(Aul)’ + Soulk - A+ 26 - Aud]
=1
A | o
6, ) (~50uds - Asgh — S Aty - 5:5) = 0.

J=1

With the initial and periodic boundary conditions (1.2), we can obtain the following discrete global energy
conservation law.

Corollary 3.6. For the initial and periodic boundary conditions (1.2), the LEP scheme preserves the discrete
GECL

grl=gh=...=2 =&, (3.12)

where EF = hZ?’zl(—%éxulj‘. . Ax(p];. - %Axulj‘. . (5xv];.).

4. Numerical examples

In this section, we conduct some numerical experiments to verify the theoretical results of the LMP and
LEP schemes. The performance of the proposed method will be exhibited in following aspects:

(i) to show the accuracy of single soliton solutions;

(ii) to exhibit the performance in preserving the symplectic structure.

The RLW equation have the following soliton solution [1]

u(x,t) = 3csech2(k(x — Xo — &t)),

where k = % ,(T(]V-ivc)’ 6 = 1 + vc and 3¢ is amplitude and ¢ is velocity.

The relative mass error, relative momentum error and relative energy error ¢t = f; are defined as

|Ik _IO| Ilk —IO| |Ik _10|

RIf =L L R =22 RI\="2"2 k=0,1,2,....N 4.1)

I 15y 5]
where

N-1 N-1yk g yk

k _ ky _ Jj+1 J

i —hZ(Axuj)—h. 5
j=0 Jj=0

10
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Figure 1: The numerical solution of the LEP scheme with 7 = 0.125 and & = 0.1. (a) Propagation of solitary wave from ¢ = 0 to
t = 60. (b) The conservation properties of the LEP scheme.

is the discrete global mass;

N-1 N-
h h 1+ o
15 =3 > (Al + oGl = 5 Z “ Py — i)
Jj=0 J=0
is the discrete global momentum and
N-1 N- k k k
_h ky3 2y P /+1 e UG,
- ;(s(Axuj) +3(Aal)) = 3 Z:(; 343 )

is the discrete global energy.
Now we carry out three numerical experiments to test the theoretical analysis on the difference solutions.

Example 4.1. (One-solitary wave)
We consider the RLW equation with initial boundary conditions

u(x,0) = 3csech2(k(x —x0)), u(a,t) = u(b, 1),
wheree =0 =1,¢c=0.3, xg = 0.

Computations are done with grid number N = 400, space step & = 0.125 temporal step 7 = 0.1 and
spatial step 7 = 0.01, —40 < x < 60. The relative error of mass, energy and momentum are computed by
using local structure preserving schemes LMP and LEP.

Figure 1 display the results of single soliton obtained by using the LEP scheme. As can be seen from
Figure 1(a), the propogation of solitary wave over time interval [0,60] is travelling from left to right as
required and the shape of the solution is preserved accurately. Figure 1(b) show that the relative mass and
energy are conserved to the machine accuracy. We can also see that the error of energy growth linearly.
Figure 2 show the solitary wave, mass and energy error from ¢ = 0 to ¢t = 60 by using the LMP scheme.
These results coincide with the theoretical analysis.

Example 4.2. (Two-solitary wave)
In the following simulations, we will study interaction of two positive solitary waves.

u(x,0) = 3¢y sech’(ky(x — x1)) + 3casech®(ky(x — x2)), 4.2)

wheree =0 =1,¢1 =0.2,c0 =0.1, xy = =177, x, = —147.

11
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Figure 2: The numerical solution of the LMP scheme with 7 = 0.125 and & = 0.1. (a) Propagation of solitary wave from ¢ = 0 to
t = 60. (e) The conservation properties of the LMP scheme.
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Figure 3: The numerical solution of the LEP scheme with 7 = 0.5 and & = 0.5. (a) Propagation of solitary wave from ¢ = 0 to
t = 600. (b) The conservation properties of the LEP scheme.

First we apply the LEP scheme to the solitary waves with initial condition (4.2) over time interval
[0,600]. Computations are carried out with grid number N = 1200, temporal step 7 = 0.5 and spatial step
h = 0.5, =200 < x < 200. The interaction process of two solitary obtained by using the LEP scheme can
be viewed in Figure 3(a). The quantities mass, energy and momentum versus time are depicted in Figure
3(b). Then by using the LMP scheme, Figure 4(a) and Figure 4(b) show the solitary wave and conservation
properties respectively.

Example 4.3. (Three-solitary wave)

u(x,0) = 3¢ sechz(kl (x—x1))+ 3czsech2(k2(x - X)) + SC3sech2(k3(x - Xx3)),
wheree =0 =1,¢c1 =1,cp =0.5,c3 =0.25, x; =0, xp = 18, x3 = 35.

Computations are done with grid number N = 400, space step 2 = 0.1 temporal step 7 = 0.05 and spatial
steph = 0.1, -40 < x < 110.

Figure 5 provide the results of three-solitary wave with the time step 7 = 0.05 and the space step
h = 0.1 by using the LEP scheme. As can be seen from Figure 5(a), the propogation of solitary wave over
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Figure 4: The numerical solution of the LMP scheme with 7 = 0.5 and & = 0.5. (a) Propagation of solitary wave from ¢ = 0 to
t = 600. (b) The conservation properties of the LMP scheme.
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Figure 5: The numerical solution of the LEP scheme with 7 = 0.05 and # = 0.1. (a) Propagation of solitary wave from ¢ = 0 to
t = 100. (b) The conservation properties of the LEP scheme.
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Figure 6: The numerical solution of the LMP scheme with 7 = 0.1 and # = 0.05. (a) Propagation of solitary wave from ¢ = 0 to
t = 100. (b) The conservation properties of the LMP scheme.
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time interval [0,100] is travelling from left to right as required and the shape of the solution is preserved
accurately. Figure 5(b) show that the relative mass and energy are conserved to the machine accuracy. The
error of energy growth linearly. Figure 6 show the three-solitary wave obtained by using the LEP scheme,
mass momentum and energy error from ¢ = 0 to ¢ = 100.

We can draw a clear conclusion from the numerical results that the LEP and LMP schemes provides
highly accurate numerical solutions and preserves the local mass, energy and momentum to machine accu-
racy.

5. Conclusions

The local/global conservation laws, such as symplectic and multisymplectic conservation laws, local
energy and momentum conservation laws, usually play an important role in physics and applications for
PDEs. In this work, we have proposed two local structure preserving algorithms to simulate the RLW
equation. The two schemes are conservative schemes, which not only preserve discrete local momentum
/ energy but also preserve the local mass precisely. The merit of the two schemes is that with suitable
boundary conditions, for example with periodic boundary conditions, this algorithm conserve the global
mass and momentum / energy precisely. Numerical results indicate that the present scheme can well simulate
different solitary wave behaviors of the RLW equation in long term computation and also show excellent
performance in preserving geometry structure.
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