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Introduction.  In this note, a straightforward account will be given of the well-known nonlinear  

 

differential equation for planetary motion under general relativity.  For the derivation of the 

 

relativistic model see [1, pp. 270-276] while for a thorough discussion of the Newtonian classical  

 

model of planetary motion  see [2, pp. 471-496].  Planetary motion is an integral part of celestial  

 

mechanics.  For an excellent introduction to this subject see [3].   

 

Main result.  The relativistic equation is given by 

 

 

 (1)     u”( θ) + u(θ) - c1 u(θ)
2 

= c2     (where u=1/r, r being the radius from the given object  

                                                                     to a foci and c1 and c2 are positive constants). 

 

  

First, multiply (1) by 2u’ and integrate for 0 to θ obtaining 

 

 

            (2)      u’( θ)
2
 + u(θ)

2
 - 2c1u(θ)

3
/3

 
= 2c2 u(θ)  -  2c2 u(0) + u’(0)

2
 + u(0)

2
 - 2c1u(0)

3
/3. 

 

 

Next, using the fact that u=1/r and u’ = -r’/ r
2

   and then multiplying equation (2) by r
4
 transforms  

 

equation (2) into 

 

            (3)     r’( θ)
2
 + r(θ)

2
 - 2c1r(θ)/3

 
= 2c2 r (θ)

3 
-  2c2r (θ)

4
u(0) + kr(θ)

4    
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where   k= u’(0)
2
 + u(0)

2
 - 2c1u(0)

3
/3.  If  k-2c2u(0) < 0, then should r → ∞ the LHS of  (3)  

 

approaches ∞ while the RHS approaches -∞ which is impossible.  In other words, the solutions 

 

must remain bounded as t→∞ given these conditions.   Should    k-2c2u(0) ≥0, then the solutions  

 

may be unbounded.    

      We could study boundedness in another way by looking at the phase space (r,r’).  We 

start by finding the equilibrium points of equation (3), i.e., the points (r,r’)  where r(θ) ≥ 0 and 

r’(θ)=0.  When r’(θ) = 0, we have from (3) after rearranging terms    

 

 

     (4)      2u(0)c2r
4
 - kr

4 
- 2c2r

3
+ r

2
 - 2c1r/3= 0. 

 

 

Equation (4) now can be rewritten as 

 

 

     (5)    f(r) =  rg(r) = r(2u(0)c2 - k)r
3
 - 2c2r

2
+ r - 2c1/3] = 0. 

 

In other words, equation (3) may be transformed into 

 

 

     (6)   r’(θ)
2
  + f(r(θ)) = r(θ)g(r(θ)) = 0. 

 

 

Next, we need to discuss the zeros of quartic polynomial f(r) in (6) in the phase space (r,r’).   

 

These points correspond to the equilibrium points of (6) when r’(θ) equals zero.  The zeros  

 

are r0 = 0 and the zeros of the cubic polynomial g(r) = (2u(0)c2 - k)r
3
 - 2c2r

2
 + r - 2c1/3.  When 

 

(2u(0)c2 - k) > 0, we can invoke Descartes rule signs (see [4, p. 211]) to conclude that g(r) has at  

least one positive real root r1 and possibly two more positive real roots r2 and r3 (with the  

 

possibility of double roots should r2 = r3 or r1= r2)  because there are three sign changes  

 

occurring in the cubic polynomial g(r).  Note, too, since the signs alternate in (5), f(r) has no  
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negative roots.   Furthermore, equation (6) implies that the bounded solutions can only occur  

 

when f(r) ≤ 0 which occurs when the cubic polynomial g(r) ≤ 0.  Should there be only one  

 

positive root r1, then the bounded solutions must exist over the interval [0,r1].  When r2 and r3 are  

 

two additional distinct zeroes of g(r) then the bounded solutions also exist over the interval  

 

[r2,r3].  However, since g(r) is positive over the interval (r1,r2), no bounded solutions can exist  

 

there because equation (6) would be positive which is impossible.  When r2 = r3 we have a local  

 

minimum at the equilibrium point (r2,0) so in addition to the equilibrium point (r2,0), bounded  

solutions exist only on [0,r1] since f(r) >  0 for r > r1 except when r2=r3.  On the other hand,  

 

should r1 = r2, then bounded solutions exist over the entire interval [0,r3].  In this case, we have 

 

a local maximum for r = r1 so f(r)≤0 on the entire interval [0,r3].  Furthermore, since f(r) > 0  

 

for r > r3, no bounded solutions can exist from our previous remarks.  

 

 

Remark.  In the case of a double root, one can easily calculate its value since it is a critical  

point of both g(r) and f(r) as well.  Consequently, we have g’(r) = 0.  Therefore, we have 

 

 

     (7)     g’(r) =   3(2u(0)c2 - k)r
2
 - 4c2r

  
+ 1 = 0.   

 

 

Solving for r yields  

                                       

     (8)     r =  4c2  ±( (-4c2)
2
 - 12(2u(0)c2 - k))

1/2  
.
 

                                12u(0)c2 -6k  

 

 

The correct root can be chosen by inspection.  The sign of the second derivative of (7), i.e. 

 

 

     (9)     g”(r) = (12u(0)c2 -6k)r
 
- 4c2  
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determines whether r is a local maximum or minimum of g(r). 

 

 

Conclusion.  By using standard analytical methods from differential equations the above approach 

 

clearly gives a straightforward and qualitative analysis when the initial conditions  yield orbits of the 

 

planets, an essential element of celestial mechanics.  
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