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Abstract 
In this paper we present a rigorous, yet easy to apply method that substitutes those tedious 
techniques and error prone procedures that are currently used in finding optimal portfolios. Our 
work is not to support or dispute the applicability of the Mean-Variance optimization method in 
finance; we simply offer a robust approach to find all the characteristics of any efficient portfolios, 
with or without bonds. We show that one matrix multiplication provides all the characteristics of 
all efficient portfolios including risk and return of these optimal portfolios and their corresponding 
Lagrange multipliers as well as the proportions invested in each asset. The rest is just a few simple 
elementary arithmetic operations. 

Keywords: Mean-Variance optimization, Optimal Portfolio, Minimum Variance Portfolio, Asset Allocation, 
Portfolio Selection Model, Modern Portfolio Theory. 
 

1. Introduction 
Mean-Variance optimization method in finance, which is commonly known as Markowitz Portfolio Theory, 
was introduced by [1]. Since then, the Markowitz method changed name to Modern Portfolio Theory and it 
has been remarkably enhanced in order to help researchers investigate the effect of complex constraints and 
market conditions on the original optimization technique. Today with the advent of powerful computers and 
sophisticated software programs, this work can assist researchers to investigate the applicability of such models 
in forming investment portfolios more efficiently. Furthermore, if modern portfolio theory is going to be taught 
in schools or be tried in the marketplaces, this paper offers the easiest way to achieve these goals and would 
assist academicians in the classrooms and the practitioners in the equity and derivative markets. 
 
For the past 50 years Markowitz approach had its fair share of criticisms and praises. The theory has survived, 
and still today in almost all the investments and portfolio management courses the mean-variance optimization 
techniques is examined and debated. Statman [2] asks “Is Markowitz Wrong?” and shows that the model 
works; and it worked even during the 2008-2009 financial crisis. [2] declares that “Mean-Variance portfolio 
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theory is consistent with strategic asset allocation and with tactical asset allocation.”  While [3] is addressing 
different issues, it confirms that “The stream of final payoffs obeys a classic mean-variance characterization 
and Capital Asset Pricing Model equilibrium pricing”. Draw on the chaotic hurried efforts amidst the financial 
crisis [4] offers a risk-adjusted model which supports the conditional optimization approach and states that 
“optimization with sound and rational investment assumptions produces efficiency”.  In order to advance 
Markowitz mean-variance optimization model [5] considers margin trading and adds utility function to the 
process. Thus, the model presented in [5] “allows investors to consider both volatility tolerance and leverage 
tolerance in selecting optimal portfolios.” 
 
Conversely, however, [6] critically questioned the efficiency of the mean-variance approach and shows that 
‘equal weight’ or ଵ

ே  strategy outperforms optimized Sharpe ratio. More importantly their work gives support 
to the Black–Litterman Model which was developed by [7]. To further support Black–Litterman Model, [8] 
and [9] add uncertainty to the Black–Litterman portfolio selection process and gives the investors the ability 
to express their tolerable level of uncertainty and thus limit the deviation of the portfolio’s return from the 
benchmark. 
 
In the following sections we present an algorithm that leads to a concise expression that easily computes 
optimal portfolios’ parameters. In addition, we integrate our findings with [10] and the derivation of “Arrow-
Pratt risk aversion measure” Arrow [11] and Pratt [12] to introduce an “investor’s risk tolerance factor”, δ. 
This factor, which fittingly ranges from 0 to 1, easily reveals the investor’s risk-returns preference and it 
becomes an integral part of computing portfolio’s Lagrange multipliers. Among other things, this factor helps 
an investor to clearly and accurately express his/her risk-returns preferences to the portfolio managers. 

We start from the common derivation of two portfolios and then introduce our model by combining these two 
portfolios. For simplicity, we pick the minimum-variance portfolio and a tangent portfolio to build our model. 
The tangent portfolio is the portfolio at the tangent point of a line from the origin tangent to the efficient 
frontier.  

The progression of the topics in this paper are organized as follows. In Section 1, we review and examine the 
familiar conventional optimization methods and reintroduce specifics in Sections 1.1, and 1.2. In Section 2, 
we present our model in reference to the results obtained from previous sections. In Section 3, we present a 
numerical example illustrating the application of our model. 
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1.1 The Minimum Variance Portfolio 
Since the efficient frontier in the risk return space is a convex quadratic function, it is therefore possible to find 
a minimum variance for a given ‘n’ risky assets. Thus, the Lagrange optimization approach can be structured 
to find the desired solution as follows. 

Minimize:     σ୮ଶ =  ଵ
ଶ  [ܠ][][ܠ]

                  Subject to:    [] [ܠ] = 1 
Where, p2 is the variance of the portfolio of ‘n’ risky assets; [x]T is the row vector of x1 to xn representing the 
proportions invested in each asset. [] is an n by n variance-covariance matrix, and [1]T is a row vector of 1’s 
that satisfies the condition that the summation of the allocation has to be equal to 1. We take the first derivative 
of the Lagrange function with respect to x୧ and , and make them equal to zero. 

L =  1
2 [ܠ][][ܠ] − ([][ܠ] − 1) 

[][ܠ] = []                                                            (1) 
[]்[ܠ] = 1 

Multiplying both side of Equation (1) by []-1, we will have: 

[ܠ] = []ିଵ[] (2) 

Multiplying both side of Equation (2) by [1]T we get: 

[][ܠ] = [][]ିଵ[]  

The summation of the allocations has to be equal to 1 or [1]T[x] = 1. Therefore,    = ሼ[][]ିଵ[]ሽି 
Substituting for  in Equation (2), we get: 

MVP[ܠ] = []−1[]
[]T[]−1[]                                                                          (3) 

Where, [ܠ]MVP is the proportions invested within the Minimum Variance Portfolio. Let [z] stands for []-1[1]. 

MVP[ܠ] = [ܢ]
[]T[ܢ]                                                                                  (4) 

The numerator of Equation (4) is an n-by-1 column vector of zi values, and the denominator of Equation (4) is 
the summation of these n values. Therefore, to get the proportions invested in each asset within the Minimum 
Variance Portfolio, we simply multiply the inverse of the variance-covariance matrix times a column vector 
of 1, and divide these values by their summation. 
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1.2 The Tangent Portfolio 
Consider a portfolio on the efficient frontier which is also on the tangent line from the origin. To find the 
proportions invested in each asset within this tangent portfolio we set to minimize the variance of the portfolio 
subject to the returns constraint, that is: 

Minimize:    σ୮ଶ =  ଵ
ଶ  [ܠ][][ܠ]

       Subject to:   [ܠ] [ܓ] = r୮ 

L =  1
2 [ܠ][][ܠ] − ψ൫[ܠ][ܓ] − r୮൯ 

Where, [k] is a column vector of ki representing the average return for the ith asset, and rp is the return of the 
portfolio. Make the first derivative of the Lagrangian function with respect to x୧ and ψ, equal to zero as:  

[][ܠ] = ψ[ܓ]                                          (5) 
[ܓ] [ܠ] = r୮ 

Once again we multiply both side of Equation (5) by []-1. 
[ܠ] = ψ[]ିଵ[ܓ]                                                                    (6) 

We multiply both side of Equation (6) by [1]T and Since [1]T[x] = 1, we have: 
ψ = ሼ[][]ିଵ[ܓ]ሽି 

Substituting for ψ in Equation (6), we get: 
[ܠ] = []ିଵ[ܓ]

[]்[]ିଵ[ܓ] (7)  

Where, [x]TP is the proportions invested within the Tangent Portfolio. Let [w] stands for []-1[k]. 
[ܠ] = [ܟ]

[][ܟ] = [ܟ]
∑ w୧୬୧ୀଵ

 (8) 

The numerator of Equation (8) is an n-by-1 column vector of wi values, and its denominator is the summation 
of these n values. Thus, to find the proportions invested in each asset within the Tangent Portfolio, we multiply 
the inverse of the variance-covariance matrix times the column vector of asset returns, and divide the results 
by the summation of these values. Likewise, the Capital Market Line (CML) which is the tangent line from 
the risk-free rate (rf) to the efficient frontier, has a very similar solution as the Equation (7). That is, the 
proportions within the tangent portfolio of the Capital Market Line can be computed by Equation (9). 

ଡ଼[ܠ] = []ିଵ[܋]
[][]ିଵ[܋]                                                                 (9) 

Where, [ܠ]ଡ଼ is the proportions invested in the tangent portfolio from the risk-free rate, and [c] is an n-by-1 
column vector as: [܋] = [ܓ]ൣ − [] × r൧.  Once again, the numerator is an n-by-1 column vector, and its 
denominator is the summation of these n values. [Please see Appendix A for the derivation of Equation (9)]. 
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2. The Model 
 

In this section, we first develop a model in equity market (no bond) and provide formulas to easily compute 
all the variables of the portfolios on the Efficient Frontier. Typically, the unknowns of an optimal portfolio 
are: proportions invest in each asset, the Lagrangian multipliers associated with such portfolio and the risk and 
return of that portfolio. The optimal portfolios on the efficient frontier are subject to the following two 
constraints. The optimization system and the Lagrange function can be presented as: 

Minimize:  σ୮ଶ =  1
2   [ܠ][][ܠ]

Subject to: [] [ܠ] = 1  
[ܓ] [ܠ]  = r୮  

L = 1
2 [ܠ][][ܠ] − ଵ൫[][ܠ] − 1൯−ଶ൫[ܠ][ܓ] − r୮൯  

The results of the first partial derivative of this function with respect to  x୧ , 1 and 2, can be presented as: 
[][ܠ] = ଵ[] + ଶ[ܓ]                                             (10) 
[]்[ܠ] = 1 
[ܓ]்[ܠ] = r୮ 

Multiplying both side of Equation (10) by []-1, we get:  
[ܠ] = ଵ[]ିଵ[1] +  ଶ[]ିଵ[ܓ] (11) 

Multiply and divide the first term of the Equation (11) by [1]T[]-1[1] , and multiply and divide the second 
term of the Equation (11) by [1]T[]-1[k] to get: 

୯[ܠ] = ଵሼ[][]ିଵ[]ሽ × []ିଵ[]
[][]ିଵ[]   + ଶሼ[][]ିଵ[ܓ]ሽ × []ିଵ[ܓ]

[][]ିଵ[k]  
From Equations (3) and (7) we can write: 

୯[ܠ] = ଵሼ[][]ିଵ[]ሽ × [ܠ]  +  ଶሼ[][]ିଵ[ܓ]ሽ ×   [ܠ]

Where, [ܠ]୯ is the proportions invested within any desired portfolio on the efficient frontier. [x]MVP and [ܠ]TP 
are the proportions invested within the MVP and the Tangent Portfolio, respectively. By using the [z] and [w] 
notation we can write: 

୯[ܠ] = ଵ ൭ z୧
୬

୧ୀଵ
൱ [ܠ] + ଶ ൭ w୧

୬

୧ୀଵ
൱                                            (12)[ܠ]
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Verifications in [10] shows that any portfolio on the efficient frontier can be generated from only two efficient 
portfolios. That is, portfolios on the efficient frontier are a linear combination of two distinct portfolios on the 
curve. Let’s consider the minimum variance portfolio and the tangent portfolio as the two distinct portfolios 
in order to find the proportions of any portfolio on the efficient portfolio curve as: 

୯[ܠ] = (1 − δ)[ܠ] + δ[ܠ] (13) 

Where, δ is the coefficient of such linear combination. Equation (13) can also be written as: 
୯[ܠ] = [ܠ] + δ[[ܠ] −   [[ܠ]

By comparing Equation (12) with Equation (13) we can determine the value of 1 and 2 as: 

(1 − δ) = ଵ ൬ z୧
୬
୧ୀଵ ൰ 

(1 − δ) = ଵ ൬ z୧
୬
୧ୀଵ ൰ 

ଵ = (1 − δ)
∑ z୧୬୧ୀଵ

                  ଵ = (1 − δ)
[][]ିଵ[]                                            (14) 

ଶ = δ
∑ w୧୬୧ୀଵ

                ଶ = δ
[][]ିଵ[ܓ]                                              (15) 

1 and 2 are the Lagrangian multipliers and they represent the sensitivity of the variance of the portfolio with 
respect to the constraints. Note that the value of 1 and 2 expressed in Equations (14) and (15) are the direct 
function of the ‘Risk Tolerance” factor, δ.  
 
Equation (13) shows that if δ coefficient is zero, then minimum variance portfolio is the answer. If δ coefficient 
is 1, the tangent portfolio is the answer.  δ can take values greater than 1 if a client has an exceptional 
information, but ordinarily it ranges from 0 to 1. Therefore, 0 ≤ ߜ  ≤ 1 can be used as an appraisal of investor’s 
desire to hold risky assets reflecting the degree of investor’s hesitation or inclination toward risk. In other 
words, when an investor assigns a number to δ, this number reveals the investor’s risk-returns preference or 
the degree of investor’s risk tolerance. Therefore, we refer to δ as the measure of “Risk Tolerance”. 
 
Similarly any portfolio on the Capital Market Line is a linear combination of a risk free asset and the tangent 
portfolio from rf labeled as [ܠ]ଡ଼ in Equation (9).  
Thus, the allocations within any portfolio on the Capital Market Line can be computed by Equation (16). 
 

୯[ܠ] = (1 − δ)R + δ[ܠ]ୟ୶ (16) 
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We now simplify the computations of all the prior derivations and show that all can be achieved by 
one simple matrix multiplication presented in Equation (17). 

[]ିଵ[۲]                  (17) 
Where [] is an n × n variance-covariance matrix, and [۲] is an n × 3 matrix of a column vector of 1’s, a 
column vector of asset-returns, and a column vector of asset-returns minus the risk-free rate. The result of the 
multiplication of Equation (17) is an n × 3 matrix that provides the values needed to calculate the allocations 
within MVP, Tangent portfolio, and the max-Sharpe ratio portfolio. The rest is just a few simple additions and 
divisions.  If one prefers not to use arithmetic, Equation (18) would provide the answers. 

[ܠ] =  []ିଵ[۲]
[۷]⨂ሼ[][]ିଵ[۲]ሽ (18) 

Where, [ܠ] is an n × 3  matrix of weights for MVP, Tangent portfolio from origin, and Tangent portfolio from 
the Risk Free Rate, respectively.  [۷] is an 3 × 3  identity matrix, and ⨂ represents a tensor multiplication. 
Thus, one can determine the proportions invested in any desired portfolio with or without bond easily. That is, 
for any given risk tolerance ‘’, the only task we need to complete is to multipy []-1 times [D]. Thus, one matrix 
multiplication finds all the characteristics of all efficient portfolios, including proportions invested in each 
asset, Lagrange Multipliers, and risk and return of these optimal portfolios. 

3.  Numerical Examples 
Let’s suppose an investor considers 5 risky assets. The covariance matrix, and the average returns of these 
assets are: k1 = 1.90%, k2 = 1.30%, k3 = 1.00%, k4 = 1.52%, and k5 = 1.30%. Let’s also assume Rf = 0.5%.    

[ܓ] = [0.0190 0.0130 0.0100 0.0152 0.0130] 

 =
ێۏ
ێێ
0.0560.017ۍ 0.0170.0310.0080.0230.007

0.0090.0130.004

0.0080.009 0.0230.013 0.0070.0040.0380.0180.002
0.0180.0320.006

ۑے0.0020.0060.090
ۑۑ
ې
 

A matrix multiplication expressed in Equation (17) provides results to find the following solutions. 

 

7.81% 22.15% 30.81%
34.38% 25.72% 20.49%
26.83% 14.34% 6.80%
15.80% 24.01% 28.97%
15.17% 13.77% 12.93%

Return 1.33% 1.46% 1.54%
Variance 0.0171 0.0187 0.0213

Proportions invested within the 
following portfolios 

Minimum 
Variance

Tangent 
from Origin

Max-Sharpe 
Ratio
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Below illustrates the stepwise application of Equation (18). 

[]ିଵ[۲] =
ێۏ
ێێ
ۍ 4.5820.15 0.170.20 0.150.1015.729.268.89

0.110.190.11
ۑے0.030.140.06

ۑۑ
ې
 

[][]ିଵ[۲] = [ૡ.  . ૠૡ . ૢ]  

[ܠ] =  []ିଵ[۲]
[۷]⨂ሼ[][]ିଵ[۲]ሽ 

[ܠ] =
ێۏ
ێێ
ۍ 4.5820.15 0.170.20 0.150.1015.729.268.89

0.110.190.11
ۑے0.030.140.06

ۑۑ
ې

0.017 0 00 1.285 00 0 2.061
൩ =

ێۏ
ێێ
ۍ 7.81%34.38% 22.15%25.72% 30.81%20.49%26.83%15.80%15.17%

14.34%24.01%13.77%
ۑے6.80%28.97%12.93%

ۑۑ
ې
 

Furthermore, let’s consider an investor with risk tolerance of 0.75, (δ = 0.75). Equations (13) and (16) 
calculate the proportions in a portfolio with no bond and a portfolio of stocks and bond, respectively. 

 
We find 1, 2 for the equity portfolio on the efficient frontier by using Equations (14) and (15) as: 

ଵ = (1 − δ)
∑ z୧ହ୧ୀଵ

= (1 − 0.75)
58.61 = 0.0043 

ଶ = δ
∑ w୧ହ୧ୀଵ

= 0.75
0.78 = 0.9637 

 
 

Equity 
Only

25%  Bond 
plus Equity

18.6% 23.1%
27.9% 15.4%
17.5% 5.1%
22.0% 21.7%
14.1% 9.7%

Return 1.42% 1.28%
Variance 0.018 0.012

For δ = 0.75  
Proportions for Equity, 
and Equity with Bond
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4. Conclusion 
In this work we offered a simple formula that simplified and shortened the process of finding the proportions 
invested within: 

a) The Minimum Variance Portfolio, 
b) The Tangent Portfolio from origin, 
c) Optimal Portfolios on the Efficient Frontier, 
d) The Tangent Portfolio from the Risk Free Rate, 
e) Optimal portfolios on the Capital Market Line 

In fact one matrix multiplication produced all the information needed to find all the characteristics of every 
efficient portfolio on the efficient frontier or the Capital Market Line. Thus, one can determine the proportions 
invested in any desired portfolio with or without bond effortlessly. Additionally we introduced a ‘risk 
tolerance’ factor that not only helps an investor to choose an optimal portfolio based on his/her risk preference, 
but also it reveals the Lagrangian multiplies of those portfolios. 
 

Appendix A 
To show the solution expressed in Equation (9), we first write the slope of the Capital Market Line. Equations (1A) and 
(2A) show the slope of the CML. Since CML in risk-return space has the highest slope, we maximize the slope of CML. 

Maximize: θ = ୰౦ି୰
౦                                                                (1A) 

Maximize: θ = [܋][ܠ]
ሼ[ܠ][][ܠ]ሽభమ

                                                       (2A) 

θ = [܋][ܠ] × ሼ[ܠ][][ܠ]ሽିଵଶ 
We maximize the slope function by taking the total differentiation of this expression with respect to the weights.  

dθ
dx = [܋] × ሼ[ܠ][][ܠ]ሽିଵଶ + [܋][ܠ] × − 1

2 2 × [][ܠ] × ሼ[ܠ][][ܠ]ሽିଷଶ൨ = 0  

ሽିଵଶ[ܠ][][ܠ]ሼ[܋] − .[ܠ][][܋][ܠ] ሼ[ܠ][][ܠ]ሽିଷଶ = 0  

[܋] = [܋][ܠ]
[ܠ][][ܠ] × [][ܠ]  

[܋] = [] ቊ [܋][ܠ]
[ܠ][][ܠ] ×  ቋ (3A)[ܠ]

Let [ܞ] a column vector of vi stands for ቄ [܋][ܠ]
[ܠ][][ܠ] ×  .ቅ[ܠ]
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[ܞ] =  ቊ [܋][ܠ]
[ܠ][][ܠ] ×  ቋ (4A)[ܠ]

Thus, Equation (3A) can be written as: 
[܋] = [][ܞ] 

[ܞ] = []ିଵ[܋]                                                                            (5A) 
 

 v୧
୬
୧ୀଵ = [][ܞ] 

 v୧
୬

୧ୀଵ
= [][ܞ] =  [] ቊ [܋][ܠ]

[ܠ][][ܠ] ×  ቋ[ܠ]

Since[][ܠ] = 1, then summation of the elements in the vector [ܞ] is the following scalar. 

 v୧
୬

୧ୀଵ
=  ቊ [܋][ܠ]

 ቋ (6A)[ܠ][][ܠ]

Therefore, the following ratio results to a column vector [ܠ]ଡ଼, which is the proportions invested in the max-slope 
portfolio. 

[ܞ]
∑ v୧୬୧ୀଵ

=
൜ ൠ[ܠ][][ܠ][܋][ܠ] × [ܠ]

൜ ൠ[ܠ][][ܠ][܋][ܠ]
=   [ܠ]

ଡ଼[ܠ] = [ܞ]
∑ v୧୬୧ୀଵ

= [ܞ]
[][ܞ] 

(7A) 

We use the Equations (4A) to Substitute in Equation (7A) to get the solution expressed in Equation (9). 

ଡ଼[ܠ] = []ିଵ[܋]
[][]ିଵ[܋]  

Realistically, there is always an opportunity to invest in some fixed interest rate rf, any portfolio on the CML is a 
combination of risky assets and risk-free bond. Therefore, the optimal portfolios are simply on a line connecting the risk-
free asset to a particular portfolio of the risky assets. This is also known as the ‘one-fund theorem’ [13]. Thus, the 
proportions of risk assets in an optimal portfolio can be presented as: 

୯[ܠ] =  δ × []ିଵ[܋]
[][]ିଵ[܋] 

Where, [ܠ]୯ is the proportions invested within an arbitrary portfolio on the Capital Market Line. Once again, 0 ≤ ߜ  ≤ 1 
represents an appraisal of investor’s desire to hold risky assets and reflects the degree of investor’s risk tolerance. Thus, 
using CML as the locus of efficient portfolios, δ asserts the investor’s degree of tolerance in risky assets. 
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Appendix B 
It is important to mention the sameness of the aforementioned “Risk Tolerance” and the Arrow-Pratt “Risk Aversion”. 
Essentially, Arrow-Pratt approach sets a certain level of acceptable risk, say p2, and then maximize the expected return 
of the portfolio.                                                                                 

Maximize:  [ܠ] [ܓ] = r୮ 
                                                          Subject to:  [] [ܠ] = 1 

                  σ୮ଶ =  ଵ
ଶ  [ܠ][][ܠ]

The Lagrange function is expressed as: 

[ܓ][ܠ] − γଵ൫[][ܠ] − 1൯ − γଶ(1
2 [ܠ][][ܠ] − σ୮ଶ)  

Since the efficient frontier curve is convex, then due to the duality principle [14] we get identical results from the 
maximization and the minimization process. For convenience, both optimization functions are reproduced below. 

Maximize Returns:          L = [ܓ][ܠ]          −  γଵ൫[][ܠ] − 1൯ −  γଶ(1
2 [ܠ][][ܠ] − σ୮ଶ) 

Minimize Variance:         L =  1
2 [ܠ][][ܠ] − ଵ൫[][ܠ] − 1൯  − ଶ൫[ܠ][ܓ] − r୮൯ 

The Lagrangian multipliers  ଶ and  γଶ are expressing the same concept despite the fact that  ଶ is the reciprocal of γଶ. 
Equation (15) shows that ଶ has a direct relationship with δ, the risk tolerance. Consequently, γଶ (the Arrow-Pratt risk 
aversion index) has an inverse relationship with δ, while they are conveying the same information. For instance, when δ 
is small, which means the tolerance for risk is low, a less risky portfolio is preferred. We get the same result when Arrow-
Pratt ‘aversion to risk’ is high. Conversely, when δ is large, which means the tolerance for risk is high, a more risky 
portfolio is preferred. This is the same as when the Arrow-Pratt ‘risk-aversion index’ is low and an investor is willing to 
accept risky portfolio. Therefore, δ indicates the investor’s risk tolerance and in this work we referred to δ as the “risk 
tolerance index”.  

In the presence of risk-free bond, the definition of δ as the ‘Risk Tolerance’ becomes more apparent. That is, when δ is 
zero, the investor has no tolerance for risk and all will be invested in risk-free bonds. Conversely, when δ is 1, the tolerance 
for risk is high to justify all to be invested in a portfolio of risky assets.  
Once again, given ‘δ’, we can easily calculate 1 and 2 by using Equations (14) and (15). Equation (13) which finds the 
proportions invested in each asset within a desired portfolio is rewritten as: 

୯ܠ = ܠ + δ(ܠ −  (ܠ
The return of such portfolio can be presented as: 

r୯ = rMVP + δ(r − r) 
Where, [x]q is the proportions invested within an arbitrary portfolio on the efficient frontier, and r୯ is return of the 
portfolio. r and r are the returns of the minimum-variance portfolio and the tangent portfolio respectively. In a case 
that the required return, rq is given, we can find the investor’s “risk tolerance index” as: 

δ = ୰౧ି୰ౌ
୰ౌି୰ౌ. 
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