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New methods of approach related to the Riemann Hypothesis. 

Cristian Dumitrescu. 

 

Abstract. In this paper we develop techniques related to the Riemann Hypothesis that are based on the 

Taylor series of the Riemann Xi function, and the asymptotic behavior of       
 

 
 . 

1. Introduction. 

In this article I present a formal treatment of a special limit process associated with an infinite series, 

such that when we add a new term of the series, some of the previous terms also slightly change, but in 

such h a manner that the limit can be precisely defined (mainly section 3 and theorem 2).   

I also present a sufficient condition for an infinite series, in order to take only positive values 

(propositions 3 and 5, section 3). 

In section 2 I present a theorem related to convexity that will be useful later in the article. 

In section 4 I present a  different approach, and theorem 3 presents Turan-type inequalities that are 

sufficient (if true) for the Riemann Hypothesis to be true. 

The tools presented here allow us to attack Riemann’s Hypothesis in a completely new manner.  The 

presentation is informal but the results are clearly stated and the proofs given in full.  

2. A theorem related to convexity. 

Theorem 1. We consider the holomorphic function F(s) (that does not vanish identically)  , where in 

general           , defined on the critical strip. We assume that F(s)  satisfies the functional equation  

           . We also assume that the real function defined by                    is a convex 

function (as a function of σ) for        (and for any t fixed). Then the function F(s) has all its zeros 

on the critical line           
 

 
 .  

Proof. We assume that the function F(s) has a zero at       , where    
 

 
 . Then from the functional 

equation             , the function also has a zero at         . Since the complex conjugate of  

        is         , the function F(s) will also have a zero at         .  

From the assumptions of the theorem, the function      is convex for       . For any           we 

have: 

      
    

     
         

    

     
         for          . 

We take    to be the real part of a zero of F(s) , and          (which is the real part of another zero, 

for a fixed t). That means that        for           . Since by definition       is nonnegative, that 
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means that        for           . The conclusion is that for that fixed t, we have      

                 for           .  

We know that if a function is holomorphic in a region, and vanishes at all points of any smaller region 

included in the given region, or along any arc of a continuous curve in the region, then it must vanish 

identically (the identity theorem).  Since we see that          vanishes on the segment joining the 

two zeroes of F(s), then the function        would have to vanish identically on the domain under 

consideration.  We reached a contradiction, since we assumed that       does not vanish identically. Our 

assumption, that the function F(s) has a zero at       , where    
 

 
  is false.  

The function F(s) has all its zeroes on the vertical           
 

 
 . The horizontal segment joining the 

two zeroes must collapse to a point. QED. 

3. The main method of approach and basic calculations. 

We consider the Riemann Xi function defined as: 

      
 

 
              (

 

 
 )      

 

          

For the Riemann Xi function      we have the following series expansion:  

                 
 

 
          

 

 
           

 

 
        ,   (1) 

where all the coefficients       are positive real numbers. This statement is proved in [1] , page 17.  

We define the following functions. We define: 

                    
 

 
          

 

 
           

 

 
              (  

 

 
)
  

   (2) 

We have then:                            , when       (more general, we have            

         when      ).  

We also define (for a fixed t): 

                      .          (3) 

In the following, we write       
 

 
 . 

We start with the identities: 
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)         ( 
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)         ( 

 
)          
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………………………………………………………………………………………………… 

It is clear how to continue this sequence of identities up to          . 

We write for the real and imaginary part of           as               and Im            . 

It is clear that we have: 

  (         )              
         

          
                  .  (4)  

  (         )                  
          

                 
       .  (5) 

The coefficients will depend on t and they will have the form: 
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)                           (  
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       ( 
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)             (

  
 
)                             (   

    
)           

……………………………………………………………………………………………………….. 

             (    
 

)       (  
 
)        

         (  
 
)  

In general we have: 

     ∑                 (   
     

)           
           (6) 

In the same way, the odd order coefficients will have the form: 

       ( 
 
)       ( 

 
)        ( 

 
)                         (   

    
)           

       ( 
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)                             (   
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       ( 
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…………………………………………………………………………………………………………. 

             (    
 

)         (  
 
)        

           (  
 
)     

In general we have: 

       ∑                   (   
       

)            
         (7) 

In relations (6) and (7) except for the usual conventions, we make the following conventions about the 

binomial coefficients: 

Conventions. For        we have ( 
 
)   ( 

 
)     (  

  
)   (  

  
)                     ( 

 
)    .  

Relations (6) and (7) can be written in the unified form: 

    ∑      
    ⟦

 

 
⟧
        (   

    
)          

         (8) 

Here ⟦
 

 
⟧ represents the integer part of 

 

 
 and we use the conventions about the binomial coefficients 

above. Also m takes values from 0 to 2N. It would be better if we wrote       instead of    but we use 

the latter notation for simplicity.  

We have then: 

               (           
         

          
                 )

 
                

            
                 

                 

                
      (   

              )       (   
                            )  

     (   
                                         )                

     (9) 

We remember that    (   
 

 
 ) .  

From relation (8), we have then: 

  

            
  

                   (   
              )         (  

 

 
 )   (   

           

                 )        (   
 

 
 )   (   

                                         )  

                   (   
 

 
 )          

          (10) 

From (10) we see that we have to calculate the quantities: 

         ∑                         . 

Using relation (8) we have: 
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         ∑                           ∑ ( ∑ ∑     
  ⟦

 

 
⟧ ⟦

 

 
⟧
                                     

  
   

 (   
    

)   (   
    

))                  (11) 

We also define the quantities: 

        ∑               ∑ ( ∑ ∑       ⟦
 

 
⟧ ⟦

 

 
⟧                (

  
    

)   (   
    

)           )    
   

                    (12) 

We see that          , and we have: 

                                                                                (13) 

We also note that when n is greater than N the quantities         will be incomplete (will not contain all 

its terms), but as N increases the number of complete        ’s in (13) will increase.  The difference 

between         and        is that in the third sum the condition            is discarded. For large 

N, the quantities          will be equal to        for        , but will start to differ for        .  As 

N increases though, more and more terms in (13) will have their coefficients         equal to        . 

We write     for the quantities: 

     ∑ ( ∑ ∑       ⟦
 

 
⟧ ⟦

 

 
⟧                (

  
    

)    (   
    

)           )          
     (14) 

 We write then: 

         ∑ ∑     
  ⟦

 

 
⟧ ⟦

 

 
⟧
               (

  
    

)   (   
    

)                (15) 

Relation (14) can then be written as: 

     ∑                 
            (16) 

We note that in (16) we used the conventions mentioned before, in fact (16) can also be written: 

     ∑           
      

             (16)’ 

 We see that the important relation seems to be (15). This is a relation that involves only the coefficients 

    that are involved in (1).  

We also define                          
 

 
 .       (17) 

  

After these calculations and definitions we are ready to state the main theorem on which the rest of the 

results will be based. 



6 
 

Theorem 2. If for any      we have                     (in other words, if       (
 

 
)   

             ) , then the following series are absolutely convergent (also the series (16) and (16)’) and 

the following relations are well defined and valid: 

                    
 

 
            

 

 
            

 

 
              

 (   
 

 
 )

  

                         (18) 

 

  
                  (   

 

 
 )         (   

 

 
 )

 

        (   
 

 
 )

 

          

    (   
 

 
 )

    

                   (19) 

  

                                
 

 
                

 

 
               

          (   
 

 
 )

    

                  (20)  

Proof.  We start from relation (15) and we use the definition (17). 

 Relation (15) can then be written: 

          ∑ ∑       ⟦
 

 
⟧ ⟦

 

 
⟧                 

 

     
  

 

     
  (   

    
)   (   

    
)            

Now we calculate (we take into account the fact that                 ): 

 
 

     
  

 

     
  (   

    
)   (   

    
)   

 

                
   

 

      
 

 

     
 

     

               
  

        

                
  

     

      
  

 

     
  

 (  
  

)   (     
    

)  (  
 
). 

Using the relations above, we can write (15) in the form (where                  ): 

         
 

     
   (  

  
)    ∑ ∑     

  ⟦
 

 
⟧ ⟦

 

 
⟧
               (

     
    

)   (  
 
)             .    (21) 

From hypothesis we note that we have                                                     

From (21) we have then ( for      ): 

                
                 

            
   ∑ ∑  (   

    
)  (  

 
)                   

                  

            
             

 
   

     
  

     

     
                            (22) 

 As a consequence, using (16) , (16)’ and the relation above we have: 

        ∑                  
        

   

     
  ∑

     

     
 
                            

     

     
  

∑
   

     
 
                                   (23) 
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From (22) we see that the series defined by (16) and (16)’ are absolutely convergent (the coefficients 

             decrease very fast as a function of s), so the series on the right side of relations (18), (19) and 

(20) are well defined.  

We write the proof for (18), the other two are similar. We consider the expression: 

                  
 

 
            

 

 
            

 

 
             (   

 

 
 )

  

      

       

We know that for any       there is a    such that for all        we have: 

       
    |              

    |                 
    |                   

     |  

                                                                

We also know that ⟨   
 

 
⟨   

 

 
 . As a consequence, using (13) we can write: 

                              
 

        
 

            
 

         
 

                    

(   
 

     
 

         
 

      
 

             )      .  

In other words, we have proved that                                 as     .  

That basically means that                       

Relations (19) and (20) can be proved in a similar manner. QED. 

Proposition 1. We consider the analytic function      defined on the strip           ,  given by 

series of the type (Taylor series at 
 

 
  ): 

                 
 

 
          

 

 
           

 

 
           (  

 

 
)
  

      , 

We also define                          
 

 
  

If for any     , the coefficients      are real and satisfy the relations       and for any       we 

have : 

 (
 

 
)       (

 

 
)       (

 

 
)         (

 

 
)       (

 

 
)         (

 

 
)              (

 

 
)          (

 

 
)  

             ,         

then the function      has all its zeros on the vertical        
 

 
 .  

Proof. We define, as in the case of the Xi function the following quantities (the calculations are similar): 

         
 

     
   (  

  
)    ∑ ∑       ⟦

 

 
⟧ ⟦

 

 
⟧                (

     
    

)   (  
 
)              
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     ∑                 
     

Let’s see how the expression  *
 

 
+  *

 

 
+ behaves, for various values for n (where        ). 

For n = 0. 

P q *
 

 
+  *

 

 
+ 

0 0 0 

 

For n = 1. 

P q *
 

 
+  *

 

 
+ 

0 2 1 

1 1 0 

2 0 1 

 

For n = 2. 

P q *
 

 
+  *

 

 
+ 

0 4 2 

1 3 1 

2 2 2 

3 1 1 

4 0 2 

 

We note that when p is even, then      *
 

 
+   *

 

 
+    

In general, we get the general pattern (the alternating even–odd when p takes values from 0 to 2n is 

important ).  

We consider      .  

We consider the case      . In this case, the expression      in (21, or the similar relation applied 

for our function) can only take the value 0 (with the conventions mentioned before, all the other  terms 

are 0). 

In this case we have then: 

        
 

     
             (  

 
)               (

  
 
)               (

  
 
)              (

  
  

)    . 
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We note that if all the quantities                          ,  take a constant value                

                           , then         would take the value:           
  

     
  ((  

 
)   (  

 
)  

 (  
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)        (  

  
) )   

    
    

     
  . 

We consider now the case         . In this case we have            .  

In this case we have: 
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) )      

We note that if all the quantities                             take a constant value           

                               , then           would be zero, because in this case          
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)          ( (  
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)    (  

  
) )    .  

We consider now the case         . In this case we have            .  

In this case we have: 

          
 

       
   (    
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We note that if all the quantities                             take a constant value           

                                , then           would be zero, because in this case          

 
 

       
   (    

  
)           ((

  
 
)   (  

 
)   (  

 
)   (  

 
)        (   

    
)   (  

  
) )    . 

 The calculations for                                            can be done in a similar way. I will 

not write the general form because the calculations are similar (and the general form will look like (21)). 

We note that if all the quantities                             take a constant value            

                                        , then            would be zero , for     .  

We reach the conclusion that                     .   

From the relation (similar to (20) but applied for our function): 
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          (   
 

 
 )

    

            , 

we see that 
  

                               .  

Our function           , seen as a function of    is a convex function, and from theorem 1 we conclude 

that all its zeros are on the vertical    
 

 
 . QED. 

Proposition 2. We consider the analytic function                       , defined on the strip 

          ,  given by series of the type (Taylor series at 
 

 
  ): 

                 
 

 
          

 

 
           

 

 
           (  

 

 
)
  

      , 

We define                           
 

 
  . 

We define the quantities: 

         
 

     
   (  

  
)    ∑ ∑       ⟦

 

 
⟧ ⟦

 

 
⟧                (

     
    

)   (  
 
)              

     ∑                 
     

If for any      we have                   , and if         for any      and for any t, then our 

function has all its zeros on the vertical         
 

 
 .  

Proof. The proof is immediate from theorem 1 and the relation : 

  

                                
 

 
                

 

 
               

          (   
 

 
 )

    

            . QED. 

Many other interesting results can be based on theorem 2, our main result.  

Proposition 3. We consider the analytical function f(s) on the whole complex plane with the Taylor 

series at 
 

 
 of the form: 

                 
 

 
          

 

 
           

 

 
        ,  

We also define:   

                         
 

 
   

We consider  the series: 
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       ,  where we take: 
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)       )          

 

  
  (( 

 
)         ( 

 
)    

   ( 
 
)   

     )                                  
 

     
  ((  

 
)           (  

 
)            

    (  
  

)        )     

Then                        , in other words, S(t) takes only positive values. We note here that when 

the coefficients      are positive, the series S(t) will have terms alternating in sign (and the proof of the 

proposition is not obvious). 

Proof.  The proof is immediate from: 

                    
 

 
            

 

 
            

 

 
               (   

 

 
 )

  

 

                , when observing that our series S(t) is exactly   . That means that: 

          ⟨ (
 

 
   )⟨

 

   . QED.  

Proposition 4. (see reference [2] for the proof). Let ξ(z) be the Riemann Xi function and n a appositive 

integer. Then, as        we have: 

  (     (
 

 
))                 (     

 

     
)     

 

 
          

 

 
                .  (24) 

We also know that (Stirling): 

  (     )  (    
 

 
)              √        .      (25)  

From (24) and (25) we conclude that: 

  
      

 

 
 

     
                              (     

 

     
  )   

  

 
          

 

 
            

    .             (26) 

From (24) we see that the conditions of theorem 2 are satisfied by the Riemann Xi function, so the 

Riemann Xi function indeed satisfied relations  (18), (19) and (20). 

Proposition 5. In relations (18), (19) and (20) the quantities     (which depend on t, as defined by (14) 

and (16)) take positive values for all values of t, in other words                        .  

Incomplete Proof. We write     in the form: 

            ∑                 
   . 

We will use proposition 3, and we claim that there are real numbers                         such 

that the following system of equations is satisfied: 
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)        )                              
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)          (  

 
)     

           (  
  
)         )                 (27) 

The proof of the claim follows from recursively solving this system of equations. 

    √       . We note that     is a real number because we can prove that        is a positive 

quantity. 

    
 

  √      
                            (28) 

    
 

             √      
  (                           

        )     (29) 

    
 

      
        √      

  (         
                                                   

   
        )            (30) 

…………………………………………………………………………………………………………… 

In general we see that from the relations                  
 

     
  ((  

 
)           (  

 
)     

           (  
  
)         )  we can recursively find the value of      as a function of the  

                                                                 .  

I also present the following known results which will probably be needed in the proof. First an inequality: 

 
    

 
 
 

   
   ( 

 
)         

 

 
  ,   where H(x) is the entropy  

                                .        (31) 

Second, we will need the following estimation (using (22)): 

                               
                 

            
   ∑ ∑  (   

    
)  (  

 
)                  

   

     
          

                 .          (32) 

The expressions that depend on n can be considered as a constant in this case, because we are 

interested in the absolute convergence of the series      
  

  
    

 

 
    

  

  
    

 

 
    

  

  
 

   
 

 
         

   

     
 (  

 

 
)
  

      , so we are interested in the factor that depends on s.  

In other words, the system of equations mentioned above always has a solution. In order to apply 

proposition 3 we only have to prove that the series      
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 (  

 

 
)
  

      is absolutely convergent on the whole complex plane (for any z). At 

this  point I have not been able to reach a closed form expression for the coefficients involved in the 

expression for     (even if the calculations are straightforward and recursive). I leave this problem as a 

challenge for a mathematician (probably aided by some symbolic computation software) willing to 

finalize these calculations.  I suspect that we need to consider the Taylor series of the Riemann’s Xi 

function at other points on the critical line, in order to finalize the calculations (see conclusions). 

If the calculations can be finalized, from proposition 3 we could conclude that all the quantities      are 

positive, in other words                          . !!!. 

In the following, I will give an example that would also be a verification that the calculations (and 

theorem 2 in particular) are correct. 

Example. We consider the values       
 

     
           for the coefficients      . Then we have : 

    (  
 

 
)     

 

  
    

 

 
    

 

  
    

 

 
    

 

  
    

 

 
         , 

 where we take            .  

When we make the calculations we find : 

         
 

 
           

 

 
  (  (  

 

 
)      (  

 

 
) )   

 

 
                  

We can then write: 

         
 

 
           

 

 
               

 

 
    

 

 
             

 

 
                 (  

 

 
)
 

   
 

 
 

(  
 

 
)
 

      .   

We see that in this case we have     
 

 
                                

 

 
              ..If we use 

our formulas  (15), (16), (16)’ and (21) for this particular case, we see that we find the right values.  

4. A different approach, Turan-type inequalities. 

Theorem 3. Let       be a function of complex variable defined on the critical strip. We assume that F 

satisfies the following conditions. 

1.       is a holomorphic function on the critical strip. 

2.   satisfies  the functional equation              for all z on the critical strip. 

3. For any s real,     
 

 
   and for any natural n , the n-th derivatives at s are positive           .  

4. For any real  s with 
 

 
        and for any natural numbers m, n with     , the following 

inequalities are satisfied: 

                   
 

   
                        . Of course, we assume here that      .  
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5. For any real  s with 
 

 
        and for any natural number      the following inequalities are 

satisfied: 

              
  

   
                         

If conditions  1 –  5 are satisfied, then all the zeros of the function F(z) are situated on the critical line 

       
 

 
 .  

Proof.  We assume that there is a zero              of the function F(z) with     
 

 
 .  We will then 

reach a contradiction, and this will prove the theorem (the assumption that such a zero exists is false). 

We also note that from the functional equation for any zero with real part less than  
 

 
  we would have a 

corresponding zero with real part greater than  
 

 
  , so it is sufficient to prove that there are no zeros with 

real part greater than   
 

 
  .  

We consider the Taylor series of the function F(z) around the real point      
 

 
 .  We take           .  

                                              
        

  
                   

        

  
  

                 
        

  
                             (32) 

Relation (32) for              will have the form: 

                                        
        

  
             

        

  
             

        

  
  

                          (33) 

We define the quantities:      
        

  
   for all      .  From condition 3 we conclude that      for 

all      .  

Relation (33) will become then: 

                                              
               

               
  

                    
        

        
        

                          
       

         
        

                (34) 

From (34) we can write: 

                               
        

        
        

                       

         
        

        
            

     
                        

           

                             
                                                      

      

                                                               (35) 

In relation (35) the coefficient of the term containing     will be    
                                

                                                 .  
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For     the condition                         is equivalent to the condition                   

  
 

   
                        . Also the condition    

                     is equivalent to the 

condition                
  

   
                        .  

Conditions  4 and 5 will imply that all the following quantities are positive  (involved in the coefficients  

in relation (35)): 

  
                                                                                      

                       and so on.  

That means that each term in the last series in (35) is positive, so the sum of these terms cannot be zero.  

That means that the assumption that          is a zero of F with      
 

 
  is false. QED.  

Observation 1. We note that conditions 4 and 5 in theorem 3 can be replaced with the following general 

condition (which is stronger, more restrictive): 

For any real  s with 
 

 
        and for any natural numbers m, n with     , the following inequalities 

are satisfied: 

                   
  

   
                        . Of course, we assume here that      . 

Under these two conditions theorem 3 holds with a very similar proof.   

Observation 2. We know that Riemann’s Xi function satisfies  conditions 1. and 2. In reference [3] Mark 

Coffey proves that condition 3 is also satisfied. We are left to prove that Riemann’s  Xi  function also 

satisfies  conditions 4 and 5 (or a weaker version that makes the coefficients in (35) positive).  

In reference [2] Mark Coffey proves the following proposition. 

Proposition 6. For real s and      we have: 

         
       

       
     

   
 

          
 
 

  (           (
       

   
)
  

 

 
)      (

   

 
)    (  (

   

 
))        

 

   

      
   

        
  .            (36) 

Observation 3. We could use Coffey’s result, and using relation (36) we can try to prove that conditions 

4 and 5 from theorem 3 are satisfied by the Riemann’s Xi function. The calculations are complex, but this 

would prove that the Riemann Hypothesis is true.  We also note that conditions (4) and (5) from 

theorem 3 are not exactly the Turan  inequalities,  that is the reason why I called them Turan – type 

inequalities.          
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5. Conclusions. 

We do not claim that we proved that the Riemann Hypothesis is true, at this point. We do emphasize 

the following points. Using the asymptotic results of Mark Coffey  (proposition 4) we can prove that 

Riemann’s Xi function satisfies the conditions from theorem 2.  That means that relations (18), (19) and 

(20) are valid. Using proposition 3, we sketched the incomplete proof in proposition 5 that all the 

quantities         are positive for any value of t (the absolute convergence of the series      
  

  
 

   
 

 
    

  

  
    

 

 
    

  

  
    

 

 
         

   

     
 (  

 

 
)
  

      has to be clearly 

established ).  From relation (20) we see that the function            (seen as a function of σ) is convex, 

and from theorem 1 we conclude that Riemann’s Xi function has all its zeros (on the strip) on the vertical 

   
 

 
 . We could then conclude that Riemann’s Hypothesis is true. 

There is a second way to approach the problem that avoids convexity , but using the reformulation of 

Riemann’s Hypothesis (in reference *4]). We see from relation (19) that if all the quantities         are 

positive, then the function             , seen as a function of σ is decreasing for    
 

 
  and increasing 

for     
 

 
 .  Using the result in [4+ this would be a proof of Riemann’s Hypothesis.  

We also note that the method described in this paper can be applied for the Taylor series of the 

Riemann’s Xi function around other points. In [3] the derivatives      
 

 
       (with t real) of the 

Riemann’s Xi function on the critical line are calculated, and we can give asymptotic estimations  

(actually upper bounds) for these derivatives similar to those known for       
 

 
   .  By considering the 

Taylor series of the Riemann’s Xi function around points 
 

 
     , where t is very close to the imaginary 

part of a zero and using the methods described in this article, the calculations can be managed properly. 

Basically, we work with a Taylor series developed around a point (on the critical line) close to a zero (in 

imaginary parts), and we prove that the particular zero under consideration can only have real part 

equal to 
 

 
 .  The problem that I could not solve in this article is the absolute convergence of the series 

that appears in proposition 5 (for any value for the imaginary part t). The corresponding problem that 

we will have when considering the Taylor series around points on the critical line (following similar 

methods as here)  will involve proving the absolute convergence of a series only for arbitrary small 

values of the imaginary part t, and this is a considerably easier problem (even if the initial calculations 

are more complex since in this case the odd order derivatives will not be zero). In this case, the problem 

that I could not solve in this article (the absolute convergence of the series mentioned in proposition 5) 

might be properly managed.  

Related to section 4, and the Turan – type inequalities, the problem here is to use Coffey’s result, 

proposition 6 in order to prove that conditions 4 and 5 from theorem 3 are satisfied.  That would be a 

proof that Riemann’s Hypothesis is indeed true. To start, we can prove that conditions 4 and 5 are 

satisfied asymptotically.  
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As a general conclusion, I suspect that this is a matter of complex calculations, and this is the conclusion 

of my article.  
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