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Pricing Exotic Power Options with a Brownian-Time-Changed
Variance Gamma Process on a Dividend-Paying Stock*

Weixuan Xia®

Abstract

This paper proposes a Brownian time change for modeling stochastic volatility and combines it with a drifted
variance gamma process in deriving explicit pricing methods for exotic power options in the presence of jumps and
volatility clustering. In view of the changeful payoff structure of exotic options, the underlying stock is assumed to
pay constant dividends on a continuous basis. In-depth analysis of properties of the time change as well as the time-
changed process is focused on characteristic functions, which facilitate pricing via Fourier transform. The pricing
mechanism of plain-vanilla options is discussed as a basis for pricing power options. Also, Monte-Carlo simulation
techniques are studied through time discretization while empirical analysis is conducted on real financial markets.
My objective is to study the theoretical elements of this stochastic-volatility model and its interesting advantages in
the context of power option pricing.
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1 Introduction

The Black-Scholes model based on standard Brownian motion and normal distribution proposed
in 1973 [5] has been one of the most classical and successful models in option pricing theory. It is
arguably the pathfinder of continuous-time pricing for a wide class of financial derivatives. Despite
this, the model has inevitable drawbacks by assuming constant volatility and failing to incorporate
the conspicuous asymmetric leptokurtic feature of financial returns. In connection with this, many
studies have existed over the recent decades to make pertinent improvement as much as possible.
Instead of multifarious complicated diffusion-based semimartingales, the use of a Lévy process has
been advantageous as it directly defines an infinitely divisible probability distribution whose skew-
ness and excess kurtosis are easily adjustable, as well as is usually able to describe volatility smile
by introducing discontinuities aimed to capture short-term large jumps. Related works include
Madan and Seneta (1990) [14] and Carr ef al (2002) [7], in which the renowned variance gamma
model and CGMY model were respectively introduced. Nevertheless, imperfections still exist in
traditional Lévy models in that they assume by construction deterministic volatility evolution and
thus have proven ineffectual for volatility cluster effect.
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In a discrete-time environment, such effect has been thoroughly modeled by heteroscedasticity
(GARCH) models, whereas under continuous time, two solutions exist in general - one directly
constructs a stochastic process for the volatility coefficient while the other randomizes the time
structure to distort financial returns frequencies. A comprehensible advantage of the latter, which
has a common appellation of a time change, is increased analytical tractability when adapted to
a wide range of Lévy processes. To name a few, Carr et al (2003) [8] initially utilized a mean-
reverting process proposed by Cox et al (1985) [10] as a stochastic time change, while Barndorff-
Nielsen and Shepard (2001) [4] studied non-Gaussian Ornstein-Uhlenbeck processes for this pur-
pose. It is worth mentioning that these time changes possess characteristic functions in explicit
form.

In this paper, time change is modeled under a rather convenient structure. I choose a drift-
ed integrated squared Brownian motion due to its controllable stochastic level and, importantly,
tractability with a closed-form characteristic function. In addition, allowing for its relative diversi-
ty and simplicity in simulation, a drifted variance gamma process is selected as the primary model
for fluctuations in financial returns. As a consequence, a time-changed variance gamma process is
constructed under which the pricing of derivatives can be analyzed. In all, such a model is capable
of capturing not only asymmetric leptokurtic feature but also volatility clustering, and I expect it
to yield desirable modeling outcomes when applied to real financial time series.

Recently, with the exception of standard European and American options, a large number of
new financial derivatives have emerged in the international financial market. Among them, power
option is one of the new exotic options. A power option is in general a European-style derivative
that provides the option holder with a leveraged or distorted payoff. There are currently two types
of power options. Asymmetric power options have payoff at maturity based on the price of an
underlying asset raised to a specific power in excess of the option strike price, while symmetric
power options simply place a power effect on the original payoff. These options are structurally
closely related to typical plain-vanilla options. Also, due to its relative rarity at present, research
of power options is critically significant in both theoretical aspect and practical area and is thus the
main focus of this paper.

The remainder of this paper is organized as follows. In Section 2 a stochastic time change is
formally defined with a Brownian integral, whose statistical features are analyzed subsequently.
Section 3 then provides a brief review on the key concepts pertaining to gamma and variance gam-
ma processes. In Section 4 the time change is combined with a drifted variance gamma process and
the outcome is used for analyzing evolution of the price of a risky asset. Later, Section 5 discusses
in depth specific characteristic-function-based pricing methods for plain-vanilla and power-type
options using the new model, while Section 6 explains some simulation techniques as an alter-
native way of pricing. Finally, empirical analysis is conducted in Section 7 where plain-vanilla
pricing results are compared to real market prices and power option prices are given as numerical
examples. Some crucial conclusions are drawn in Section 8. Several selected proofs are shown in
Appendices that follow.
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2 Construction of Business Time

To begin with, let me clarify that this paper assumes a continuous-time environment with # > 0,
and to distinguish it from stochastic business time, ¢ is expressly referred to as the calendar time
admitting no randomness.

In general, there are several requirements for the construction of a time change. As a particular
type of time, a business time process should be nonnegative and monotonically increasing, and to
well cater to continuous-time modeling, it is required to be continuous, i.e., have no jumps, and
better increasing in a smooth manner. The latter property can be realized by constructing a purely
continuous instantaneous activity rate process, while the former simply necessitates positivity of
such a process.

Let W = (W;) be a standard Brownian motion, which is normally distributed. Rather intuitively,
a qualified candidate for the instantaneous activity rate can be found by simply squaring it
or W2. On this basis, I can define a stochastic business time B = (B;) as an integrated squared
Brownian motion plus a drift.

t
B, = mt—l—v/ W2ds 2.1)
0
for m > 0 and v > 0. In differential form, this is written as
dB, = (m+vW?)dt (2.2)

with By = 0 a.s., which shows that B is of finite total variation and, indeed, nonnegative and
smoothly strictly increasing, with smoothness understood from the existence of dB, /d¢, V¢. Com-
menting on the convexity of B yet makes no sense as W is nowhere differentiable with respect to
t. An advantage of this time construction, apart from simplicity, is that it can be flexibly adjusted
towards or away from the calendar time . While m maintains the consistency of B with respect to
t, v controls the extent of stochastic volatility. In particular, as v\ O and m 1, B, — t, Vt.

The distribution of B is quite elusive as the integral in (2.1) is at bottom an infinite Riemann
sum of correlated chi-square distributed random variables. Despite this, its characteristic function
can still be found in the following closed form,

W, () := E[e"P1] = "\ sec V2ivi2u (2.3)

where 1 = +/—1 is the imaginary unit. Appendix A gives in a convenient way a detailed proof of
this function, thanks to the analytical tractability of chi-squared and gamma distributions. By using
(2.3) the four crucial moments of B are readily available.

vt2
=mt+—

_idln V|t (u)
2

ElB:] = du

u—0

M As implied from Appendix A, the square impact gives rise to an analytical characteristic function of B, while other possible choices, such as an
absolute value operator, fail in general.
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Clnyg, ()| 2
Var[B,] = (—i)?—— 20
du2 u—0 3
—i)® dIn u
Skew[B,] = ——) Wgt( | 283 30
(Var[B,])3  du u—0
(—i)*  d*Inyg(u) 513
Kurt[B;] = =22~ 14.6571 2.4
B =34 N A |, 35 671> 3 9

It can be seen that B has time-dependent mean and variance, but is unconditionally skewed to the
right and leptokurtic. This business time choice, also referred to as a Brownian time change, will
play an essential role in creating stochastic volatility in the pricing models to appear later on.

3 Gamma and Variance Gamma Processes

In this section, I will synthesize some essential concepts related to gamma processes and variance
gamma processes, which crucially underly price modeling afterwards. These processes have been
thoroughly studied in such papers as Madan and Seneta (1990) [14] and Madan et al (1998) [15].

3.1 Gamma Processes

A gamma process G = (G;);>0 is defined as a purely discontinuous Lévy process admitting a

gamma law. lL.e., Gy = 0 a.s., and G has independent and stationary increments such that for any

h>0, Gi1p— Gy faw Gy, ~ Gamma(ah,b) where a > 0 and b > 0. To be precise, a gamma process

with parameters (a,b) has the following density.

b t—1 —b.
fG|[(X):WXa e x, x>0 3.1.1)

where I'(-) stands for the gamma function. Jumps of G are driven by its Lévy measure,
ve(dx) =x"lae "1 ., (3.1.2)

where 1.y denotes the indicator function which takes value 1 if the argument is true and O other-
wise. Since [\ (o) VG(dx) =0 and [g, 1oy [x[VG(dx) < eo, it is said that the gamma process has an
infinite jump arrival rate, i.e., infinitely many jumps over any finite time interval, but is of finite
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total variation. Notice that the characteristic function of (Gy) is given by

Vo (u) == E[e"“] = (1 —%) (3.1.3)

By the Lévy-Khintchine representation (see Papapantoleon (2000) [16]), such a function is in-
finitely divisible, and on its basis the four crucial moments of G are E[G;] = at /b, Var[G;] = at /b?,
Skew|G;] = 2/+/at > 0 and Kurt|[G,] =3+ 6/(at) > 3 for t > 0. Clearly, the gamma distribution
is asymmetric with a fat right tail.

3.2 Variance Gamma Processes

A variance gamma process can be defined in three distinct ways. It has a preliminary and natural
relationship with a variance gamma distribution. This is a three-parameter distribution with a > 0,
0 € R, and o > 0, and has the following characteristic function,

i0u  ou\ ¢
l;UVarGamma(’/l) = (1 -——+ ) 3.2.1)

which is also infinitely divisible, and thus gives rise to a variance gamma process as a Lévy process.
A variance gamma process H ©) = (H,(O)) can hence be defined by its Lévy properties - Héo) =0

a.s., and H'% has independent and stationary increments such that for any 2 > 0, H, © Ht(o) faw

t+h
H;EO) ~ VarGamma(ah, Oh, 5\/h).

H" is known to be yet another purely discontinuous process whose jumps are governed by the
Lévy measure

Vi) (dx)

— 2 2
_i(ex |x|\/22a0 +6 )dx (322)

A o
which indicates an infinite jump arrival rate and finite total variation. In some cases an additional

drift may be necessary to generate a persistent trend for modeling. A drifted variance gamma
process H = (H,) with drift parameter u € R is formally<2> defined as

H; := it +0G; + oW, (3.2.3)

where (W/) is another standard Brownian motion and (G;) is a special gamma process with pa-
rameters (a,a). On an important note, W, G, and W' are mutually independent. This definition
sees the variance gamma process as a gamma-time-changed Brownian motion with drift®. The

{2)This is the formal definition of a variance gamma process as presented in Madan and Seneta (1990) [14].

<3>Early discussed in Clark (1973) [9], a positive non-decreasing Lévy process of finite total variation can be used as a particular time change,
a.k.a. a subordinator, to convert a Brownian motion into a purely discontinuous process. This type of time change, however, admits discontinuities
and is not suitable for modeling business time.
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characteristic function of H is presented by directly introducing a drift impact.
. . i0u  o2u?\
V/H\t(u) — E[eWH’] — it (1 _ 1ou n u )

a 2a
The additional drift only changes the mean of H, while the other central moments are unaffected.

(3.2.4)

ElH] = _1% =(u+0)
u=0
dzlnl// u) 92
— (2 HER _ (2 2
Var[H,| = (—1) 7 » ( . ps )t
Skew[H)] = 1) Clnyyp()|  (203+3a062) [62+02
N Nam e |, (02tac?) —
Kurt(,] — 34 0S¥ )| 3((ar+2)6* + 2a(ar 12)6%0% + o (ar £ 1)0%)
t1 = (Var[Ht])2 du? u:O_ at(92+a62)2
(3.2.5)

The variance gamma process observably has all time-variant moments, which partially explain its
flexibility in practice. In concrete, 8 places an impact on all the moments and largely controls the
level of asymmetry, noting that Skew[H;] = 0 if 6 = 0; ¢ mainly defines the level of volatility or
fluctuations; the gamma parameter a has a primary control over the leptokurtic feature, because
lim, o Kurt[H;| = oo, whereas lim, ., Kurt|H;] = 3, which becomes mesokurtic.

Moreover, Madan et al (1998) [15] proved, by decomposing its characteristic function, that a
variance gamma process without drift can also be regarded as the difference of two independent
gamma processes. In fact,

HY =g, - pr =6V —G? (3.2.6)

where G(!) and G'?) are 2 independent gamma processes with parameters (a,1/¢, ) and (a,1/¢_),
respectively, for which

02 o2 6

—+—+—>0 3.2.7
4a? + 2% 2 ( )
From another perspective, notice that the Lévy measure (3.2.2) can be reformatted into the follow-

ing piecewise function,

fy =

x lae*/t+dx, x>0
Vi) (dx) = {|x|—1aex/f—dx 0 (3.2.8)

thus pointing to the difference of two independent gamma processes’ Lévy measures.
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4 Model Definition

After well establishing the business time structure and the variance gamma process, a time-changed
process can now be constructed to implicitly model the evolution of the price of a risky financial
asset. In this section, the model will be rigorously defined and its properties will be analyzed
concretely as the foundation of pricing financial derivatives.

4.1 A Time-Changed Process

Be a stochastic process X = (X;) defined by Brownian-time-changing a drifted variance gamma
process, namely,
X; := Hp, 4.1.1)

with Xo =0 a.s. Indeed, X well reserves the jump size pattern of H, as defined by its Lévy measure,
while it is the timing of jumps that has been changed in the presence of B. Whenever B increases
faster than ¢, or dB,/dr > 1, jumps occur more frequently than otherwise, and hence the volatility
structure is automatically randomized. As noted before, the closer B is to z, the less stochastic the
volatility level becomes.

The characteristic functions of H and B already known in (2.3) and (3.2.4), the characteristic
function of X can be easily derived based on the tower property of expectations.

l[/X|,(u) =K [eiuX,] =E [E [eiuHBf ’BzH

. —ab,
eiHuBz 1— 19_u + quz -
a 2a

‘ i0 (72 2
:wBt(,uu—i—laln <1—17”+ 2;‘ )) 4.1.2)

=E

To be precise, I have

. 0 2 2N\ —mat i0 2,2
Wi (1) :elmwu(l_l_”+ ou ) sec\/Zivt2 (,uu—l—ialn (1—1—”+ 62” )) (4.1.3)
a a

a 2a

which immediately implies the following crucial moments.

. .dIn l//X|t(”) o vi*
Bl = =G| —wro(me )
A2 Inyy, (u
Var(X,] = <—1>2d—’§"”
u u—0

t

= (6m(0% +ac?) +v021((3+42var?) + 4vuabt® + a(2vu’r> +36%)))  (4.1.4)
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Besides, the skewness and kurtosis come in considerably lengthy but elementary forms.

(i)} P lnyyy ()
(Var[x,])3  du® ],
= V6(60m6> +21v(03 (15 4 var® (15 + 8var?)) + 3vuad*> (5 + 8var?) + 24v* u’a* 61
+8v2ula®t®) + 15a(6m6 +vo?1(0(3 + 2var?) 4 2vuar?)))

Skew[X;| =

/(51/at(6m(6%+ac?) +vi(62(3+2var?)) + dvpad?> + a(2vu?t> 4+ 362))3)
(—i)*  d*Inyy(u)
(Var[X;])2 du? 40
= 3(1260m*at (6 + ac?)* +420m(6%(6*(6 + var* (3 + 2var*)) + 4’ ua*0r*
+ 2v2,u2a2t4) + 2a62(92(6 + vat2(3 + vatz)) + 2v2ua2 0r* + v2u2a2t4)
+3a?6*(14var?)) + vt (6*(1260 + var® (1855 + 36var? (49 4 19var?)))
+ 8vua®3r* (140 4 Yvar (49 + 38var?)) + 24vua®0r* (1142 u’ar*
+762(10421var?)) + 18u2a0? (2 u’ar* (49 + 114var®) +76%(20
+var* (25 + 14var?))) + 3a(228v utar® + 588v? u*ac?t* + 3564 (6 + Tvar?))))

/(3Sat(6m(92 +ac?) +vt(6%(3 + 2var?) + dvpadr* + a(2vu’e* + 362)))2)
4.1.5)

Kurt[X;] =3+

It can be seen that all these moments of X explicitly depend on time ¢, involving not only the pa-
rameters of the business time B but those of the variance gamma process H as well. In fact, it is not
difficult to notice that, although the variance gamma parameters a, 6, and o still have significant
influence on the kurtosis, skewness, and variance, such influence displays more uncertainty due to
the business time parameters m and v. A superficial comment, nevertheless, is that any moment of
X approaches the corresponding one of H as m 1 and v \, 0 simultaneously, while it tends to-
wards that of B as t — oo. In short, X is so far characterized with both time-dependent asymmetric
leptokurtic feature and stochastic volatility structure.

4.2 Real-World and Risk-Neutral Evolutions of Stock Price

Now consider a frictionless continuous-trading financial market, i.e., no transaction costs are
present. The market information set or filtration is (% ),;>0 and the real-world probability mea-
sure is P. Denote the price process of a risky asset, typically a stock, by S = (S;). Suppose the
initial stock price is So > 0, and that under P, S evolves according to the following geometric
process.

S, = Spe 4.2.1)
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This is an ordinary exponential of X, which is defined as in (4.1.1). A reason behind this con-
struction is the effect of continuous compounding over continuous time. To this end, notice that
(InS; = InSy+ X;) is nothing but the log price process whose shape is exactly the same as X’s. The
real-world characteristic function of In S is simply

lVlnS|t(u) = E[eiulnSt] — eiulnSOWXh(u) (4.2'2)

Let r be the risk-free rate and d the stock’s dividend yield, both continuously compounded and
assumed to be constant. As always, for pricing financial derivatives it is necessary to eliminate
the existence of arbitrage by finding a measure P* under which the discounted post-dividend stock
price process (e_(’_d)’S,) becomes a local martingale. Under such a measure the stock should
have a mean log return equal to r —d. In this case, since the density function of X is not explicitly
known, I can simply let the risk-neutral or P*-evolution of S be given by

(r—d)H—X, (r—d)H—X,

S — S()e _ Soe
t E[eX] Wy (—1)

To give a short proof of the local martingale property, note that the business time B is in itself an
adapted process, i.e., (B;) is .%#;-measurable, and by its strictly increasing property that B, — B; > 0
a.s. V0 < s <t, (X; = Hp,) is also .%;-adapted. On the other hand, in light of the Lévy property of

H, for any 0 < s < ¢, one can claim that the increment X; — X; = Hp, — Hp_ is independent from the
information set at time s, .%,. Therefore,

Xt S eX.v eXt_XS S eXx
E[e” s, | ) =S E{e—. 9} = E{ ] = 200 s,
[T ISIA] = S0 | 1 = e T B R T v (D

(4.2.3)

where E [eXl’XY] 7 Wx|i— s(—1) in general because X has nonstationary increments.
Under P*, (4.2.3) can be specified as

2a—20 — o2\ 2a—26 — ¢?
S, = Spelr—d—mr+X, (%) cos \/ 20r2 (u _aln %) 4.2.5)

for which an implicit requirement is that the cosine function return a nonnegative value, or

2a—26 — o? 2a—20—-0%\ _7*
R — | < — 4.2.6

2a 2a ) - 8 ( )
As will be seen in Section 7, this condition is rarely violated in practice. By consulting (4.2.3), the
risk-neutral characteristic function of the log price process InS can be expressed in terms of the
characteristic function of X.

Ving () =" [¢

This will be useful to pricing financial derivatives.

>0 and v’ (,LL —aln

S| — =S 1) (s (i) @27)

#)Notice that  — aln((2a — 26 — 62)/(2a)) can take negative values as the cosine or secant function is positive on the imaginary axis.
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S5 Exotic Power Option Pricing

In this section I will analyze in depth the pricing mechanism of European-style exotic power op-
tions when the underlying stock follows a geometric Brownian-time-changed variance gamma
process as in (4.2.1) and (4.2.3). Discussion of plain-vanilla options is necessary to conduce the
analysis of power options.

5.1 Plain-Vanilla Options

Consider a European plain-vanilla call option with strike price K > 0 and time to maturity 7 > 0.
Its standard payoff is written as

Cr=(Sr—K)* (5.1.1)
where (-)7 is identical to max{-,0}. Under the risk-neutral measure P*, the option price today is
the expected discounted payoff,

Co = Co(So,K,r,d, Tim,v,i,a,0,06) =E*[e”"T (S —K)T]
— e 'TE* [Sr1s,~ky] — Ke 'TE* [1is,-x1] (5.1.2)

A semicolon has been used to separate the explicit parameters that are observable from the market
from the implicit that are only obtainable by means of statistical modeling.

Many works have so far existed to discuss explicit pricing methods for plain-vanilla options
when the characteristic function, but not the density, of the underlying stock’s log price process is
known in the context of risk-neutrality. For instance, using the fact that characteristic functions are
even in its real and imaginary parts, Bakshi and Madan (2000) [2] derived a very straightforward
formula for evaluating the expectations in (5.1.2). As a consequence,

Co = Soe 11, — Ke'TT1, (5.1.3)

where the associated in-the-money probabilities are given by

1 1 o e—iuanV[* (u—i)
H1:—+—/ 9’{{ : *lnS|T. }du
2 mwo lullllnS\T(_l)
—iulnK

o0 e W (e
n2:1+1/ 9{{ oS )}du (5.1.4)
2 mJo iu

R{-} denoting the real part operator. To briefly explain, IT; results from choosing the random
variable S7 as a numéraire, because [E* [e’(’ ’d)TST / So} = 1. In general, these integrals can be nu-
merically evaluated with high efficiency, to which classical truncation methods such as Simpson’s
rule also apply.

For a similar plain-vanilla put option with standard payoff

Pr=(K—57)* (5.1.5)




11 Weixuan Xia

its price is directly implied by the call price through put-call parity. The version including contin-
uous dividend yield can be found in Guo and Su (2006) [12].

Py=Cy+Ke T —Spe 4T (5.1.6)

5.2  Asymmetric Power Options

Also called leveraged options, asymmetric power options are designed to grant the option holder
a leveraged view on a specific underlying stock or its volatility. Such an option’s payoff becomes
nonlinear by raising the stock price to a fixed power. A leveraged call option has the following
payoff at maturity,

) — (sb— k)" (5.2.1)
where p > 0 is a predetermined power coefficient. Allowing for the magnificent impact of leverage,

p can hardly exceed 2 in practice.
According to (4.2.3), the P*-evolution of the powered stock price S” = (S7') is given by

Sp B S(l;ep(r—d)t+pX,
t — .
(W (—1))7

To transform the stochastic part into a well-compensated martingale form, let a function be defined
on (p,t) as

(5.2.2)

0(p.1) = 1 (Y (~ip) ~ pIn v, (~1)

( 2a —2p6 — p*c? 261—29—62)
=ma| In —pln——

2a 2a
1 2a—2p0O — p?c?
+—In sec\/2vt2(pu—aln a p2 pG)
a

2a

24—26— 62
+ P10 | cosy 2w [ p—alm 2220 (5.2.3)
"

which is real finite as long as

2
< % (5.2.4)

2a—2p6 — p*c? 2a —2p6 — p*c?
2a 2a
in addition to (4.2.6). This function allows (5.2.2) to be conveniently rewritten as

, Sge(r—dp(l))l-irpxt sos
St = . (5.2.5)
! WX|1(_1p)

>0 and vtz(p/.t—aln
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by constructing a power-dependent dividend yield function d,(t) as

dp(t) = pd—(p—1)r—o(p,1) (5.2.6)

Notice that it is the randomness in B that leads to the time dependence of d),, because the last two
terms of @ would not exist if B happened to be t. As aresult of ¢, d, varies with  as long as p # 1;
obviously, lim\ od, = r and d; = d, regardless of ¢. To highlight, d;, is not to be misunderstood
as a deterministic process - it does not vary over any trading period, but rather, is fixed once the
finite time length is known.

To this end, S” can be viewed as the price of another stock whose continuous uncertainty is
governed by a new time-changed process pX and pays a new dividend d),. pX understandably
has the same structure as X, since the power p does not affect my choice of B, yet resulting in a
new drifted variance gamma process pH with parameters (pu,a, p6, po), which is merely a direct
implication from (3.2.3).

Therefore, conditioned on S”, the asymmetric power call possesses a payoff structure of plain-
vanilla type, and by modifying the parameters in the call price function (5.1.2), I can write

C(()ap) = (Sg,KJ', dy(T), T;m,v,p,u,a,pe,pc) (5.2.7)
and price through characteristic function as before. Furthermore, put-call parity also holds for the

price of a similar put with terminal payoff P}ap) = (K — SI;) Tlie.,

PP C00) o T _gp g dp(TIT (5.2.8)

5.3 Symmetric Power Options

A symmetric power option is an exotic option whose payoff at maturity is raised to an agreed-upon
power. Another appellation for this class is powered options. Instead of a leverage effect, the
power here is aimed at distorting the option payoff, which would in turn affect the option value.
Starting from a powered call, the one-time payoff is

i = ((Sy—K)*)” (5.3.1)

for some p > 0. In fact, when 0 < p < 1 the effect is a minus or shrinking, and when p > 1 the
effect is a plus or magnifying. Most of the time, p takes values no larger than 3.

Because of the distorting effect on both S7 and K, pricing methods for this type are not as easy
as for asymmetric power options. In fact, by using binomial expansion for the powered difference,
the option payoff can be expressed in terms of

(sp) K\’ = (P K\
CTP :S¥(1—§> 1{5T>K} — Z ( k )Sl;v(—g) l{ST>K} (532)
k=0
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which converges for S7/K > 1. Notice that this ensures that the option have a positive intrinsic
value at maturity and is exactly the condition for option exercise. The call price hence follows as

%WZEWe”d®%=Z(§)G%YWk’%?ﬁwwd (533)
k=0

Analogous to the asymmetric power case, in each of these expectations the stock price is raised
to a power p — k, Vk. However, it is logical to think of S”~* as the price of yet another stock
paying a constant dividend only for p —k > 0. On the other hand, the moment generating function
Wx|r (—i(p —k)) will understandably fail to exist for some sufficiently large k, by which using this
powered stock price as a numéraire with martingale property under the risk-neutral setting becomes
problematic. To this end, change of numéraire only applies to a finite number of k with k < |p],
|-] denoting the floor function, and, of course, subject to the constraints (4.2.6) and (5.2.4); for
large values of k the expectations remain to be evaluated as direct integrals. Following this idea,
the call price comes as a piecewise summation‘®).

Lp] °°
v _y ( P ) (—K)Esh e~ dp TR,y kP T Y ( P ) (DM, (534)
k=0 k=|p]+1

For the first part, by way of changing numéraire, each in-the-money probability is given by
—iulnK

i 11~ _(¢ Vinsir (u—i(p—k))
M, = _+_/ 9{{ ST }du, 0<k<|p| (5.3.5)
2 7l mwlnS|T(_1(p —k))
and the second part relies on the supplementary integrals specified as
—iulnK ,,*
Lo € Vingr®)
L,r=—| R d k> 1 5.3.6
1,p—k ﬂ/o { i ptk u, k=|p|+ (5.3.6)

Alternatively, it can be further shown that the call price has the following equivalent expression.

Lp)
C(()SP) _ I(Z‘E) ( I]Z ) (_K)kSg—ke—dpfk(T)Tﬁp_k

—iulnK ,,* :
~ 1 [~ (e Yins|r (W)X (p,iu)

KPe T (—1 1+ij( p )—/ 9{{ }d 537

TR (=) L+|pl ) mlo 1+iu—p+|p] u )

where the new function Y(-,-) makes use of the well-known generalized Gauss hypergeometric
function in such a way that

1

: . 2+ |p) .
Y(p,iu) =3F l—p+|p] . ;1 (5.3.8)
L+iu—p+|p 2THTPELP

{5 Despite an infinite series, my personal experience suggests that an upper bound of 100 will typically do fine, by which computational efficiency

p

is guaranteed. Also, the binomial coefficient %

) = ]'[’;T:l (p—j+1)/k!is generalized for arbitrary p > 0 and k € IN.
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The series representation and some crucial properties of 3F, can be found in Abramowitz and
Stegun (1972) [1]. All detailed derivations of these pricing formulae are shown in Appendix B.
Notably, the purpose of (5.3.7) with (5.3.8) is to enhance computational accuracy for packages,
such as Mathematica® by Wolfram Research, Inc. (2015) [18], in which the hypergeometric func-
tion family is well established.

To emphasize, given k < p, d,,_ represents the constant dividend yield of the stock as powered
by p —k; in the special case where p € IN| ., whenever p = k the option position becomes perfectly
hedged or risk-free, as dy = r.

For a similar symmetric power put, put-call parity does not work for all p # 1 as the standard
payoff structure is distorted. Likewise, binomially expanding the option payoff as

S - S ¢
P7(~ p) — ((K_ST)+)p = KP Z ( Z ) (_ %) I{ST<K} (539)
k=0

which is convergent for S7/K < 1, implies the following expression for its price.
PP — R [ TP — kPeT (HE +y ( ’ ) (—1)’<Iz,k> (5.3.10)
k=1

where Hg =1—1II, as in (5.1.4) and each supplementary integral is given by

1 [ e—iuanW* (u>
Iz,k:E/O EK{ — }du, k>1 (5.3.11)

Indeed, the symmetric power put pricing formulae are simpler compared to those for the symmetric
power call. No change of numéraire is necessary because the stock price S now is powered by k € IN
and the integral I, ; holds true for k > 0, while for I, to exist recall that only (4.2.6) needs to be
in force.

Similarly, (5.3.10) with (5.3.11) can be alternatively simplified into

1

S — 1 = —i * :
P(g p) _ KPe'T (5 n %/O 9{{6 1u1anlnS|T(u)B(] —|—p,—1u)}du> (5.3.12)

provided that (4.2.6) is well met, thanks to Euler’s Beta function B(-,-){®. This expression signifi-
cantly facilitates numerical computation by transforming the infinite series into a simple function.
Again, see Appendix B for detailed proof.

It is not difficult to check that, other things equal, C(()Sp) = C(()ap) = (Cp and PéSp) = P(gap) =5
when and only when p = 1, and so “symmetry” is not a special case of “asymmetry” in describing
power options.

() Defined as B(x,y) := [(x)(y) /T (x+y), this function is easily evaluated with most standard packages and a built-in function in Mathematica®.
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6 Monte-Carlo Simulation

As mentioned in the very beginning, one of the important reasons behind combining a Brownian
time change with a variance gamma process is that the resulting processes are easy to simulate,
because of the relative simplicity of underlying distributions. This section thus expatiates on the
simulation techniques of each of the processes analyzed above as well as discusses the associated
pricing logic as a comparison to characteristic function pricing in Section 5. The simulation is
primarily realized through time discretization in the absence of path dependence.

Let us start from the business time construction. By way of discretization, I construct N + 1
discrete time points {0} U {nA},—; 2 .y for a certain time interval [0,7], where A =T /N is the
quadrature magnitude. Based on the Lévy property of the standard Brownian motion, W can be
approximated by W = (W,,A) with the following recursion,

Wo =0~ Wy =W, 1)a+ 00 6.1)

where (@,) ~ i.i.d.Normal(0,A). Notice that from its definition (2.1), B is at bottom a Riemann
integral of W and starts from 0. Thus, denoting an estimator by B = (B,m), simple quadrature rule
can be applied to obtain

B() :OwénA zé(n_l)A—l—mA—l—vAanA (6.2)

The above relations directly imply that, at a given 7 = NA, the estimator By, is asymptotically
unbiased towards B7 in that

N N n
E[Bya] =E|mNA+v ZIAWIZA] — mNA+vA ZU;E[@?}
n= n— —
VA’N(N +1) vI?  yT?
=mNA+———F—F=mT + —+ —— 6.3
mrAt T R T 63

which tends to E[By] = mT 4+ vT?/2 as N — oo. Also, the mean squared error (MSE) of By, is
calculated as the sum of its squared bias and variance.

MSE [Bya] = (E[Bya — Br])” + Var[Bya]

A2N\ 2
<v2 ) +v2A2Var

4

_ V?A'N(5N? + 10N? + 10N +2) 6.4)
— > :

2 A4 N2 N
_ VAN —|—v2A2( Z ((nl\/nz)A—i—(nl/\nz)A)(nl/\nz)A>

ny,np=1

where the second equality follows from the independent and stationary increment property of W
along with W. This result is of order O(N*A%) = O(T*#), which is the same as that of Var[Br] =
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v2T*/3, whereas it asymptotically deviates from the true variance by 5V2N*A*/12 —v?>T*/3 =
v2T4/12, as N — oo.

In an attempt to simulate the time-changed variance gamma process X, the calendar time frame
needs to be modified by {0} U {é”A}nzl,Z,..., > Which gives rise to stochastic volatility. On this

basis, let X = (X,,A) be an approximation of X, and then it can be generated in three ways equiva-
lently, according to Subsection 3.2.
Firstly, the Lévy property of variance gamma process implies the following recursive relation,

Xo =0~ Xoa = X-1ya + 1 (Bua = B(u—1)a) + M (6.5)

where (1),) ~ VarGamma (a (énA - E(n,l)A) ,0 (énA - E(n,l)A) 01 /Bya— E(n,l)A> are indepen-
dent random variables. This approach is yet time-consuming because it is difficult to sample from

a variance gamma distribution due to its density’s complexity; again, see Madan et al (1998).
Secondly, by the formal definition (3.2.3), it follows that

Xo =0~ Xua =X(_1ya+ 1 (Bua—B(u_1)a) + 0%+ 010, (6.6)

where (7,) ~ Gamma (a (énA — B(n_l) A),a) is a sequence of independent variables'”) and () ~
i.i.d.Normal(0, 1). Just as in theory, () and (®},), Vn, are independent from each other.
For the third approach, which adopts a decomposition in terms of gamma processes, I can write

Xo =0~ Xon =Xn—1)a + 1 (Bua — Bu1)a) + w - (6.7)

where (y,(ll)) ~ Gamma(a(é,m —é(n,l)A), 1/¢+), i € {1,2}, are taken to be two mutually inde-
pendent sequences of independent random variables, with /1 given in (3.2.7). Because of the
simplicity of gamma and normal distributions relative to a variance gamma, the last two approach-
es are much more preferable. Obviously, as m 1 and v 0, énA — nA, Vn, and all of (6.5) to
(6.7) will yield estimators of the original variance gamma process H.
Also, Xya is asymptotically unbiased towards X7 since, by (6.6) and the tower property,
vT? vT2>

E[Xya] = (H+0)E[Bya] = (1 +6) (mT+—+—

5 N (6.8)

which tends towards E[X7] = (u + 0)(mT 4+ vT?/2) as N — co. Clearly, the existence of bias is
only a result of the randomness in B. On the other hand, the estimator’s mean squared error is
obtained by consulting the law of total variance.

5 A’N
MSE [£ya] = ((u+9)v >

) V2A4N2
4

2
) +E [Var [XNA|B;NA] ] + Var []E [XNA |B\NA} }

= (n+96)

+ <g + c) E[Bwa) + (1 + 6)*Var [Bya]|

) Generating independent gamma random variables is straightforward for most standard packages, though the gamma generator using standard
uniform distributions proposed by Johnk (1964) [13] is yet another acceptable approach provided that aA < 1.
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1
= ENA<3V (L +6)>NA® +v*(u+ 0)*A3(5N? + 10N? +-7N +2)

N 6(2m—+vA(1 +N))(9+a6)>

(6.9)
a

which still has the same order as Var[X7], or O(T*).
Based on X, under the real-world probability measure [P, an estimator of the log stock price at
a given maturity date 7', InS7, can be created by

InSya = InSo + Xya (6.10)

for NA =T, which is immediately asymptotically unbiased and has the same mean squared error

as Xya’s. Regarding computational effort, given T > 0, generating one trajectory of W requires N
operations, and so simulating one sample path of B necessitates N +YN  n=N(N+3)/2~O0(N?)
operations. Obtaining an estimate Xy, of X7 therefore requires computational effort of order
O(N?) based on the increments of B. For practical purposes, usually M >> 1 paths are simulated,
in which case an aggregate computational effort of O(MN 2) is needed.

Once M estimators of InS7, denoted by lnﬁl(\fg, j=1,2,...,M, are obtained, the stock price
estimators can be put into the risk-neutral setting via a simple multiplier. L.e., under P*, the com-
pensated estimators are given by

o (/)
vy Soe(r_d)T+XNA '
=" j=12,...M (6.11)
%ijl./[:leXNA

as an approximation of (4.2.3). With this, the payoff of a particular type of option can be corre-
spondingly estimated by properly discounting the average resulting payoff from each simulated
path under P*. To be precise,

—rrT M . —rT M

A € )
Co=—- j_z,l(SNA_K) ()oK E (K—SU)1 S0 k) (6.12)

and, similarly, for exotic power options with power p > 0,

—rT M —rT M

A(ap) __ € ali)p plap) _ € §()ry1
0 - M ]_; (SNA _K)l{fg\{ip>](}7 PO — M ]:Zl (K_S ) {S <K}
—T M —rT M
a(J) P
7 L G —K) g0 P = ; (K307 L gy 613

These approximations are to be used as an alternative to the analytical pricing results using char-
acteristic functions. Advantageously, they can provide some insights into the evolution of each
process visually.
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To give a graphical illustration, suppose m = 0.76, v = 0.4, u = —0.17, a = 66.45, 6 = 0.28,
0 =036, and T = 1 with N = 1000. Figure 1 displays a simulated sample path for each of
the standard Brownian motion W, business time B, and time-changed variance gamma process
X =InS—1nS).
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Figure 1: Simulated sample paths of (W;), (B;), and (X;)

Apparently, B is smoothly increasing beside positivity due to the almost-sure continuity of W,
while X is observationally a purely discontinuous process.

7 Empirical Analysis

In this section, the Brownian-time-changed variance gamma model will be applied to real financial
time series and market prices of standard options. Theoretical prices will be compared to the true
prices to indicate the model’s overall fitting degree. Further comparison will be made with the case
under calendar time or without drift and the Black-Scholes model with normality. For exotic power
options, numerical examples will be given solely based on the time-changed model, on purpose of
providing some insights into the validity of business-time pricing when the power takes different
values.
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7.1 Data Modeling

I choose the daily closing prices of Standard & Poor 500 Index (SP500) over the recent year from
July 2, 2015 to July 1, 2016 (collected from Yahoo Finance) as the study object, with a total
number of 253 observations, denoted by S;, for i = 1,2,...,253, in proper order. To obtain a
stationary series, the daily log returns are accordingly calculated as

Ri=InS;—InS;—, i=2,3,...,253 (7.1.1)

which consist of 252 observations. Figures 2 and 3 below present the respective series of the
closing prices ($) and log returns.

2100
2050
2000
1950

1900

1850

50 100 150 200 250

Figure 2: Series of (S)) Figure 3: Series of (R;)

Sample statistics of the log returns include insignificant mean of 4.96924 x 107>, standard
deviation of 0.010847, skewness of —0.30999 and kurtosis of 4.39189. This indicates a leptokurtic
feature with left skewness. Also, trends of clustering can be easily noticed in Figure 3, which
signify that stochastic volatility does exist in the returns of SP500. These phenomena can already
be well captured by the time-changed variance gamma process.

In the absence of a density function, performing maximum likelihood estimation becomes un-
realistic, and so for convenience purposes the model parameters are estimated under the method
of moments, which is covered in Bowman and Shenton (1998) [6]. Under this scheme, parameter
estimation is realized by minimizing the level to which the model moments deviate from the data
moments, and the number of sample raw moments should reasonably match the number of param-
eters for consistency. In this connection, the first six raw moments of the log returns are found in
Table 1.

496924 x 107> | 1.172x107% | —3.7583x 1077 | 6.02476 x 1078 | —5.71495 x 1010 | 5.72786 x 101!

Table 1: Sample raw moments of (Iéi)

As mentioned before, four models will be tested for comparison, including the Black-Scholes
geometric Brownian motion model, whose characteristic function is well known in explicit form.
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For each one the estimation scheme involves solving the following least square problem,

o\ (F- =] )]

n=1
where | 2| stands for the cardinality or number of parameters in the constrained parameter set 2. In
the business-time variance gamma model case, for instance, 2 = {m >0,v>0,u,a>0,0,0 >0}
and | 2| = 6. Also notice that there are 252 trading days in a calendar year. The optimal parameter
set, 9*, contains all the parameters needed for option pricing. By using Mathematica®, Table 2

nlllx‘ﬁ(u)

7.1.2
au (7.1.2)

below summarizes the parameter estimation under each model.

Black-Scholes | non-drift variance gamma | variance gamma | Brownian-time-changed variance gamma
- - - m* = 0.452847
- - - v =0.299871
u*=0.027289%4 - u*=2.64113 u*=0.738514
- a* =633.306 a* =630.536 a*=631.116
- 0* =0.0125224 0* = —2.6286 0* = —0.710898
c*=0.171854 c*=0.171853 c* =0.136282 c* =0.253637
[0.0156001] [0.0780005] [0.140401] [3.12002]

Table 2: Summary of parameter estimation

Enclosed in square brackets are the associated CPU time in seconds(®), Notably, the two lo-
cation parameters i and 6 have a theoretical offsetting effect which explains the significant dif-
ference among estimates under different models. In particular, the drift estimate u* is useless for
Black-Scholes pricing as it is entirely replaced by the risk-free rate r under risk-neutrality.

Under the business-time parameter estimates, the daily log returns’ implied mean, standard
deviation, skewness and kurtosis are 4.96922 x 107>, 0.0108258, —0.310869 and 5.70631, re-
spectively, according to the formulae in (4.1.4) and (4.1.5). It can be seen that the parameters
X well describe the asymmetric leptokurtic feature, though they have slightly overestimated the
kurtosis. On the contrary, under calendar time, the variance gamma model fails to explain the
asymmetry by giving a skewness estimate of 0.00547943 without drift, while with drift it makes
an overestimation by giving —1.0124. Needless to say, the normal model is always symmetric and
mesokurtic.

7.2 Standard Option Prices

Prices of standard (European-style plain-vanilla) options are collected from Market Watch, quoted
as of July 1, 2016. Mid-prices are calculated by averaging the bid and ask prices in pairs. In gen-
eral, I select options with strikes ranging from $1950 to $2070 expiring in August 2016, October
2016, December 2016, and Jun 2017, with respective maturities of 35/252, 80/252, 0.5, and 1

{8)The minimization program is run by a personal computer with an Intel Core i5-4300U and 4GB RAM.
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year. On July 1, 2015, SP500 closed at $2102.95. This generates a total of 50 prices for actively
trading option contracts, including 29 calls and 21 puts. On that day, the one-year risk-free rate
was at 0.45% and the SP500 dividend yield was at 2.09% per annum. Thus, I assume r = 0.0045
and d = 0.0209 on the annual basis.

By plugging these values into the pricing formulae, Figures 4 through 7 plot the model prices
versus the market mid-prices ($). Empty circles are used for true prices while solid marks stand
for model prices.
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Figure 4: Black-Scholes model prices vs market prices
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Figure 6: Variance gamma model prices vs market prices
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Figure 7: Brownian-time-changed variance gamma model prices vs market prices

In each plot, there are observably four strings of option prices, The uppermost string contains
the prices with the longest expiry, while the lowest represents the shortest expiry. Due to certain
liquidity issues, the prices may fluctuate at some low level with respect to increasing strikes.

In general, deviations prevail because historical data are taken into account in place of calibra-
tion, and recent price trends are only able to partially reflect market expectations. Despite this, the
four models uniformly fit better for short-expiry options than for long-expiry ones. In comparison,
the variance gamma models visually improve from the Black-Scholes for short-term options by in-
troducing large jumps, while the business time structure appears to increase accuracy for long-term
options with stochastic volatility.

To provide a more rigorous comparison, I calculate the average relative percentage error for
each model. Denote by CV',-70 and Pj’o the market prices of the standard call and put options, for
i=1,2,...,29and j=1,2,...,21, as mentioned before. These errors are calculated separately for
calls and puts as below.

1 &Cio ‘ 1 & |Pjo
Ec=—Y |==—1| and Ep=— J—’—l‘ (7.2)
22 S 1Cio 21_;;1 Pjo

The following table displays the respective errors in percentages under the four models.

Black-Scholes | non-drift variance gamma | variance gamma | Brownian-time-changed variance gamma
Ec 1.78667% 1.78295% 1.74167% 1.58334%
Ep 6.72582% 6.70562% 6.30003% 5.84279%

Table 3: Average relative percentage errors

It is not surprising that these errors decline with the increase of the number of parameters. After
all, an increased adaptability to the financial data’s distribution pattern basically results in a better
fit for market expectations in a relative sense. The purpose of comparing different modeling results
mainly lies in illustrating the necessity and validity of short-term large jumps as well as long-term
stochastic volatility.
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7.3 Power Option Prices

Since exotic power option contracts are typically traded over-the-counter, no market prices are
accessible. For this reason, I use solely the business-time variance gamma model and stick to
the parameter estimation 2* = {m*,v*, u*,a*,0*,6*} in the previous subsection while fixing the
strike price and expiry at K = $2050 and T = 1, respectively, aimed at better explaining the power
impact. Also, Sop = $2102.95, r = 0.0045 and d = 0.0209 unchanged.

Notice that for asymmetric power options, strike prices necessarily need to be adjusted to the
same order of magnitude as the powered stock price. Here I simply raise the original strike K =
$2050 to the power p to achieve this effect. For asymmetric power options there is no need to
change K.

In a piecewise manner, Figures 8 and 9 respectively plot the sensitivity to power of asymmetric
and symmetric power option prices ($).
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Figure 8: Asymmetric power option price sensitivity to power
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Figure 9: Symmetric power option price sensitivity to power

To accelerate computation, I have adopted the infinite series method (5.3.4) for plotting sym-
metric power call prices and the beta function method (5.3.12) for symmetric power put prices.
Thanks to put-call parity, it typically takes 0.0156001 second to compute a pair of put-call prices
for an asymmetric power option using Mathematica®, regardless of p. On the other hand, an
increase in p can decelerate computation for pricing symmetric power options under the infinite
series methods, but runtime is acceptably around 0.4 second for a single call or put; under the
Gauss hypergeometric and beta functions methods which eliminate systematic errors, however,
computing a symmetric call price requires 5 to 6 seconds while computing a similar put price only
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needs 0.0156001 second. In particular, for p = 1.5, computation gives an asymmetric call price of
$12379.7 and an asymmetric put price of $9712.79; using (5.3.4) and (5.3.10), the symmetric pow-
er call and put prices are obtained to be $4046.57 and $3049.42, while using (5.3.7) and (5.3.12)
the prices are $4046.89 and $3049.74, from which it is seen that the series methods inevitably
produce small errors.

Based on the figures, the impact of power on the option prices is significantly large. All the
sensitivity curves slope upward and grow exponentially. Compared to symmetric power options,
the prices of asymmetric power options appear to be more sensitive to p. A simple explanation
is that, by assuming power-adjusted asymmetric power option strikes, a power difference exceeds
a powered difference if and only if the power gets larger than 1. When p = 1 in particular, the
options become plain-vanilla and their prices coincide.

Moreover, it is of interest to study the pricing via Monte-Carlo simulation. Continuing with
the same parameter set, I choose a quadrature size A = 1/400 and three groups of simulation
sample sizes - M = 100,500, 1000. Table 4 displays the simulation-based pricing results ($) for
p =0.5,1,1.5,2 expressly, using (6.13). These results are compared with the formula-based nu-
merical results and their respective absolute relative percentage errors are also calculated using

}é(()ap)v(sm /C(()ap%(SP) 1 | and ‘ p(gap%(SP) / Péap%(sr)) 1 |

Asymmetric power options
Simulation-based

M =100 M =500 M = 1000
C(()ap) Péap) é(gap) péap) C-(()ap) Péﬂm é(gap) p(gap)
1.67228 | 1.67585 | 1.78726 | 1.83633 | 1.76147 | 1.7783
(4.87%) (5.56%) (1.67%) (3.49%) (0.21%) (0.22%)
162.291 | 143.633 | 174.305 | 155.646 | 170.198 | 151.54
(4.57%) (5.13%) (2.50%) (2.80%) (0.08%) (0.09%)
11864.6 | 9252.38 | 12811.8 | 9930.49 | 12369.5 | 9712.58
(4.16%) (4.74%) (3.49%) (2.24%) (0.08%) (0.00%)
774764 | 530840 | 841634 | 565046 | 801534 | 554778
(3.63%) (4.38%) (4.69%) (1.78%) (0.30%) (0.07%)

Symmetric power options

Simulation-based
M =100 M =500 M = 1000
C(()SP) P(ESP) Cv(()SP> pésp) é(()sp) P(SSP) Cv(()sp) 13(5813)
7.8862 | 8.01634 | 8.07665 | 8.32861 | 8.18723 | 8.21919
(3.35%) (2.66%) (1.02%) (1.13%) (0.34%) (0.20%)
162.291 | 143.633 | 174.305 | 155.646 | 170.198 151.54
(4.57%) (5.13%) (2.50%) (2.80%) (0.08%) (0.09%)
3936.84 | 2802.01 | 4408.74 | 3241.32 | 4014.98 | 3066.75
(2.72%) (8.12%) (8.94%) (6.28%) (0.79%) (0.56%)
109369 | 58053.9 | 126984 | 73104.1 | 103721 | 66534.9
(2.50%) (11.45%) | (19.01%) | (11.51%) (2.79%) (1.49%)

Formula-based

0.5 | 1.75785 | 1.77448

1 170.059 151.4

1.5 | 12379.7 | 9712.79

2 803940 | 555183

Formula-based

0.5 | 815967 | 8.2358

1 170.059 151.4

1.5 | 4046.89 | 3049.74

2 106698 65557

Table 4: Pricing results via simulation and error analysis

The absolute relative percentage errors (rounded to a basis point) are given in the little parenthe-
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ses below the prices. Using the same program, simulating 100 sample paths takes about 4 seconds
to complete, and so simulating 1000 paths results in a large computational effort of 40 seconds
approximately, which exactly grows in an arithmetic manner. It is clearly seen that the relative
errors generally decline with increased simulation sample sizes, which in some sense fits into the
asymptotical unbiasedness of the estimators of the log price process. Nevertheless, due to its su-
perior computational efficiency, pricing through characteristic functions is highly preferred over
simulation.

8 Concluding Remarks

In this paper a Brownian time change is constructed to randomize time structure and thus model
stochastic volatility in finance. Composed of a nonnegative drift and a quadratic Brownian integral,
this time change has only two parameters which reciprocally control the randomness of volatility.
The business time is associated with a drifted variance gamma process for financial modeling, and
the resulting process is able to incorporate jumps, has an asymmetric leptokurtic feature, and flexi-
bly describe volatility clustering, as well as is tractable with characteristic functions and very easy
to simulate. After establishing the stock price dynamics under the real-world and risk-neutral mea-
sures, the time-changed model is used for option pricing. By using its uncomplicated characteristic
function, pricing for plain-vanilla options is considerably efficient. An asymmetric power option
can be regarded as a plain-vanilla option on a new powered price stock and so follows the same
pricing mechanism. Also, I find that symmetric power options can be priced in two approaches,
one with infinite series expansion and the other with some advanced functionals, the latter elimi-
nating certain systematic errors. Compared to asymmetric power options, the pricing of symmetric
power options takes significantly more time.

In discussing the Monte-Carlo simulation of this time-changed process, a general time dis-
cretization is used. In proper order, the business time, variance gamma process with drift, and
stock price process can be simulated conveniently. It is confirmed that the estimator of the log s-
tock price at a fixed time point is asymptotically unbiased, and therefore pricing through simulation
is readily available.

Afterwards, one-year SP500 daily data are taken into account for empirical modeling. Since
the model’s density function is not explicitly known, the method of moments has been used to
estimate the parameters. With market mid-prices of standard options obtained, by comparing the
model’s fitting degree with those of another three calendar-time or purely continuous models it
is observed that while discontinuities are necessary for short-term large fluctuations, stochastic
volatility seems to be needed in the long run. In addition, based on the numerical pricing of power
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options, it is directly concluded that the power impact is enormous or the option prices show very
high sensitivity to the power taken. Furthermore, when pricing options via simulation, a larger
sample size leads to less absolute relative percentage error while requiring more computational
effort that grows quasi-arithmetically.

Of course, the Brownian time change can presumably work well with other types of Lévy
processes, such as the normal inverse Gaussian process and the CGMY process. See, further,
Barndorff-Nielsen (1995) [3]. Pricing other exotic options is understandably realistic under the
time-changed process. However, imperfections of the model still exist. In reality, neither risk-free
rates nor dividends are constant numbers; they are in themselves stochastic processes. Therefore,
constructing specific interest rate and dividend yield models can better fit into time-variant market
expectations. On the other hand, this would unavoidably impede the analytical tractability of the
pricing mechanism, which should instead have reliance on other computational methods.

Appendix A - Proof of Characteristic Function of Business Time

In an attempt to prove (2.3), note that the only source of randomness in the business time (B;) is
the integrated squared Brownian motion, I = (I,) := ([ Wds). Since the square impact makes
W? no longer a Lévy process, analysis should have recourse to certain decomposition in order to
construct uncorrelated variables. The Karhunen-Loeve theorem (see, e.g., Ghanem and Spanos
(1991) [11]) provides a useful canonical orthogonal representation for W. Fixing the time interval
[0,7], since for any s > 0, E[W;] = 0, E[W?] =1, and Cov[W;,W;] = s At, which is a continuous
function in time and can be used as a Mercer kernel, W admits a decomposition that

Wy =Y Zigi(s), s>0 (A.1)
k=1

where convergence is understood in £2-norm; Z; = [ Wsgi(s)ds ~ Normal(0, A;), Vk, are pair-
wise uncorrelated random variables; gi, Vk, are eigenfunctions forming an orthonormal basis with
corresponding eigenvalues A; > 0. In this case, the integral I can be expressed as

2
t e 0 t [=)
= [ Lz2a6) | 6=Y 2 [ goa=Y 2 (A2)
0 \ k=1 k=1 0 k=1

Given ¢, I; happens to be the sum of a sequence of weighted uncorrelated chi-squared random
variables. Since Z7 ~ A, x*(1) ' Gamma(1/2,1/(2A;)) for any k®), the distribution of I, is indeed

{9)The chi-squared distribution has a natural relationship with the gamma distribution family by positive scaling. Refer to Walck (2007) [17].
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equivalent to a sum of uncorrelated gamma random variables. Recall the characteristic function
of a gamma random variable; see (3.1.3). Then the characteristic function of / conditioned on ¢ is
expressed as

Vi, (u) :=E[e"] =E [eiuil‘?’:lzf?} = ﬁE[ei”ZZ ﬁ 1 —2iu) 2 (A.3)
k=1 k=1

According to the Karhunen-Loeve theorem, the eigenfunctions and eigenvalues are found by
solving a homogeneous Fredholm integral equation of the second kind, namely,

1
Megr(u) = /0 gk(s)(s Au)ds (A4)
Separating the integral for the minimum function results in
u 1
Avgi(u) = /0 sgr(s)ds —l—/ ugy(s)ds (A.5)
u

By the Leibniz rule, differentiating twice both sides gives rise to the ordinary differential equation
(ODE) below.

Mgy (u) = —gi(u) (A.6)
subject to the boundary conditions that g;(0) = 0 and g (r) = 0. This equation has nontrivial

u —_ , . 7

if and only if the eigenvalues admit the form

42
m2(2k—1)2’

A,k == k S IN++ (AS)

with ¢ given. Clearly, Y7, A =12/2 < oo,
According to Abramowitz and Stegun (1972) [1], the cosine function has a very famous product

representation,
cos ﬁ 1 4 (A.9)
X = - .
P 72 (2k —1)?

Owing to this expansion, along with (A.8), (A.3) can be conveniently reduced into

. -1
Wy (1) = <H(1—n2(§1kt—2_”1)2)> = \/ sec V2it%u (A.10)

k=1

Therefore, (2.3) becomes clear as, form > 0 and v > 0,

E[elt(mvh)] = gimitty[sec v/ 2ive2u (A.11)
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Appendix B - Proof of Selected Pricing Formulae for Symmetric Power Options

Recall that in (5.3.3) the price of a symmetric power call involves a series of expectations, which
I denote by &,y :=E* [e”TS’T’_kl{SpK}}, for k € IN. Given k < | p|, p—k > 0, and change of
numéraire is meaningful as every powered stock price SP~* can be thought to have the following

P*-evolution,
Sg_ke(r*dpfk(f))f+(p*k)Xr

SPF = :
l”f;sh(_l(p - k))

, k<[p] (B.1)

In this case W, g, (—i(p —k)) and d,_(r) exist provided that (5.2.4) is true, and (e~ (r—dp-s)r gP=H)
is indeed a local martingale under P*. Hence, choosing SP=k for k < | p|, as numéraires direct-
ly leads to the in-the-money probabilities given in (5.3.5). Notice that there is substantially no
difference between the handling method here and that for asymmetric power options.

On the other hand, if k > |p]| + 1, the stock power becomes negative and makes no practical
sense. Then, denote by f, S|T the density function of InS7 under IP*, and applying inverse Fourier
transform it follows that

%1717_]( = e—rT/]Re(P—k)xl{x>an}fl;ST(x)dx

_, 0 . n 1 e —1iu n *
_, T/O PR+ K)E/o R{e MOy o (u) fdudy

Kp—ke—rT oo CiulnK . © ki
:T/o 9‘{6 o ‘I’1n5|T(u)/O e ‘”)ydy}du

p—k ,—1T  poo efiuanlI/* (u)
:K_e/ 9;{ S| }du (B.2)
T 0 wm—p+k

where the second equality follows from changing variable with y = x —In K and the third is a result
of Fubini’s theorem for iterated integrals; note that integration is exchangeable only for p —k < 0.
Plugging (B.2) into (5.3.3) yields (5.3.4) through (5.3.6).

Further, by changing the order of integration and summation, the second sum in (5.3.4) becomes

p,—rT — iulnK ), * p
KPe 75/0 9{{6 Vins|r (1) E ( k )—iu—p—i—k}du (B.3)

k=|p|+1

The kth term of the sum in (B.3) can be rearranged by doing some product tricks as follows.

(—1lpik p
iu—p+|pl+k ( lp] +k )
M2 (—p+i-1)
(iu—p+[p]+k)(Lp] +k)!
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I e DI - pt o) - D)
(lu—p+LpJ+k)( Lp)+ DT ( lp]+j—1)
( ) Si(=p+lpl+j=1)  14iu—p+|p]
1+1u—p+ pj Lp)+1 Hk Vo4 |p)+j—1) l+iu—p+|p|+k—1

) 1 =p+lp)+i-DITZ (1 +iu—p+p|+j—1)
1+1u—p+ pJ+1 Hk 12+ pl+j—1) TF,(1+iu—p+|pl+j—1)

_ (=l ( P )(1) (1= p+ P11 +iu— p+LpJ)k1
1+1u—p+LpJ lp]+1 K2+ | pDi-12+iu—p+ | p] )i

where in the final step the Pochhammer symbol (). has been used for reduction. The second
fraction in the last line of (B.4) is yet equivalent to the kth term of a hypergeometric function 3F,
thus giving rise to Y as in (5.3.8). This completes the proof for the call.

Similarly, for a symmetric power put, let &, ; := E* [e_’ TS’}I{ Sp< K}] . For k =0, it is immediate
that &9 =e "7 (1 —I1,) for IT, as in (5.1.4).

For a given k > 1, by performing inverse Fourier transform again,

(B.4)

Erk = erT/Rekxl{x<1nK}ﬂT1s|T(x)dx

0 o0 .
_ e"T/ ek(y—i—an)%/ m{e—lu(wlnlf)%ﬂ;S'T(u)}dudy
oo 0

_ jr /O 9{{6 1u1nKlVl>»I<lS|T( )/ e(klu))’dy}du

Kk T - efiuanw* (I/t)
KT sn{ Insi }du (B.5)
T 0 k—1u

Notably, here Fubini’s theorem is applicable for £ > 0. This implies (5.3.11). Combined with
(5.3.10), further reduction can be made by

—iulnK

wer (1 (5 [

_er—rT l_‘_l/wcﬁ e_luan‘l/* i l)k du
2 1wl lnS\T = k—iu

:er—rT l_‘_l/mcﬁ e_luanl[/* ( >/1 i p (_l)kzk—iu—ldZ du
2 7 Jo lnS‘T 0 = k

_ er—rT (l+ l/ooc)'{{e—mlnl(ll/* ( )/lz—iu—1<1 _Z)sz}du) (B 6)
27 o Ins|T\U 0 .
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for which [y z7~1(1 —z)Pdz =: B(—iu, 1 4+ p) = B(1 4 p, —iu), by the symmetric property of the
Beta function, and thus the pricing formula (5.3.12).
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