New methods of approach related to the Riemann Hypothesis.

Cristian Dumitrescu.

Abstract. In this paper we develop techniques related to the Riemann Hypothesis that are based on the

Taylor series of the Riemann Xi function, and the asymptotic behavior of £2™ (i).

1. Introduction.

In this article | present a formal treatment of a special limit process associated with an infinite series,
such that when we add a new term of the series, some of the previous terms also slightly change, but in
such h a manner that the limit can be precisely defined (mainly section 3 and theorem 2).

| also present a sufficient condition for an infinite series, in order to take only positive values
(propositions 3 and 5, section 3).

In section 2 | present a theorem related to convexity that will be useful later in the article.

In section 4 | present a different approach, and theorem 3 presents Turan-type inequalities that are
sufficient (if true) for the Riemann Hypothesis to be true.

The tools presented here allow us to attack Riemann’s Hypothesis in a completely new manner. The
presentation is informal but the results are clearly stated and the proofs given in full.

2. Atheorem related to convexity.

Theorem 1. We consider the holomorphic function F(s) (that does not vanish identically) , where in
generals = o +1i - t, defined on the critical strip. We assume that F(s) satisfies the functional equation
F(s) = F(1 — s). We also assume that the real function defined by @(c) :=|F(c +1i - t)|?is a convex
function (as a function of o) for 0 < ¢ < 1 (and for any t fixed). Then the function F(s) has all its zeros

s 1
on the critical line Re(s) = o = 7

. . 1 .
Proof. We assume that the function F(s) has azeroatx +i-t, wherex < 7 Then from the functional

equation F(s) = F(1 —s), the function also has a zeroat 1 —x —i - t. Since the complex conjugate of
1—x—i-tisl—x+1i-t,thefunction F(s) will also haveazeroat1 —x+1i-t.

From the assumptions of the theorem, the function (o) is convex for 0 < o < 1. For any x; and x, we
have:

Xp—0 0—X1

c(xq) + - (xy) forxy < 0 < X,.

X2—X1 X2—X1

¢(o) <

We take x; to be the real part of a zero of F(s) , and x, = 1 — Xx; (which is the real part of another zero,
for a fixed t). That means that @(0) < 0 for x; < 0 < X, . Since by definition ¢ (o) is nonnegative, that



means that @(o0) = 0for x; < 0 < X, . The conclusion is that for that fixed t, we have ¢@(c) =
[F(c+i - -t)]?=0 forx; < 0 < Xp.

We know that if a function is holomorphic in a region, and vanishes at all points of any smaller region
included in the given region, or along any arc of a continuous curve in the region, then it must vanish
identically (the identity theorem). Since we see that F(o + i - t) vanishes on the segment joining the
two zeroes of F(s), then the function F(s) would have to vanish identically on the domain under
consideration. We reached a contradiction, since we assumed that F(s) does not vanish identically. Our

assumption, that the function F(s) has a zeroatx + i t, where x < % is false.

The function F(s) has all its zeroes on the vertical Re(s) = o = %.The horizontal segment joining the

two zeroes must collapse to a point. QED.
3. The main method of approach and basic calculations.

We consider the Riemann Xi function defined as:
1 1 _s
&(s) = s (s—1) - F(ES) -1z - {(s)
For the Riemann Xi function §(s) we have the following series expansion:
&(s) = ag + az-(s—%)2+ a4-(s—%)4+ a6-(s—%)6+--- .......... , (1)
where all the coefficients a,, are positive real numbers. This statement is proved in [1] , page 17.

We define the following functions. We define:

1\, 1.4 1.6 1\2N
Fon(s) = ag+ a; - (s—3)"+ as-(s—3)"+ as - (s =)+ ...t '(S—E) (2)

We have then: |F (o +it)]? = [§(o +it)|?, when N — o (more general, we have F,y(o +it) —
&(o +it) whenN — o).

We also define (for a fixed t):

fon(0) = |Fon(o+it)|? . (3)

N |-

In the following, we write p = ¢ —
We start with the identities:

@ B =) +i- () Bt

@) - B = G) - B2+ () - et +i - ((§) - Bt = (5) - BE)

(B +it)?

(B +it)*



B+i°=(3) - 8= () - B2+ (§) - B2t +(Q) - o+ i+ (D) - B - (B) - B+ () -
BE®)

B+i®= () - 8- ) -+ (-t (D) - g+ () e i () B - ()
BSt3 + (g) B35 — (573) . Bt7)

It is clear how to continue this sequence of identities up to (B + it)?N.

We write for the real and imaginary part of Foy (o + it) as Re(F,n (o + it)) and Im(F,n (0 + it)) .
Itis clear that we have:

Re(Fyn(o+it)) = Bo+ By - B2+ By - B*+ Bg - BO+ ...+ Byy - BN (4)
Im(F,y(o+it)) = By - B+ Bg - B3+ Bs - B>+ ...+ Byyoyg - BEND. (5)

The coefficients will depend on t and they will have the form:

Bo=ap—a; - (3) - t2+a, - (§) - t* £+ (DN ayy - () - N

Bo=a, (D)—as - (}) 24 as - () -t e+ (DN ayy - (2N) - e2N2
By=as ())—as - () -2+ ag - () - t* £+ (D2 apy - (ZN,) - 2N
Be=as () —ag - () - 2+ apo - (%)) - t* Lo+ (DN ayy - (2N - N6

Bon-2 = azn-2° (ZNO_Z) — AN - (ZZN) - t?

Bon = aon - (2;])

In general we have:

Bai = Zhoo (FF - ag () - A (6)

In the same way, the odd order coefficients will have the form:

B1 = az '(i)'t_a4'(§)'t3+a6'(§)'t5 i"’.....+(_1)N+1 'aZN '(2131131 ° tZN_l
B3 = a4 * (‘;) - t— a6 * (g) * t3 + ag * (g) * t5 i AT + (_1)N+2 ° aZN ° (ZI%IT3 * tZN_S
B5 = a6 * (i) - t— 38 * (g) * t3 + a10 * (150) * t5 i T e + (_1)N+3 ° aZN * ZI%ITS * tZN_S



Bon-3 = azn—z2 - (ZNl_Z) “t— axy- (23N) -t
Ban-1 = agn - (21N) 't
In general we have:

N i 2k —2i—
Baiv1 = Zikeo (=D - ag (2k—2i—1 - R (7)

In relations (6) and (7) except for the usual conventions, we make the following conventions about the
binomial coefficients:

0

Conventions. For x,y > 0 we have (J) = (§) =1 ( ’

)= (_Xy) = 0,and ifx < y then (;) =0.

Relations (6) and (7) can be written in the unified form:

B, = ZE:o (_1)k+m—[[7]l Ay (ZkZEm . t2k-m @)

Here [[?ﬂ represents the integer part of? and we use the conventions about the binomial coefficients

above. Also m takes values from 0 to 2N. It would be better if we wrote By, ,y instead of B, but we use
the latter notation for simplicity.

We have then:

. 2
|F2N(0+1t)|2 = (B0+ BZ * BZ+ B4 * B4+ B6 * B6+"'.....+B2N ° BZN) + (Bl ° B+ B3 *
B*+ Bs - B+ ...+ Byyog - BENTD)?
|Fon(o+it)|2 = Be> + B2-(By°+ 2 - By - By)+ B*-(B>+ 2 By -By+ 2By - By)+
Bé-(Bs*+ 2 By -Bg+ 2 By - Bs+ 2+ By - By )+ + BN Byy? (9)

1
We remember that § = (0— E) .

From relation (8), we have then:

d? d? . 1

L (o) = = [Fon(o+i)1> =2 (B, + 2 - By - B;) + 12 - (6—1)2 (B, + 2 - By -
Byt 2By - B;)+30- (60— 2)* (Bs®+2 By~ Be+2 By B+ 2B, By)+

A (AN) (AN = 1) (0= 1) N2 By 2 (10)

From (10) we see that we have to calculate the quantities:

! ® —
D 2n,2N "— Zp+q=2n, 0<p,qs2N Bp ' Bq-

Using relation (8) we have:



D'ynaN = B, By = Y2V —pyx-Lz-

2n,2N — Zp+q:2n, 0<p,q<2N Pp * Dq — Lk=0 Zi+]’:k2p+q:2n, OSp,qSZN( ) 28 R28 - apj - dApj -
2i 2j -

(Zi—lp) ’ (Zi—lq)> e (11)

We also define the quantities:

k=[Pl-[19 : .
D2n,2N = Zp+q=2n Bp : Bq = 212<§0<Zi+j=k2p+q=2n(_1) [[2]] [[2]] ©dpzj - dgj (212_1p) ’ (zjz_]q)> ’
t2k—2n (12)
We see that 0 < 2n < 4N, and we have:
[Fon(o+it)|2 = D'gon 4+ B2 Digan+ B Digon+ B Dgon+ e+ BN - Dignon (13)

We also note that when n is greater than N the quantities D’,,, »x will be incomplete (will not contain all
its terms), but as N increases the number of complete D', ,n’s in (13) will increase. The difference
between D', ,n and Dy, ,y is that in the third sum the condition 0 < p,q < 2N is discarded. For large
N, the quantities D'y, oy will be equal to D, ,y for 2n < 2N, but will start to differ for 2n > 2N. As
N increases though, more and more terms in (13) will have their coefficients D', , ;5 equal to Dyj o -

We write D,,, for the quantities:

Don = Zl?:o(Zi+j=kZp+q=2n(_1)k_[[§]]_[[%]] i v Ay - (Ziz_ip) : (zjz_jq)) . g2k-2n (14)
We write then:
Cak2n = z:i+i=kEp+q=2n(_1)1(_[[%]]_[[%]] ©ag - Agj - (Ziz—ip) ' (ziz—jq) (15)

Relation (14) can then be written as:

Dzn = Xio Cakzn - t2572" (16)
We note that in (16) we used the conventions mentioned before, in fact (16) can also be written:

D2n = Xitn Carzn - 472" (16)

We see that the important relation seems to be (15). This is a relation that involves only the coefficients
ayp that are involved in (1).

We also define oz, = ap, - (2n)! = ECW (%). (17)

After these calculations and definitions we are ready to state the main theorem on which the rest of the
results will be based.



Theorem 2. If forany n > 0 we have a, < (In(n+ 2))?" (in other words, if €™ G) <

(In(n + 2))?"), then the following series are absolutely convergent (also the series (16) and (16)’) and
the following relations are well defined and valid:

§( +it)|2 = Dp + (6—5)2 Dz + (6-3)* Dyt (6—3)% Dg+ - corcrrre et
1 2n
(6-2) Dot (18)
L jge+i2=2(0-1) D+ 4~(a—1)3-1) + 6-(0—1)5-D + o +
do‘ 2 2 2 4 Z 6 wee wes wws wws
1 2n-1
2n-(6-2)" Dyt (19)
d? . \12 1.9 1.4
@IE(G+1t)| =2 D+ 12:(0—-3)""Dg+ 30:(06—2)" Dg+ et
1 2n-2
2n-2n-1)-(6-3) Dyt (20)

Proof. We start from relation (15) and we use the definition (17).
Relation (15) can then be written:

pl_[4
2]l 2

C2k,2n = Zi+j=k2p+q=2n(_1)k_[[ ]]_[[]] © Qi+ Opj - ﬁ (ZL]), : (zlz_lp) : (zjz_jq)

Now we calculate (we take into account the fact thati + j = kand p + q = 2n):

1 1 ( 2i ) . ( 2j ) 1 1 1 (2k)! ) (2k-2n)! .(Zn)! 1

@) @) \2i-p 2i-a) T @il -Zi—@!  plq  @0! @k-zn)-zn)!  i-p)-Zj-9)! pl-al @R
2k 2k—2n 2n
Ga '(Zi—p)'(p)'

Using the relations above, we can write (15) in the form (wherei+j=kandp+q = 2n):

q

_[®]_[a _
Cox2n = ﬁ : (?,:) - 20 siskZOspsZn(—l)k EI-EI . 0z - Oy (Z;j,n) '(an)- (22)

From hypothesis we note that we have ay; - 0; < (In(i+2))? - (In(+2))% < (In(k + 2))*k
From (21) we have then (fors = 0):

(In(n+s+2))4ntas 2s 2n (In(n+s+2))*ntas 2s—1 . 92n _
|C2n+Zs,2n| < (2n)! -(2s)! : ZO <isn+s ZospSZn (Zi—p) . (p) < (zn)! -—(Zs)! - 248 - 240 =

-(In(n + s + 2))4nt+4s (22)

22n 5251
2n)!  (29)!

As a consequence, using (16), (16)’ and the relation above we have:

-1 22n—1

. 221’1 © ZZS
IDonl| = | Xg20Con+2s 2n ° t5 | < ! 'Zs:om - (In(n + s + 2))*n+4s . 25 =

2s
SZogy - (n(n+s+2)inees. g2 (23)



From (22) we see that the series defined by (16) and (16)’ are absolutely convergent (the coefficients
Con+2s 2n decrease very fast as a function of s), so the series on the right side of relations (18), (19) and
(20) are well defined.

We write the proof for (18), the other two are similar. We consider the expression:

. 1 1 1 1)%"
H(o+it)= Do +(0—3)? Dz + (6—=2)" Dyt (0—5)° D+t (0—5) - Dop +

We know that for any € > 0 there is a ngy such that for alln > ny we have:

|D0 - DIO,Zn |D2 - D,2,2n| <t i |D4 - D,4,2n| < e IR ILRL] ’ |D4n - D’4n,2n <

| <eg,
€ 1] |D4I’1+2 | S € ) |D4n+4 | S € ) |D4n+6 | S € ) sre mEs wns wns was owas

We also know that |0 - %| < % . As a consequence, using (13) we can write:

| H(o+it) = [Fon(0+it)I2 | S e+ 5 - e+ o5 e+t mm - E4 oy - B o= €
(14 S+ S 4rtom + ot ) < 26

In other words, we have proved that | H(c + it) — |F,n(o +it)]?| » 0 asN — oo,
That basically means that H(c + it) = |&(o + it)|?
Relations (19) and (20) can be proved in a similar manner. QED.

Proposition 1. We consider the analytic function f(s) defined on the strip 0 < Re(s) < 1, given by

series of the type (Taylor series at % ):

1 1 1 1 2n

f(s) = by + b, -(s—_)2+ b4-(s——)4+ b -(S——)6+---...+b2n -(s——) +on,
2 2 2 2

We also define i == by, - (2n)! = f(Zn)(%)

If forany n > 0, the coefficients b, are real and satisfy the relations by, = 0 and forany n > 1 we
have :

(G) 10 () = 1) 12 (G) = 10 (5) 100 (5) = = 1O0(5)- 120 (5) =

ooy

. . . 1
then the function f(s) has all its zeros on the vertical Re(s) = 5

Proof. We define, as in the case of the Xi function the following quantities (the calculations are similar):

_P]_fe _
Cokzn = (2;1(), : (;E) - 2o siskZOSpSZn(_l)k [[2]] [[2]] © Ma2i - Hgj - (2;_?1) '(an)



Dyn = Yjen Cokzn - 125720
Let’s see how the expression [g] + [g] behaves, for various values for n (where p + q = 2n).

Forn=0.

[ BB

Forn=1.

T [ B

Forn=2.

21+ [2)

APl WIN|ERL[O
O|lRr[IN|IW|IhA~| ©
NIR[IN|IFP|N

We note that when p is even, then n — [g] — E =0

In general, we get the general pattern (the alternating even—odd when p takes values from 0 to 2n is
important ).

We considern = 1.

We consider the case 2k = 2n. In this case, the expression 2i — pin (21, or the similar relation applied
for our function) can only take the value 0 (with the conventions mentioned before, all the other terms
are 0).

In this case we have then:

Conzn = (z;n)' “(Mo *Mzn - (Zon) + Uz " Mopn-2 - (Zzn) + Hg " Pon-4 - (24n) + -+ Uz Mo - ;E) ).



We note that if all the quantities y; - pp; withi+j =k =n, take a constantvalue py - pn = Wy -

S () + )+

Uon—2 = Ha * Hop—g =....= Mn , then Czn’zn WOUId take the Value: CZn,Zn =
2 2 2 Mp-2%771
C0) 4 Cr) bt () ) = M2

We consider now the case 2k = 2n + 2 . In thiscase we have 0 < 2i—p < 2.

In this case we have:

C2n+2,2n = (2n+2)' (2n+2 ( ( *Han+2 ° (3) + Hz - Hop - (;)) : (Zon) + Uz Uy (i) .

() = (e man - )+ b - () () + b banma - () - () et
2 () (G- (I~12n g - () + Mansez Mo - (;)) - (G )

We note that if all the quantities py; - 1y withi+j=k=n+ 1 take aconstantvalue g - Hyn4p =

Hy “Uzp = Wg - Hzp—2 =....= Mp4q, then Cypyp 2, would be zero, because in this case Cypip2n =

(o) 2 Mgy ( +E) -G +6) anet) = () =0

We consider now the case 2k = 2n + 4 . In this case we have 0 < 2i—p < 4.

In this case we have:

Contazn = (2n+4), (2n+4 (( “Hon+4 (3) + Uz * Hon+2 - (;) + Hg " HUzp - (:)) : (zon)_
(Hz “HMzn+2 ° (1) + W4 - Hzn - (‘;))(21“) + (Hz “HMan+2 ° (3) + Mg *Hzn - (;) + We *Hzn-2 -
() = (ma 1z () + 16 ttznz - () (Bt o= (M

(‘11) + Ugn4z * Mg ¢ (g)) 20— 1) + (Hzn Mg - (3) + Hons2 "H2 - (;) + Han+a " Ho - (:)) ;2))

We note that if all the quantities p,; - pp; withi+j=k=n+ 2 take a constantvalue yy - Hon4sa =

Hy * Mon+2 = Mg - Hpp =....= Mpi, , then Cyp44,n Would be zero, because in this case Cyptgqn =
2n+4 2n 2n 2n 2n 2n 2ny \ _

(2n+4)' ( ) 8 Mnyz - ((0)_(1)+(2)_(3)i""“"_ 2n—1)+(2n))_

The calculations for Cant62n » Cantgzn » oo weeoor Cong2s2n s o oo can be done in a similar way. | will

not write the general form because the calculations are similar (and the general form will look like (21)).
We note that if all the quantities py; - pp; withi+j =k =n+s takea constant value Ly - Hanizs =

Mz * Won+2s-2 = Ma * Hon+2s—4 =-..= Mpys , then Cypipson would be zero, fors = 1.
We reach the conclusion that D,,, = O foranyn=>1.

From the relation (similar to (20) but applied for our function):



2
Ifc+i)2= 2 - Dy+ 12+ (6=3)* Dyt 30-(0—=2)* Dt curcrrceome ot

2n-(2n—1)~(0—%)2n_2- Dy + oo e

2
we seethat% If(c+it)|> >0 for0 < o < 1.

Our function |f(o + it)|?, seen as a function of o is a convex function, and from theorem 1 we conclude

that all its zeros are on the vertical 0 = % . QED.

Proposition 2. We consider the analytic function f(s) ,wheres = o +i-t, defined on the strip

0 < Re(s) <1, given by series of the type (Taylor series at % ):

f(s)=by+ b -(s—l)2+b -(S—l)4+b '(S—l)6+-~- +b '(5—1)2n+...
= 0 2 2 4 2 6 2 e 2n 5 e,
We define iy, == by, - (2n)! = f(Zn)(%)_

We define the quantities:

—[[B]|-[4 _
Cakz2n = ﬁ ) (;ﬁ) - 2o SiSkZOSpSZH(_l)k [[2]] [[2]] ) B ) (Z;j)n) .(an)
Don = YienCokan - 2720

If foranyn > 0 we have g, < (In(n + 2))?",andif D,, = 0foranyn > 1 and for anyt, then our

. . . 1
function has all its zeros on the vertical Re(s) = 7

Proof. The proof is immediate from theorem 1 and the relation :

2
e +it)1> =2 - D+ 12-(0—=2)2 - Dy+ 30+ (0—=2)* Do+ wooore e

2n—2
2n-@2n—-1)-(o-3)" " Dpyt .. QED.

Many other interesting results can be based on theorem 2, our main result.

Proposition 3. We consider the analytical function f(s) on the whole complex plane with the Taylor

series at % of the form:

f(s) = ¢y + cz-(s—§)2+ C4'(S—%)4+ Cs'(s_%)6+'” -------- ’
We also define:

Hon = Con - (20)! = £EV()

We consider the series:

10



S()=bg+ by ‘t2+ by-t*+ bg -t + . , Where we take:
bo = o® bz = _% (((2)) Mol t (;) 'Hz'uo): b4=ﬁ-((§) "Ho * Mg t (;)'sz +(i) ‘

1

Mg Ho) ,unowe .. ingeneral by = (—1)X- o ((Zok) “Ho " M2k t (zzk) "Mz Mgk—2 Tt

Tt e e e (;i) * Mok uo)

Then S(t) = 0 for any real t, in other words, S(t) takes only positive values. We note here that when
the coefficients c,, are positive, the series S(t) will have terms alternating in sign (and the proof of the
proposition is not obvious).

Proof. The proof is immediate from:

2n
If(6 +it)|2 = Dy + (0 —3)2 Dy + (6—=3)* Dy + (0=35)% D+ v F (o——) :

Dop + v , when observing that our series S(t) is exactly Dy. That means that:
2
S(t) = Do = [f(3+it)|” = 0.aqep.

Proposition 4. (see reference [2] for the proof). Let §(z) be the Riemann Xi function and n a appositive
integer. Then,as n — oo we have:

In (E(Z“) G)) = 2n -In(In(n)) — 2 (ln2 + ﬁ) -n+ % -In(2n) — % -In(In(n)) + 0(1). (24)

We also know that (Stirling):
ln((Zn)!) = (Zn — %) -In(2n) — 2n + Inv2m + o(1). (25)

From (24) and (25) we conclude that:

In E(zn)(%) = —2n - (In(2n) — In(In(n))) — 2n - (an b 1) + 2 -In(2n) — 3 -In(In(n)) +
(2n)! In(n) 4 4
0(D). (26)

From (24) we see that the conditions of theorem 2 are satisfied by the Riemann Xi function, so the
Riemann Xi function indeed satisfied relations (18), (19) and (20).

Proposition 5. In relations (18), (19) and (20) the quantities D,,, (which depend on t, as defined by (14)
and (16)) take positive values for all values of t, in other words D, (t) = 0 for all any t.

Incomplete Proof. We write D,,, in the form:
D2n = Don(t) = X520 Contzs2n - t7°.

We will use proposition 3, and we claim that there are real numbers g, Ua, Ha, cov oo ooy Hop oon o , such
that the following system of equations is satisfied:

11



Canzn = Mo® ; Contzon = —% : ((3) “Ho - Mg + (;) “Hg Ho) ; Congaon = % : ((3) “Uo - Mg T+
(;) : sz + (j) * Uy Ho) ;o wwewens; Congoson = (=1)s- (;;)! ’ ((zos) “Ug * Hos + (225) T U -

Hog—g + oo 25) Mg Mo ) e (27)

The proof of the claim follows from recursively solving this system of equations.

Ho = 1/Can2n - We note that i is a real number because we can prove that Cyp, »y, is a positive

quantity.
=1 .(—2.cC (28)
he = 5= ( 2n+2,2n)
1 2
o= ;=" (24 Cznzn" Caneazn =6 C’znszzn) (29)
1
He = m ' (_720 ’ CZZn,Zn ' C2n+6,2n + 360 - C2n,2n ’ C2n+2,2n ’ C2n+4-,2n -90 -
C32n+2,2n ) (30)

. 1 2 2
In general we see that from the relations Cy,125on = (—1)° enT (( OS) ‘Mg * Hps + (25) “Hp
Mas—2 + *** e :Z) * Uos * Mo) we can recursively find the value of p,5 as a function of the
Canz2ns Can+22n 5 Contazn s -oveven » Cant2k-22n Czn+zs2n -
| also present the following known results which will probably be needed in the proof. First an inequality:

2n~H(%) n n-HE)
5 = (r) < 277, where H(x) is the entropy

H(x) = —x -log(x) — (1 —x) - log(1 — x). (31)
Second, we will need the following estimation (using (22)):

(ln(n+s+2))4n+4s 2s 2n 22n 2s—1
|(25)! + Conyzson | < (29)! - el 20 sisn+s 2osp<2n (Zi_p) '(p) S o 25578

(In(n + s + 2))4nt+es (32)

The expressions that depend on n can be considered as a constant in this case, because we are

. . , 1 1
interested in the absolute convergence of the series 1o + £2- (z—2)%+ =y (z—2)*+ Le.
2! 2 4! 2 6!
2s
1 1 . .
2=t 25z —2) e , SO we are interested in the factor that depends on s.
2 (2s)! 2

In other words, the system of equations mentioned above always has a solution. In order to apply

proposition 3 we only have to prove that the series g + % (z— %)2 + % (z— %)4 + % (z— %)6 +
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2s
.t % . (Z - %) + o is absolutely convergent on the whole complex plane (for any z). At

this point | have not been able to reach a closed form expression for the coefficients involved in the
expression for |, (even if the calculations are straightforward and recursive). | leave this problem as a
challenge for a mathematician (probably aided by some symbolic computation software) willing to
finalize these calculations. | suspect that we need to consider the Taylor series of the Riemann’s Xi
function at other points on the critical line, in order to finalize the calculations (see conclusions).

If the calculations can be finalized, from proposition 3 we could conclude that all the quantities D, are
positive, in other words D,,(t) = 0 forall any t. !l

In the following, | will give an example that would also be a verification that the calculations (and
theorem 2 in particular) are correct.

Example. We consider the values b,, = $ , n =0 forthe coefficients b,, . Then we have :
cosh(z—=2) =14 2-@-D*+ = @—D*+ = @=D° + e ,

wherewetake z=o0+1i- t.

When we make the calculations we find :

|cosh(o —% +i-t)]2==>- (ez(a_%) + e_z(c_%) ) + % - (cos?t — sin?t)

We can then write:

cosh(o = +i-t)[2= 2 -cosh(Z - (o — ) + 5 - cos(2t)) = 5 - (1 + cos(20)) + (G—%)Z + 3
o=+

We see that in this case we have D, = % -(1+4cos(2t)), D, =1, D, = % ,and so on .......If we use

our formulas (15), (16), (16)’ and (21) for this particular case, we see that we find the right values.
4. A different approach, Turan-type inequalities.

Theorem 3. Let F(z) be a function of complex variable defined on the critical strip. We assume that F
satisfies the following conditions.

F(z) is a holomorphic function on the critical strip.
F satisfies the functional equation F(z) = F(1 — z) for all z on the critical strip.

1 _— i,
Foranysreal, s > > and for any natural n, the n-th derivatives at s are positive F® (s) > 0.

A

L1 . .
For any real s with > < s < 1 and for any natural numbers m, n with m < n, the following

inequalities are satisfied:
m

Fm (). FM(s) > - Fm-1 (). F+D(5)  Of course, we assume here thatm > 1.

13



5. Forany real swith% < s < 1 and for any natural number n = 1 the following inequalities are

satisfied:
(F(n)(s))Z S 2 F-D(s) . F+1(g)

n+1

If conditions 1— 5 are satisfied, then all the zeros of the function F(z) are situated on the critical line
1
Re(z) = E

Proof. We assume that there is a zero zy = oy +1i - t of the function F(z) with oy > % We will then
reach a contradiction, and this will prove the theorem (the assumption that such a zero exists is false).

We also note that from the functional equation for any zero with real part less than % we would have a
corresponding zero with real part greater than % , so it is sufficient to prove that there are no zeros with

real part greater than % .

We consider the Taylor series of the function F(z) around the real point gy > % . Wetakez=o+1i -t.

@ ®)

F(z) =F(o+1i -t) = F(op) + FW(0y) - (60— 0o +1 -t) + FZ—(,%) - (06— o +i-t)*+ F3—(|G°)
@

(60— oo +i -3+ F4—(!°°)-(0—00+i-t)4+--- ............. (32)

Relation (32) for zy = gy + i -t will have the form:

(2) 3) (4)
0= F(oo+i 1) =F(o) + FV(og) - (i -0 + — . (i )24 2. (.53 4 o).

4!

A-D*+ e, (33)
(m)

We define the quantities: a, = £ n(IGO) foralln = 0. From condition 3 we conclude that a,, > 0 for

alln = 0.

Relation (33) will become then:

0= F(Go‘l'l 't): ao+ dq '(1 't)‘l‘ dp (1 't)2+ dz - (1 't)3+ dg (1 t)4+
= (@g —ap 2+ a, t*—ag t®+ ag t¥+-..)+i-(a;-t—ag -3+ ag -
t®—a;, t7+ ag t74-..l) (34)

From (34) we can write:

0= |F(op+i -|?= (ag — ap “t?+ a, t*—ag t°+ ag -t8+--.....)%2+ (a;- t — a3 -
t3+ag t°—a; t"+ag P+ )’ =a’+ (@2 -2 ay-ay) t?+ (a2 -2 - a; -
as; + 2-ag-ag) - t*+ (@?—2-a, - a, + 2-a,-as—2-ay-ag) t®+ (a,2— 2 -
as -as + 2-ay - ag—2-a,-a;+ 2 -ag-ag) tS+-.... (35)

In relation (35) the coefficient of the term containing t?" willbe a,2 — 2 + ap_q * apsq; + 2 - ap_p -
an+2 - 2 ° an_3 * an+3 + AT + (_1)1‘1 * 2 * ao * a2n .

14



For m < n the condition ay, - a, > ay_; - apss is equivalent to the condition FM(s) - FM(s) >

% - Fm=1(5) . F(+1D(s)  Also the condition a,? — 2 - ay_q - ap4q > 0 is equivalent to the

condition (F™(s))?2 > % - Fn=D(s) . F+1(s).,

Conditions 4 and 5 will imply that all the following quantities are positive (involved in the coefficients
in relation (35)):

2 . .
an“— 2 -ap-1 " a+1>0; 2 -app rapny2— 2 - ap-3 - ane3 >0; 2 - an4 c Anpa— 2
apn_s5 * apys >0 ;............andsoon.

That means that each term in the last series in (35) is positive, so the sum of these terms cannot be zero.

That means that the assumption that oy +1i - tisazero of F with oy > % is false. QED.

Observation 1. We note that conditions 4 and 5 in theorem 3 can be replaced with the following general
condition (which is stronger, more restrictive):

For any real s with % < s < 1 and for any natural numbers m, n with m < n, the following inequalities

are satisfied:

FM(g). FM(s) > % - Fm-1(g) . F+1D(5)  Of course, we assume here thatm > 1.

Under these two conditions theorem 3 holds with a very similar proof.

Observation 2. We know that Riemann’s Xi function satisfies conditions 1. and 2. In reference [3] Mark
Coffey proves that condition 3 is also satisfied. We are left to prove that Riemann’s Xi function also
satisfies conditions 4 and 5 (or a weaker version that makes the coefficients in (35) positive).

In reference [2] Mark Coffey proves the following proposition.

Proposition 6. For real sand j — oo we have:

1

0 = 1 T (1 o (42)7). 0 (52) i n () o0

(in(-2))2 =2
j—2

exp(— ln(],_2)) : (36)

Observation 3. We could use Coffey’s result, and using relation (36) we can try to prove that conditions
4 and 5 from theorem 3 are satisfied by the Riemann’s Xi function. The calculations are complex, but this
would prove that the Riemann Hypothesis is true. We also note that conditions (4) and (5) from
theorem 3 are not exactly the Turan inequalities, that is the reason why | called them Turan — type
inequalities.
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5. Conclusions.

We do not claim that we proved that the Riemann Hypothesis is true, at this point. We do emphasize
the following points. Using the asymptotic results of Mark Coffey (proposition 4) we can prove that
Riemann’s Xi function satisfies the conditions from theorem 2. That means that relations (18), (19) and
(20) are valid. Using proposition 3, we sketched the incomplete proof in proposition 5 that all the
quantities D, (t) are positive for any value of t (the absolute convergence of the series g + % .

2s
o e o Lao Be o, Lye . uzs.( _1)
(z 2) + (z 2) t (z 2) + o+ o \Z73 + -++..... has to be clearly
established ). From relation (20) we see that the function |£(c + it)|? (seen as a function of o) is convex,

and from theorem 1 we conclude that Riemann’s Xi function has all its zeros (on the strip) on the vertical

o= % . We could then conclude that Riemann’s Hypothesis is true.

There is a second way to approach the problem that avoids convexity , but using the reformulation of
Riemann’s Hypothesis (in reference [4]). We see from relation (19) that if all the quantities D,,(t) are

positive, then the function |£(c + it)|?, seen as a function of o is decreasing for o < % and increasing

for > % . Using the result in [4] this would be a proof of Riemann’s Hypothesis.

We also note that the method described in this paper can be applied for the Taylor series of the
Riemann’s Xi function around other points. In [3] the derivatives f(j) (% +i-t) (with treal) of the
Riemann’s Xi function on the critical line are calculated, and we can give asymptotic estimations

(actually upper bounds) for these derivatives similar to those known for E(Zj)(%) . By considering the

. . ) . N , . .
Taylor series of the Riemann’s Xi function around points 3 +i-t,wheretis very close to the imaginary

part of a zero and using the methods described in this article, the calculations can be managed properly.
Basically, we work with a Taylor series developed around a point (on the critical line) close to a zero (in
imaginary parts), and we prove that the particular zero under consideration can only have real part

1 N o .
equal to 5 The problem that | could not solve in this article is the absolute convergence of the series

that appears in proposition 5 (for any value for the imaginary part t). The corresponding problem that
we will have when considering the Taylor series around points on the critical line (following similar
methods as here) will involve proving the absolute convergence of a series only for arbitrary small
values of the imaginary part t, and this is a considerably easier problem (even if the initial calculations
are more complex since in this case the odd order derivatives will not be zero). In this case, the problem
that | could not solve in this article (the absolute convergence of the series mentioned in proposition 5)
might be properly managed.

Related to section 4, and the Turan — type inequalities, the problem here is to use Coffey’s result,
proposition 6 in order to prove that conditions 4 and 5 from theorem 3 are satisfied. That would be a
proof that Riemann’s Hypothesis is indeed true. To start, we can prove that conditions 4 and 5 are
satisfied asymptotically.
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As a general conclusion, | suspect that this is a matter of complex calculations, and this is the conclusion
of my article.

References:

=

H. M. Edwards, “Riemann’s Zeta Function”, Dover 2001.
2. Mark W. Coffey, “Asymptotic Estimation of & 2™ (%): On a Conjecture of Farmer and Rhoades”,

Mathematics of Computation, volume 78, 2000, pages 1147 — 1154.

3. Mark W. Coffey, “Relations and positivity results for the derivatives of the Riemann Xi function”,
Journal of Computational and Applies Mathematics, 166, 2004, pages 525 — 534.

4. Jonathan Sondow and Cristian Dumitrescu, “A Monotonicity Property of the Riemann’s Xi
Function and a Reformulation of Riemann’s Hypothesis ”, Periodica Mathematica Hungarica,
March 2010, volume 60, issue 1, pp 37-40.

Cristian Dumitrescu, BSc. in Mathematics,
Kitchener, Ontario, Canada.
freelance mathematician

Email: cristiand43@gmail.com

17


mailto:cristiand43@gmail.com

