

Contraction Mapping of Linear and Quadratic Backward SOR Iteration for Newton Operator.
Stephen Ehidiamhen UWAMUSI
Department of Mathematical Sciences, Kogi State University, Anyigba, Kogi State.
Email: Stephen_uwamusi@yahoo.com
Abstract. The contraction mapping of Linear and Quadratic backward SOR iteration matrix for Newton operator in the nonlinear system of equation is presented. It is showed that if the computable reachable set of linear backward SOR method is lower chain-reachable to the outer computable chain-reachable Quadratic SOR method, the quadratic backward SOR method is not only finer in topology but also logarithmically faster than backward linear SOR method if the arithmetic computational complexity involved in the execution of backward quadratic SOR is overlooked.
Keywords: nonlinear system, newton method, SOR iteration matrix

 Introduction
The solution of nonlinear system of equation has been from time immemorial to a large extent governed by Newton method [1] and [2] provided the analytic derivatives of the function

 , (1.1)
are easily available.

This means that and,, the Frechet derivative in an open ball remains valid. Newton method is attractive for the solution of nonlinear system (1.1) because of its global convergence for any choice of. Abstractly, Newton method is given by the equation

 whose sequence of iterates, converges to the desired solution. An indication that method 1.2 is a self mapping- that is , a contraction mapping in the sense of Banach, which maps smaller elements from a larger domain to itself with the purpose of achieving the same results . Fundamentally, method (1.1) is hardly solved in the form it is presented rather, we often transform to an equivalent linear system

 , (1.3)

where the matrixis assumed to be a non singular Jacobian matrix. The solution in general for system 1.1 is given by

 (k=0,1,…,) (1.4)

where is in form 1.3.This means, there is a closed balanced absorbent subset of a linear topological space that is ultrabarrelled for which the sequence , a closed balanced absorbent subsets of E for the graph of F, is necessarily closed in since its topology is finer than that of .The sequence is a defining sequence for S wherefrom, any inductive limit of countably globally convex ultrabarrel space generated by Newton method is convex, [3]. It follows that on a linear space of countable dimension, the finest linear topology generated by Newton method is the only one topology for which it is Hausdorff ultrabarrel space.
In abstraction, equation 1.4 may be viewed in the form

 (1.5)

of (E,u) onto (E,u) as a homeomorphism. By further adoption of Miranda’s theorem, it asserts that Mean value theorem on the function F implies that is a base of neighbourhoods of in (E,u) for which contraction mapping holds ,and ;that induces the toplogy generated by method 1.4 to be -complete, assuming Krein-Smulian theorem remains valid in that : every Frechet space is strictly hyper complete [3].

Newton method is quadratically convergent in that for any there holds the estimate

 (1.6)

A philosophical consideration now will be ’’ if Newton operator of equation 1.4 is quadratically convergent, what is the nature of shrinkable neighbourhoods in Hausdorff space?’’ It is known that Newton operator is monotone and has a shrinkable base of balanced neighbourhoods in (E,D) for which . As the base is shrinking, it forces the sequence converges to zero, as k approaches infinity, a consequence of Banach contraction mapping of a fixed point.

In [4], it was showed that Hansen-Sengupta method diverges if there are multiple paths crossing a single point. This was demonstrated on Trapezoidal Newton method. In other word, the shrinkable base neighbourhood failed to hold thereof an indication of not only leading to stagnation point other than the solution being sought but also diverging to infinity. It was a motivation of the above preambles that adoption of the following theorems will be found useful as a tool in our work.

Definition 1.1,[1]. A sequential k-step process will be called stationary with iteration function G if and .

Definition 1.2,[1]. An iterative process is a k-step method if p=k and the maps given in general form:

 . Such k-step process is sequential if the iterates are generated by . Thus, generated sequences are either downhill or uphill.

The remaining section in the paper is arranged as follows. In section 2, a class of SOR iteration method feasible in Newton operator is discussed. The aforementioned linear and quadratic backward SOR methods make use of relaxation parameter in their calculations, a brief review for the construction of over relaxation parameter in the interval was again visited in section 3.Section 4 gives numerical illustration of the presented methods and then conclusion is drawn at end of the paper based on our findings.

 Experimental Approach to the Described Process.
As stated earlier at the beginning of this paper, Newton method for nonlinear system consists of successive linearization of the system 1.1 in the form:

 (2.1)

Where , and is to be found. The existence of system 2.1 is based on the non singularity of the matrix. In a well organized sense, the generalized class of stationary linear iterative solver to which equation 1.3 conforms is in the form:

 (2.2)

Where is arbitrary, and for some non singular matrix H, there exists a splitting matrix such that:

 (2.3)

The matrix appearing in equation 2.3, is a preconditioner matrix, further reference on the matrix H can be found in [5] and [6].
From the iteration matrix defined by the equation

 , (2.4)

a convergent sequence of vector iterates can be constructed provided regularity conditions for the matrix A are fulfilled.
Various matrix splitting are well documented in [7] namely, taking:
(i)
the null preconditioner i.e., the Richardson method.
(ii)
the block Jacobi preconditioner
(iii)
the symmetric successive over relaxation preconditioner
(iv)
 the SOR preconditioner

Stationary matrix iterative method will converge the faster the product approximates identity matrix. Following this discussion there holds:
If the linear backward SOR method as a reachable set is lower computable at what iterative point is it equal outer computable Quadratic Backward SOR method in the chain reachable set? This inspires the following theorem.
Theorem 2.1,[8]. ‘’It is possible to compute lower approximations to the reachable set of a lower-semi-continuous system, and outer approximation to the chain-reachable set of an upper semi-continuous system if this set is compact. It is impossible to compute arbitrary –precision approximations to the reachable set of a continuous system if the closure of reachable set does not equal the chain reachable set.’’

We situate theorem 2.1 with well known [3] Hahn-Banach extension theorem which relates that: if E is a Hausdorff locally convex space and be a linear subspace of E, then any continuous linear functional on has a continuous linear extension to all of E provided that non zero functional of equation 1.1 is not exotic.

The concept of -chain is now defined which relates that if is a metric space and is a multivalued map, a sequence of points is an -chain if there exist with such that for i=0,1,…,n-1. Thus a point x is chain reachable from if there is an -chain from to .
To steer our discussion in the right senses, the quadratic functional iteration for which SOR method is applicable is now presented in the form:

 (2.5)
Equation 2.5 is a stationary one point method with double over head cost. Nevertheless, if we ignore the extra computational cost in the evaluation of quadratic functional iteration per step and instead, taking into consideration the gains in terms of finer toplogy it generates, which is co-arser in toplogy than that of linear backward SOR method, it can be derived in an analogous way [10] that the quadratic backward SOR method is logarithmically faster than the linear SOR method as attested in the presented figure 1 in section 4.
Practically we now present the application of method as promised. First consider the well known linear SOR method in the form:

 (2.6)
In matrix notation, this will take the form:

 (2.7)
Using the above information we now model the quadratic backward SOR method in the form:

 (2.8)

The point Jacobi iteration matrix to which method 2.6 subscribes to,has eigenvalues given by. Thus by a well known theorem .
In general, Newton backward SOR will be in the form:

 (2.8)

 .

To compare the rate of convergence of the linear and quadratic backward SOR iteration matrices, let and be two real matrices which correspond respectively to linear and quadratic backward SOR iteration matrices, see e.g., [5] and[11]. Assuming for some positive integer m, for which , then

 (2.12)

Will be the average rate of convergence for m iterations of the matrix . Now assuming then will be [5] iteratively faster, for m iterations than .
 	
A measure of average reduction factor per iteration for m iterations for the successive error norms as a quantity, will be determined by

 , m=0,1,2,…, (2.13)

 Therefore, application of equation 2.13 lies in the fact that has the exponential decay rate for a sharp upper bound for the average reduction per iteration to be bounded by provided.Overall, the number of iterations required to reduce the norm of the initial error by a factor is calculated by

 , and always for any convergent SOR method. Further discussion on this can be found in [6].For this reason we omit.

 The construction of for SOR method

The theoretical determination of can be found in [5],[6]) and,[12]. For easy accessibility we review here as presentation since theoretical determination of is a crucial step in the implementation of the described methods. Let the iteration matrix for SOR be denoted by .Then we set as

 (3.1)

The spectrum of is described by the relation which is in the open set and for which any can be detailed.

Let where B is the Point Jacobi iteration matrix. It was derived that

 (3.2)

To obtain a region of interval for, set as follows

 , (3.3)

 , (3.4)
and ,

 (3.5).
Subtracting equation 3.5 from 3.4 we have

 (3.6)

The quadratic equation has the solution

= (3.7)
Equation 3.7 is the optimal relaxation parameter in the classical SOR theory.

 Numerical Results
The sample numerical problem is taking from [13]:

Let m be the number of iteration required for the backward SOR method to attain its accuracy when tolerance for Newton iteration is met (see Table 1).

Tolerance for the outer iteration (Newton iteration) was fixed to be while allowing variation for tolerance in the inner iteration (Backward SOR) methods), it was observed that at tolerance value of , the results are the same for both linear Backward SOR and quadratic Backward SOR methods. This happened at the fifth successive iteration for linear Backward SOR method to attain the same accuracy of tolerance of when it was at the third successive iteration for quadratic Backward SOR to attain the same tolerance of .

As for outer iteration (the Newton iteration) ,the final results were obtained for both methods which use Newton method to approximate the zeros ofat the third iteration. The Tables 1 and 2 below explain further.
Table 1 showing numerical results.
	TOL
	Linear Backward SOR
	M
	Quadratic Backward SOR
	M

	

	0.50000000000705
0000002441339
-0.52359846437847
	1
	0.50000000000708
0.00000000080787
-0.52359877498707
	1

	

	0.50000000000708
0.00000000080736
-0.52359877498722
	2
	0.50000000000708
0.00000000080736
-0.52359877498722
	1

	

	0.50000000000708
0.00000000077583
-0.52359877557722
	3
	0.50000000000708
0.00000000077579
-0.52359877557801
	2

	

	0.50000000000708
0.00000000077579
-0.52359877557801
	5
	0.50000000000708
0.00000000077579
-0.52359877557801
	3

Table showing number of iterations versus Tol.
	Linear
M
	Backward SOR
 K
	Newton
	Tol.
SOR

	Quadratic
M
	Backward SOR

	1
	3
	

	

	1
	3

	2
	3
	

	

	1
	3

	2
	3
	

	

	1
	3

	3
	3
	

	

	2
	3

	3
	3
	

	

	2
	3

	3
	3
	

	

	2
	3

	5
	3
	

	

	3
	3

.[image: F:\SS.jpg]

 Conclusion
The paper presented contraction mappings for both linear and quadratic SOR methods feasible in Newton operator to approximate the desired roots of nonlinear system of equation. After preliminaries studies on convergence behaviour of both methods, it was showed that quadratic Backward SOR method which uses Newton operator is not only finer and coarser in topology but also logarithmically faster than the Classical Linear Backward SOR method which also uses Newton operator for the same purpose to approximate zeros of nonlinear system of equation. Figure 1 above explains further. The presented results for the two methods are in agreement with results earlier obtained in [13] it is available in Selected IntLAB.Ref , www.ti3.tu-harburg.de/rump/intlab/INTLABref.pdf .Further reference to [13] can be found in citeseerx.ist.psu.edu . If we neglect extra work involved in executing Quadratic Backward SOR method the proposed approach studied in the paper is worth the trouble.

 References
[1] Ortega JM and Rheinboldt WC (2000). Iterative Solution of Nonlinear Equations in Several Variables, Classics in Applied Mathematics, SIAM Series 30, Philadelphia USA.
[2] Ostrowski AM (1960).Solution of Equations and Systems of Equations, Second Edition, Academic Press, London.
[3] Iyahen S.O (1998). The Closed Graph Theorem, Osaruwa Educational Publications, First Edition, Benin City.
[4] Uwamusi SE (2011). Effects of repeatedly used preconditioner on computational accuracy for nonlinear interval system of equation. International Journal of the Physical Sciences Vol. 6(33), pp. 7505-7511. http://academicjournals.org/IJPS
[5] Varga RS (2000). Matrix Iterative Analysis, Springer Verlag, Berlin, Germany.
[6] Young DM (1971).Iterative Solution of Large linear Systems.Acadmeic Press, New York.
[7] Aschraft CC and Grimes RG(1988). On Vectorizing Incomplete Factorization and SSOR Preconditioners. SIAM Journal of Scientific and Statistical Computing, 9(1), PP. 122-151.
[8] Collins P (2005) . Continuity and computability of reachable sets, Theoretical Computer Science 341, 162-195.
[9] Hageman LA, Luk FT and Young DM (1980). On the equivalence of certain iterative acceleration methods, SIAM Journal of Numerical Analysis, 17(60), 852-873.
[10] Hormigo J, Villalba J and Schulte MJ (2001). Variable precision exponential evaluation. Scientific Computing, Validated Numerics, Interval methods,Edited by Kraimer Wolff von Gudenberg, Kluwer Academic/ Plenum Publishers, New York.
[11] Voigt RG (1971). Rates of convergence for a class of Iterative Procedures, SIAM Journal of Numerical Analysis, 8(1).
[12] Neuman M and Varga RS (1980).On the Sharpness of Some Upper Bounds for the Spectral radii of SOR iteration Matrices, Numer.Math., 35, 69-79.

[13] Uwamusi S.E. (2007). Towards the Acceleration of Rump’s fast and parallel circular interval arithmetic for enclosing solution of nonlinear systems of equations. Scientific Research and Essay, Vol.2, No.11, pp 476-481. Available online at http://www.academicjournal.org/SRE, In INTLAB ref, www.ti3.tu-harburg.de/rump/intlab/INTLABref.pdf).citeseerx.ist.psu.edu

oleObject2.bin

oleObject47.bin

image48.wmf
H

oleObject48.bin

image49.wmf
(

)

(

)

(

)

b

s

A

H

Hs

m

m

+

-

=

+

1

oleObject49.bin

image50.wmf
{

}

¥

=

1

k

k

s

oleObject50.bin

image51.wmf
Þ

=

I

H

oleObject51.bin

image52.wmf
Þ

=

D

H

image3.wmf
n

n

R

R

D

F

®

Ì

:

oleObject52.bin

image53.wmf
Þ

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

-

-

=

-

U

D

D

L

D

H

w

w

w

w

1

1

1

2

1

1

oleObject53.bin

image54.wmf
(

)

Þ

-

=

L

D

H

w

oleObject54.bin

image55.wmf
A

H

1

-

oleObject55.bin

image56.wmf
0

E

oleObject56.bin

image57.wmf
0

E

oleObject3.bin

oleObject57.bin

image58.wmf
e

oleObject58.bin

image59.wmf
)

,

(

d

X

oleObject59.bin

image60.wmf
X

X

f

®

:

oleObject60.bin

image61.wmf
n

x

x

x

,...,

,

1

0

oleObject61.bin

image62.wmf
e

image4.wmf
D

x

Î

oleObject62.bin

image63.wmf
X

s

s

s

n

Î

,...,

,

2

1

oleObject63.bin

image64.wmf
)

(

1

i

n

x

f

s

Î

+

oleObject64.bin

image65.wmf
(

)

e

<

+

+

1

1

,

i

i

x

s

d

oleObject65.bin

image66.wmf
0

X

oleObject66.bin

image67.wmf
e

oleObject4.bin

oleObject67.bin

image68.wmf
0

X

oleObject68.bin

image69.wmf
0

>

"

e

x

oleObject69.bin

image70.wmf
(

)

(

)

)

,...,

1

,

0

(

,

2

1

=

+

+

=

+

m

c

Gc

s

G

s

m

m

oleObject70.bin

image71.wmf
(

)

(

)

(

)

(

)

)

,...,

1

,

0

,...,

1

,

0

(

,

1

)

(

1

1

1

1

1

=

=

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

å

å

-

=

+

=

+

+

k

m

s

s

a

s

a

b

a

s

m

i

k

i

j

n

i

j

m

j

ij

m

j

ij

i

i

i

k

m

w

w

oleObject71.bin

image72.wmf
(

)

(

)

(

)

(

)

(

)

(

)

b

U

D

s

L

D

U

D

s

m

m

w

w

w

w

w

1

1

1

)

1

-

-

+

+

+

-

-

+

=

image5.wmf
(

)

D

r

x

S

S

Ì

=

,

*

oleObject72.bin

image73.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

)

,...,

1

,

0

(

,

1

1

1

1

2

1

1

=

+

-

-

+

+

-

-

+

=

-

-

-

+

m

b

U

D

L

D

U

D

s

L

D

D

D

s

m

m

w

w

w

w

w

w

w

w

oleObject73.bin

image74.wmf
(

)

(

)

(

)

e

r

r

+

<

Þ

<

+

-

G

G

U

L

D

,

1

1

oleObject74.bin

image75.wmf
(

)

G

G

m

m

r

=

¥

®

)

(

lim

oleObject75.bin

image76.wmf
(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

)

(

...

:

)

(

1

1

1

k

k

k

m

k

k

k

x

f

x

U

x

D

x

G

I

x

x

-

-

+

-

+

+

-

=

w

w

z

w

oleObject76.bin

image77.wmf
1

),

,...,

1

,

0

(

³

=

m

k

oleObject5.bin

oleObject77.bin

image78.wmf
1

Á

oleObject78.bin

image79.wmf
2

Á

oleObject79.bin

image80.wmf
n

n

´

oleObject80.bin

image81.wmf
1

1

<

Á

oleObject81.bin

image82.wmf
(

)

(

)

m

R

m

m

m

1

2

1

1

1

ln

ln

Á

-

=

ú

û

ù

ê

ë

é

Á

-

=

Á

image6.wmf
D

x

Î

)

0

(

oleObject82.bin

image83.wmf
1

Á

oleObject83.bin

image84.wmf
(

)

(

)

m

m

R

R

2

1

Á

<

Á

oleObject84.bin

image85.wmf
2

Á

oleObject85.bin

image86.wmf
1

Á

oleObject86.bin

image87.wmf
m

m

e

e

÷

÷

ø

ö

ç

ç

è

æ

=

)

0

(

)

(

s

oleObject6.bin

oleObject87.bin

image88.wmf
(

)

m

R

Á

oleObject88.bin

image89.wmf
s

oleObject89.bin

image90.wmf
(

)

m

R

m

m

e

Á

-

-

=

Á

£

s

oleObject90.bin

image91.wmf
1

<

Á

m

oleObject91.bin

image92.wmf
e

image7.wmf
(

)

(

)

)

2

.

1

(

)

,...,

1

,

0

(

,

)

(

)

(

)

(

/

)

1

(

=

-

=

+

k

x

f

x

f

x

x

k

k

k

k

oleObject92.bin

image93.wmf
(

)

(

)

1

-

Á

=

m

m

R

N

oleObject93.bin

image94.wmf
1

-

£

e

m

N

s

oleObject94.bin

image95.wmf
0

.

3

oleObject95.bin

image96.wmf
w

oleObject96.bin

image97.wmf
w

oleObject7.bin

oleObject97.bin

image98.wmf
w

oleObject98.bin

image99.wmf
w

Á

oleObject99.bin

image100.wmf
(

)

(

)

(

)

U

D

I

L

D

I

1

1

1

1

-

-

-

+

-

-

=

Á

w

w

w

w

oleObject100.bin

image101.wmf
w

Á

oleObject101.bin

image102.wmf
{

}

)

(

\

1

w

r

Á

image8.wmf
*

x

oleObject102.bin

image103.wmf
0

¹

Á

-

w

I

oleObject103.bin

image104.wmf
)

2

,

0

(

Î

w

oleObject104.bin

image105.wmf
1

0

)

(

<

¹

=

B

v

r

oleObject105.bin

image106.wmf
(

)

(

)

ï

ï

þ

ï

ï

ý

ü

ï

ï

î

ï

ï

í

ì

÷

ø

ö

ç

è

æ

+

-

÷

ø

ö

ç

è

æ

-

-

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

+

=

Á

v

v

v

v

2

1

2

,

2

1

2

max

)

(

w

w

w

w

w

w

r

w

oleObject106.bin

image107.wmf
w

oleObject8.bin

oleObject107.bin

image108.wmf
(

)

(

)

w

w

w

w

-

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

+

=

v

v

M

2

1

2

1

oleObject108.bin

image109.wmf
(

)

(

)

1

2

1

2

2

-

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

-

=

v

v

M

w

w

w

oleObject109.bin

image110.wmf
1

2

2

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

v

v

w

oleObject110.bin

image111.wmf
(

)

(

)

0

2

2

4

4

2

2

2

2

1

=

÷

÷

ø

ö

ç

ç

è

æ

+

÷

ø

ö

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

-

÷

ø

ö

ç

è

æ

ú

û

ù

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

-

=

-

w

w

w

w

w

w

v

v

v

v

M

M

oleObject111.bin

image112.wmf
0

4

4

2

2

2

=

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

-

v

v

w

w

image9.wmf
b

As

-

=

oleObject112.bin

image113.wmf
1

2

1

2

2

2

-

-

=

v

v

b

w

oleObject113.bin

image114.wmf
2

1

1

2

v

-

+

oleObject114.bin

image115.wmf
0

.

4

oleObject115.bin

image116.wmf
(

)

ï

ï

î

ï

ï

í

ì

=

-

+

+

=

+

+

+

-

=

-

-

=

-

0

3

3

10

20

0

06

.

1

sin

1

.

0

81

0

5

.

0

)

cos(

3

)

(

3

3

2

2

2

1

3

2

1

2

1

p

x

e

x

x

x

x

x

x

x

f

x

x

oleObject116.bin

image117.wmf
(

)

(

)

(

)

T

x

x

x

x

1

.

0

,

1

.

0

,

1

.

0

,

,

)

0

(

3

)

0

(

2

)

0

(

1

0

=

=

oleObject9.bin

oleObject117.bin

image118.wmf
4

10

1

-

´

oleObject118.bin

image119.wmf
15

10

-

oleObject119.bin

image120.wmf
15

10

-

oleObject120.bin

image121.wmf
15

10

-

oleObject121.bin

image122.wmf
0

)

(

=

x

F

image10.wmf
A

oleObject122.bin

image123.wmf
5

10

-

oleObject123.bin

image124.wmf
6

10

-

oleObject124.bin

image125.wmf
8

10

-

oleObject125.bin

image126.wmf
15

10

-

oleObject126.bin

image127.wmf
4

10

-

oleObject10.bin

oleObject127.bin

image128.wmf
5

10

-

oleObject128.bin

image129.wmf
4

10

-

oleObject129.bin

image130.wmf
6

10

-

oleObject130.bin

image131.wmf
4

10

-

oleObject131.bin

image132.wmf
7

10

-

image11.wmf
(

)

(

)

k

k

k

s

x

x

+

=

+

1

oleObject132.bin

image133.wmf
4

10

-

oleObject133.bin

image134.wmf
8

10

-

oleObject134.bin

image135.wmf
4

10

-

oleObject135.bin

image136.wmf
9

10

-

oleObject136.bin

image137.wmf
4

10

-

oleObject11.bin

oleObject137.bin

image138.wmf
10

10

-

oleObject138.bin

image139.wmf
4

10

-

oleObject139.bin

image140.wmf
15

10

-

oleObject140.bin

image141.jpeg
Fig 1 below shows graphical representation of tol against number of iterations.

Figure 1
10° . . T . — =
=== Linear Backward SOR
. === Quadratic Backward SOR
10° g

tolerance (tol)

15 2 25 3 3.5 4 4.5 5
No of iteration

image142.wmf
0

.

4

oleObject141.bin

image12.wmf
k

s

image143.wmf
·

oleObject142.bin

oleObject12.bin

image13.wmf
D

S

Ì

oleObject13.bin

image14.wmf
{

}

¥

=

1

k

k

s

oleObject14.bin

image15.wmf
(

)

(

)

u

E

v

x

,

,

´

oleObject15.bin

image16.wmf
(

)

(

)

00

00

,

,

u

E

v

x

´

oleObject16.bin

image17.wmf
{

}

¥

=

1

k

k

s

oleObject17.bin

image18.wmf
x

x

x

a

+

®

oleObject18.bin

image19.wmf
s

x

+

oleObject19.bin

image20.wmf
0

x

oleObject20.bin

image21.wmf
x

x

f

Ì

)

(

oleObject21.bin

image22.wmf
D

x

Î

oleObject22.bin

image23.wmf
r

S

oleObject23.bin

image24.wmf
1

0

*

<

<

a

oleObject24.bin

image25.wmf
(

)

(

)

)

,...,

1

,

0

(

,

2

*

*

2

1

*

=

-

£

-

¥

¥

+

k

x

x

x

x

k

k

a

oleObject25.bin

image26.wmf
1

0

,

0

<

<

Î

a

a

where

D

x

k

k

k

oleObject26.bin

image27.wmf
{

}

¥

=

1

k

k

k

x

a

oleObject27.bin

image28.wmf
*

x

oleObject28.bin

image29.wmf
G

G

k

=

oleObject29.bin

image30.wmf
D

D

k

=

oleObject30.bin

image31.wmf
{

}

(

)

p

D

G

k

,

,

*

=

z

oleObject31.bin

image32.wmf
k

G

image1.wmf
0

.

1

oleObject32.bin

image33.wmf
(

)

,...)

1

,

0

(

:

=

®

Í

k

R

R

D

G

n

k

n

k

k

oleObject33.bin

image34.wmf
(

)

(

)

(

)

(

)

,...)

1

,

0

(

),

...,

,

,

(

1

1

1

=

=

+

-

+

+

k

x

x

x

G

x

m

k

k

k

k

k

oleObject34.bin

image35.wmf
¯

oleObject35.bin

image36.wmf
­

oleObject36.bin

image37.wmf
w

oleObject1.bin

oleObject37.bin

image38.wmf
]

2

,

1

[

oleObject38.bin

image39.wmf
0

.

2

oleObject39.bin

image40.wmf
b

As

-

=

oleObject40.bin

image41.wmf
n

n

R

b

R

L

A

Î

Î

),

(

oleObject41.bin

image42.wmf
n

R

s

Î

image2.wmf
0

)

(

=

x

F

oleObject42.bin

image43.wmf
A

oleObject43.bin

image44.wmf
,...,.)

1

,

0

(

,

)

(

)

1

(

=

+

=

+

m

c

Gs

s

m

m

oleObject44.bin

image45.wmf
)

0

(

s

oleObject45.bin

image46.wmf
)

(

A

H

H

A

-

-

=

oleObject46.bin

image47.wmf
b

H

c

A

H

I

G

1

1

,

-

-

=

-

=

Contraction Mapping

of Linear and Quadratic Backward SOR Iteration for Newton Operator.

Stephen Ehidiamhen UWAMUSI

Department of Mathematical Sciences, Kogi State University, Anyigba, Kogi State.

Email:

Stephen_uwamusi@yahoo.com

Abstract. The

contraction m

apping

of Linear and Quadratic backward SOR iteration

matrix

for

Newton operator in the nonlinear system of equation is

presented. It is showed that if the

computable reachable set

of linear

backward SOR method is lower chain

-

reachable to the outer

computa

ble chain

-

reachable Quadratic SOR

method, the

quadratic

backward

SOR method is not only

finer in topology but also logarithmically faster than backward linear SOR method

if the

arithmetic

computational complexity

involved

in

the execution of

backward

quadr

atic

SOR is

overlooked

.

Keywords: nonlinear system, newton method, SOR iteration matrix

0

.

1

Introduction

The solution of nonlinear system

of

equation has been from time immemorial to

a large extent

governed by Newton method

[1] a

nd

[2]

provided the analytic derivatives of the function

0

)

(

=

x

F

, (1.1)

are easily available.

This means that

n

n

R

R

D

F

®

Ì

:

and,

D

x

Î

, the Frechet derivative in an open ball

(

)

D

r

x

S

S

Ì

=

,

*

remains valid

. Newton method is attractive for the soluti

on

of nonlinear system

(1.1)

because of its global convergence for any choice

of

D

x

Î

)

0

(

.

Abstractly, Newton method is

given by the equation

(

)

(

)

)

2

.

1

(

)

,...,

1

,

0

(

,

)

(

)

(

)

(

/

)

1

(

=

-

=

+

k

x

f

x

f

x

x

k

k

k

k

whose

sequence of iterates

,

converges to the desired

solution

*

x

.

An indication that method 1.2 is a

self mapping

-

that is , a co

ntraction mapping

in the sense of

Banach

, which

map

s

smaller

element

s

from a larger domain

to

itself

wit

h the purpose of achieving the same results

. Fundamentally

,

method (1.1) is hardly solved in the form it is presented rather

,

we often transform to an equivalent

linear system

b

As

-

=

,

(1.3)

w

here the matrix

A

is assumed to

be

a non singular

Jacobian matrix

.

The solution in general

for

system 1.1 is given by

(

)

(

)

k

k

k

s

x

x

+

=

+

1

(k=0,1,…,) (1.4)

