
Polynomial Representations for a Wavelet
Model of Interest Rates

Dennis G. Llemit
Department of Mathematics

Adamson University
1000 San Marcelino Street, Ermita, Manila

Abstract

We provide two numerical schemes in order to generate polynomial
functions that approximate a new wavelet which is a modification of
Morlet and Mexican Hat wavelets. This new wavelet fits historical
data of Philippine 90-day T-bill rates from 1987 up to 2008 and is
used as a new tool for interest rates forecasting.

1 Introduction

A wavelet is a mathematical function that is used to divide a given function
or a continuous-time signal into different scale components. Since wavelet
transforms are representations of functions similar to those of Fourier trans-
forms, they are used in data compression and signal processing. Over the
years, wavelets have been employed in research undertakings in a broad
range of fields from electrical engineering and computer science to economics
and finance. Among the popular ones are the Morlet and the Mexican Hat
wavelets.

In 2010, Noemi Torre and Jose Maria Escaner IV, developed a new wavelet
which we call the Torre - Escaner Wavelet. The said wavelet was constructed
using the Morlet and Mexican Hat wavelets and logically inherits their in-
trinsic properties. The Morlet wavelet is known to offer improved detection
and localization of scale over the Mexican Hat wavelet. On the other hand,

1

the Mexican Hat wavelet provides better detection and localization of patch
and gap events over the Morlet wavelet.

The Torre - Escaner wavelet is given by

W (t) =
2√
3
π−

1
4

(
1− (1.1t)2

)
e−

(1.1t)2

2 ei7.7t (1)

where t stands for time and W (t) for frequency.
This new wavelet fits historical data of Philippine 90-day T-bill rates and is,
thus, used to model Philippine interest rates [4].

In this paper, we aim to

(1) represent the Torre - Escaner wavelet by a polynomial function
Pn(t) via numerical methods; and

(2) determine the root-mean-squared errors, ERMS = 1√
n
‖W (t)−Pn(t)‖2,

of these polynomial representations.

We are interested in polynomial functions as approximations for the Torre
- Escaner wavelet for three reasons. Firstly, polynomial functions are gen-
erally simple and easy to manipulate. Secondly, polynomial functions are
algorithmically easy to implement and computationally efficient. Note that
these two are the reasons why we only want a polynomial approximation of
practical degree. Although a plethora of numerical schemes can easily give
an approximation for (1), they are mostly higher ordered that they become
impractical for our goal. Thirdly, we want to provide a numerical basis or
treatment for the wavelet that models Philippine interest rates.

2 Numerical Schemes

We employ techniques and methods provided in Numerical Analysis such as
Polynomial Least Squares (PLS) and Chebyshev Polynomial approximations
to construct the approximating or interpolating function Pn(t).

2

2.1 Polynomial Least Squares Approximation

For the Polynomial Least Squares (PLS) approximation, we seek to construct
a degree n polynomial,

Pn(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n (2)

from the Torre - Escaner wavelet W (t), such that the root-mean squared
error, ERMS, is as small as possible,
i.e.,

ERMS =
1√
n
‖W (t)− Pn(t)‖2 < ε (3)

Let

G(a0, a1, · · · , an) =
m∑
i=1

[
W (ti)− Pn(ti)

]2
=

m∑
i=1

[
W (ti)− a0 − a1ti − a2t2i − · · · − antni

]2
To minimize ERMS, we set the following:

∂G

∂a0
= 0,

∂G

∂a1
= 0,

...

∂G

∂an
= 0,

and solve the subsequent equations

∂G

∂a0
= −2

m∑
i=1

[
W (ti)− a0 − a1ti − a2t2i − · · · − antni

]
= 0,

∂G

∂a1
= −2

m∑
i=1

[
W (ti)− a0 − a1ti − a2t2i − · · · − antni

]
ti = 0,

...

∂G

∂an
= −2

m∑
i=1

[
W (ti)− a0 − a1ti − a2t2i − · · · − antni

]
tni = 0

3

which simplifies to

a0

m∑
i=1

1 + a1

m∑
i=1

ti + · · ·+ an

n∑
i=0

tni =
m∑
i=1

W (ti),

a0

m∑
i=1

ti + a1

m∑
i=1

t2i + · · ·+ an

n∑
i=0

tn+1
i =

m∑
i=1

W (ti)ti,

...

a0

m∑
i=1

tni + a1

m∑
i=1

tn−1i + · · ·+ an

n∑
i=0

t2ni =
m∑
i=1

W (ti)t
n
i . (4)

According to [3], (4) is a system of normal equations which is equivalent to

XTXa = XTW (5)

where

X =


1 t1 t21 . . . tn1
1 t2 t22 . . . tn2
...

...
...

...
...

1 tm t2m . . . tnm


and

W =


W (t1)
W (t2)

...
W (tm)

 .
Expression (5) is also equivalent to


∑m

i=1 1
∑m

i=1 ti . . .
∑m

i=1 t
n
i∑m

i=1 ti
∑m

i=1 t
2
i . . .

∑m
i=1 t

n+1
i

...
...

...
...∑m

i=1 t
n+1
i

∑m
i=1 t

n+2
i . . .

∑m
i=1 t

2n
i



a0
a1
...
an

 =


∑m

i=1W (ti)∑m
i=1W (ti)ti

...∑m
i=1W (ti)t

2n
i

 ,
which can be expressed as

La = b (6)

4

where

L =


∑m

i=1 1
∑m

i=1 ti . . .
∑m

i=1 t
n
i∑m

i=1 ti
∑m

i=1 t
2
i . . .

∑m
i=1 t

n+1
i

...
...

...
...∑m

i=1 t
n+1
i

∑m
i=1 t

n+2
i . . .

∑m
i=1 t

2n
i

 ,

a =


a0
a1
...
an

 ,
and

b =


∑m

i=1W (ti)∑m
i=1W (ti)ti

...∑m
i=1W (ti)t

2n
i

 .
Now, if L is invertible, then L−1 exists and matrix a can be solved.

2.2 Chebyshev Polynomial Approximation

Instead of monomial basis, Chebyshev Polynomial approximation uses dif-
ferent basis vectors.
Let

Tn(t) = cosnθ = cosn
(
arccos(t)

)
(7)

where −1 ≤ t ≤ 1. We know that

cos (n+ 1) θ + cos (n− 1)θ = 2 cosnθ cos θ.

Thus, we have
T(n+1)(t) + T(n−1)(t) = 2tTn(t)

which gives the recurrence relation form of the Chebyshev polynomials,

T(n+1)(t) = 2tTn(t)− T(n−1)(t). (8)

Hence, the basis vector is of the form {T0(t), T1(t), T2(t), . . . , Tn(t)} which is
also a basis vector of polynomials in terms of t.

5

According to a theorem by Weierstrass [2], if Pn(t) interpolates a given
function f(t) on the zeros of Tn+1(t), then

‖f(t)− Pn(t)‖∞ ≤
2−n

(n+ 1)!
max
t0≤t≤tn

∣∣∣f (n+1)(t)
∣∣∣ (9)

where t ∈ [−1, 1].

This theorem guarantees that a good fit of f(t) can be found. Hence it
is imperative to determine the zeros of Tn+1(t). That can be done by simply
setting (7) to zero and solving for the corresponding θ values,

cosnθ = 0

nθ = (2k + 1)
π

2
, k = 0, 1, 2, . . . , (n− 1),

θ = (2k + 1)
π

2n
, k = 0, 1, 2, . . . , (n− 1).

Let

tk = cos θ = cos

(
(2k + 1)

π

2n

)
; k = 0, 1, 2, . . . , (n− 1) (10)

be the kth zero of (7). Then the set generated by (10) is called the set of
Chebyshev nodes of (7).

Next, we note that since {T0(t), T1(t), T2(t), . . . , Tn(t)} is a basis for the
set of polynomials, then the set is linearly independent and Ti(t) is orthogonal
to Tj(t) for i 6= j [1].

Hence, we can set

Pn(t) =
n∑
k=0

ckTk(t), (11)

a linear combination of these basis vectors. Thus, we need to detemine each
coefficient ck to come up with the Chebyshev polynomial approximation Pn(t)
for f(t).

Pn(t) interpolates f(t) at the (n + 1) Chebyshev nodes so that at every
node tk,

f(tk) = Pn(tk).

6

Hence,

n∑
j=0

f(tj)Tk(tj) =
n∑
i=0

ci

n∑
j=0

Ti(tj)Tk(tj)

=
n∑
i=0

ciKiδik (orthogonality of Ti and Tk)

=
1

2
(n+ 1)ck

where Ki = 1
2
(n+ 1) .

Thus, the coefficients can be obtained by

ck =
2

n+ 1

n∑
j=0

f(tj)Tk(tj) (12)

where tj = cos

(
(j+ 1

2)π
n+1

)
.

3 Results and Discussions

After considering several choices, we come up with the common interval
of interest for (1). The interval is [−1, 1] because this is the only interval
in which our Matlab codes give quality results. For one, the graph using
ChebPolyApprox explodes outside [−1, 1]. For comparison purposes, we
set a maximum root-mean square error, ERMS, of 0.10 corresponding to 10
percent. This threshold might be considered large but setting a very small
value might result in very high polynomial degrees.

3.1 Least Squares Approximation Results

Using the Matlab code least squares(x, y,m), the minimum degree of the
approximating polynomial is n = m = 20. For values larger than 20, the
Matlab program returns a warning note that the solution to the matrix sys-
tem (6) may be inaccurate. This is because L is a Hilbert matrix [5]. As
the matrix becomes large, its determinant tends to zero. Thus, L becomes
non-invertible.

7

For this particular degree, the Matlab program returns the polynomial
representation for (1):

P20(t) = (4.2− 0.01i)t20 + (9.32i)t19 + (−35.47 + 0.03i)t18

+ (0.01− 67.28i)t17 + (144.3− 0.06i)t16 + (−0.02 + 234.72i)t15

+ (−376.03 + 0.07i)t14 + (0.03− 526.04i)t13 + (691.51− 0.05i)t12

+ (−0.02 + 827.98i)t11 + (−914.14 + 0.02i)t10 + (0.01− 921.35i)t9

+ (842.72− 0.01i)t8 + 692.78it7 − 505.15t6 − 321.48it5

+ 174.48t4 + 78.11it3 − 27.29t2 − 6.68it+ 0.87. (13)

Its graph is

Figure 1: Graph of P20(t) with W (t) in circles

However, its root-mean-squared error is

ERMS =
1√
n
‖W (t)− P20(t)‖2 = 0.8014,

much bigger than the threshold root-mean squared error.

8

3.2 Chebyshev Polynomial Approximation Results

For the Chebyshev Polynomial approximation, the Matlab code was able to
find a polynomial approximation that satisfies the threshold error. In fact,
it was able to find more than one polynomial in the interval [−1, 1]. Since
we want a polynomial of minimum degree, we only get the three lowest, in
terms of degree, polynomial representations.

The lowest degree polynomial representation is

P10(t) = −97.36t10 + 54.93it9 + 284.32t8

−145.35it7 − 304.26t6 + 133.73it5

142.08t4 − 48.64it3 − 25.73t2

5.28it+ 0.87. (14)

Its graph is

Figure 2: Graph of P10(t) with W (t) in circles

and the corresponding root-mean-squared error is

ERMS =
1√
n
‖W (t)− P10(t)‖2 = 0.0792,

9

which is less than than the threshold error 0.10.
The next lowest degree polynomial representation is

P11(t) = −104.19it11 − 72.21t10 + 346.99it9

+220.32t8 − 444.54it7 − 246.96t6

+268.81it5 + 120.97t4 − 73.82it3

−22.97t2 + 6.62it+ 0.81. (15)

Its graph is

Figure 3: Graph of P11(t) with W (t) in circles

while its root-mean-squared error is

ERMS =
1√
n
‖W (t)− P11(t)‖2 = 0.0376

expectedly lower than P10(t).
Lastly, the third lowest degree polynomial representation is

P12(t) = 100.6t12 − 82.03it11 − 378.5t10

+285.21it9 + 571.23t8 − 381.68it7

−433.14t6 + 240.67it5 + 165.93t4

−68.64it3 − 26.99t2 + 6.35it+ 0.87. (16)

10

Its graph is

Figure 4: Graph of P12(t) with W (t) in circles

Its root-mean-squared error is

ERMS =
1√
n
‖W (t)− P12(t)‖2 = 0.0163,

much lower than P11(t) and P10(t).

4 Conclusions

The purpose of this paper is to find polynomial approximations to the Torre-
Escaner wavelet with ideal root-mean-squared errors. We first used the Poly-
nomial Least Squares (PLS) approximation scheme and the results showed
that the only resulting polynomial representation (13) does not satisfy our
threshold ERMS. This means that PLS failed to provide a good polynomial
approximation for (1).

On the other hand, the Chebyshev Polynomial approximation scheme was
able to provide good polynomial approximations for (1) at lower polynomial

11

degrees. This is a validation of the ”near-minimax” nature of the Chebyshev
Polynomial approximation scheme.

For future works, we would like to examine other polynomial approxima-
tion schemes such as the Legendre, Gegenbauer, Jacobi and other orthogo-
nal polynomials whether they can provide better approximations than the
Chebyshev scheme.

References

[1] Bernard Kolman and Drexel Hill. Elementary Linear Algebra. Pearson
Education, New Jersey, 2008.

[2] E. W. Cheney. Introduction to Approximation Theory. AMS Chelsea
Publishing, Rhode Island, 1966.

[3] K. Atkinson and W. Han. Elementary Numerical Analysis, Third Edition.
John Wiley and Sons, New York, 2004.

[4] Noemi Torre and Jose Maria Escaner IV. A New Wavelet based on Morlet
and Mexican Hat Wavelets. Matimyas Matematika, 2011.

[5] W. Yang, W. Cao, et al. Applied Numerical Methods Using MATLAB.
John Wiley and Sons, New Jersey, 2005.

12

Appendices

A Least Squares Polynomial Approximation

Matlab Code

f unc t i on l e a s t s q u a r e s (x , y , m)

% l e a s t s q u a r e s (x , y , m) f i t s a l e a s t−squares polynomial o f
% degree m through a s e t o f data where x and y are the
% coo rd ina t e s .
% The output to l e a s t s q u a r e s (x , y , m) i s the s e t o f
% c o e f f i c i e n t s a0 , a1 , . . . , am f o r the l e a s t−square
% polynomial Pm(x) = a0 + a1∗x + a2∗xˆ2 + . . . + am∗xˆm
% Hence , the re w i l l be m+1 va lue s in the vec to r a .
% A graph d i s p l a y s the s e t o f po in t s and the f i t t e d polynomial

n = s i z e (x , 1) ;
i f n == 1

n = s i z e (x , 2) ;
end

b = ze ro s (m+1 ,1) ;
f o r i = 1 : n

f o r j = 1 :m+1
% r ight−hand s i d e column vec to r c o n s i s t i n g o f sums o f
% powers o f x m u l t i p l i e d by y ’ s
b(j) = b(j) + y (i)∗x (i)ˆ (j −1);

end
end

p = ze ro s (2∗m+1 ,1) ;
f o r i = 1 : n

f o r j = 1 :2∗m+1
% sums o f powers o f x

13

p(j) = p(j) + x (i)ˆ (j −1);
end

end

f o r i = 1 :m+1
f o r j = 1 :m+1

% d i s t r i b u t i n g the sums o f powers o f x in a matrix A
L(i , j) = p(i+j −1);

end
end

a = L\b

% c r e a t i n g an x−a x i s and eva lua t ing the l e a s t−square polynomial
% t h i s i s only needed f o r data v i s u a l i z a t i o n
t = min (x) : 0 . 0 5 : max(x) ;
n = s i z e (t , 2) ;
f o r i = 1 : n

f (i) = a (m+1);
f o r j = m:−1:1

f (i) = a (j) + f (i)∗ t (i) ;
end

end

% data v i s u a l i z a t i o n
f i g u r e
p l o t (t , f) % the l e a s t s q u a r e s polynomial
hold on
p lo t (x , y , ’ r ∗ ’) % the data po in t s
g r id on

14

B Chebyshev Polynomial Approximation Mat-

lab Code

f unc t i on A =ChebPolyApprox (n , f , a , b) ;

f o r k = 1 : n + 1

t = cos (p i ∗ (k − 0 .5) / (n + 1)) ;

y = ((1 .0 + t) ∗ b . . .
+ (1 .0 − t) ∗ a) . . .
/ 2 . 0 ;

d (k) = f (y) ;

end

f a c = 2 .0 / (n + 1) ;
f o r j = 1 : (n + 1)

sum = 0 . 0 ;
f o r k = 1 : (n + 1)

sum = sum + d(k) ∗ cos ((p i ∗ (j − 1))
∗ ((k − 0 .5) / (n + 1))) ;

end
c (j) = fa c ∗ sum ;

end

c (1) = c (1) / 2 . 0 ;

t0 = 1 ;
t1 = [1 0] ;
i f n == 0

T = t0 ;
e l s e i f n == 1 ;

T = t1 ;
e l s e

15

f o r k=2:n
T = [2∗ t1 0] − [0 0 t0] ;
t0 = t1 ;
t1 = T;

end
end
A = ze ro s (n+1,n+1);

B = ze ro s (n+1,n+1);

f o r k = 0 : n ,
t j = T;
t j = f l i p l r (t j) ;
B(k+1 ,1:k+1) = t j ;

end
A = c∗B;
A = f l i p l r (A) ;

16

