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Abstract

In wireless communications, especially in military communications, frequency
hopping is a technique to combat against jamming where the carrier signal
switches among various frequencies very rapidly. For frequency hopping sys-
tems, in order to have a successful communication session, the nodes of a wire-
less network must be synchronized. In literature, a passive synchronization
method was proposed which does not require to transmit any synchronization
information over a fixed frequency channel. The method works by forming a
system of linear equations whose solution reveals the synchronization informa-
tion. However, the criteria used to form the system does not always ensure a
unique solution and as a result, the synchronization of nodes is not ensured.
In this paper, the criteria is refined to form a system that ensures a unique
solution and therefore, synchronization of nodes is always ensured.
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1 Introduction

Two fundamental problems in secure wireless communications are eavesdropping and
jamming (deliberate interference). One way to defeat eavesdropping is encrypting
the transmission signal. However, this is not effective against jamming. In literature,
spread spectrum modulation techniques are developed for secure communication in
wireless networks, especially for networks in hostile environments, to ensure that
the transmitted signals are not eavesdropped and not jammed. Frequency hopping
(FH) spread spectrum is one among them.

In frequency hopping systems, the carrier signal switches over a set of frequencies
very rapidly. These frequencies are called hopping frequencies. The switching is de-
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termined by a pseudo-random sequence. In literature, linear feedback shift registers
(LFSRs) are used to generate these pseudo-random sequences as they are extremely
fast and easy to implement in hardware. The hopping frequencies are stored in a
look-up table (also called hop table), look at Table-1, and a binary number, formed
by the contents of specific stages of the LFSR, is used to select a frequency from
the look-up table.

Table 1: Hop Table: H
0 1 2 · · · i · · · m− 1
f0 f1 f2 · · · fi · · · fm−1

In FH systems, in order to have a successful communication session, the pseudo-
random number sequence generators of the nodes 1 of a network must be synchro-
nized. Otherwise, it is obvious that the communication is not possible. In literature,
this synchronization is accomplished by transmitting the synchronization informa-
tion on a predetermined fixed frequency channel [1]. Such methods are called Active
Synchronization methods. The main disadvantages of the Active methods are one
explicit fixed frequency channel must be reserved and more importantly, eavesdrop-
pers can easily monitor this channel and can jam it.

In [1], a passive synchronization method is proposed which does not require to
transmit any synchronization information over a reserved fixed frequency channel.
The method works as follows: a node wishing to synchronize can choose any fre-
quency from the set of hopping frequencies and monitors for (one or more) valid
transmissions on this frequency. Each valid transmission on this frequency reveals
some information about the contents of the stages of the LFSR which are used to
select the frequency from the look-up table. This information is used to form a
system of linear equations whose solution reveals the synchronization information
i.e., the contents of all stages of the LFSR. In general, a system of linear equations
AX = b, where A is a n × n binary matrix, b is a binary column vector and X is
the unknown binary vector to be found, has a unique solution if the matrix A has
rank n, equivalently A must be invertible. However, the criteria used in [1] to form
the linear system does not always ensure the rank of matrix A is n.

In this paper, the criteria is refined to form a linear system that always has a
unique solution. The rest of the paper is organized as follows: in section-II, linear
feedback shift registers are briefly discussed, in section-III, the passive synchroniza-
tion method is revisited and described, in section-IV, the criteria used to form the
system is refined and section-V concludes the paper.

1A node in a network is a device that is capable of sending and/or receiving data generated by
other nodes on the network.
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n-stage LFSR: St = (st+n−1, · · · , st+1, st), for all t ≥ 0
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where st+n = c1st+n−1 ⊕ c2st+n−2 ⊕ · · · ⊕ cn−1st+1 ⊕ cnst

Figure 1: Linear feedback shift register

2 Linear feedback shift registers

A linear feedback shift register (LFSR) of length n [2], shown in Fig. 1, consists of
n stages (or delay elements) numbered 0, 1, . . . , n− 1, each is capable of storing one
bit and, having one input and one output. At each clock, the following operations
are performed:

1. the content of stage zero is output and forms part of the output sequence

2. the content of stage i is moved to stage i− 1 for each i, 1 ≤ i ≤ n− 1 and

3. the new content of stage n − 1 is the feedback bit si which is calculated by
adding together modulo 2 the previous contents of a fixed subset of stages
0, 1, . . . , n− 1.

These fixed subset of stages are determined by a polynomial c(x) = c0 + c1x +
c2x

2 + · · · + cnxn, called connection polynomial, of degree n where ci ∈ {0, 1}.
Clearly, maximum period of any output sequence of an LFSR of length n is 2n − 1.
A pseudo-noise (pn) sequence is an output sequence of an n-stage LFSR with period
2n− 1. If c(x) is a primitive polynomial of degree n over the field {0, 1}, the output
sequence of the LFSR has period 2n − 1 for any nonzero initial state and the LFSR
is called a maximum-length LFSR.

Given a LFSR with the connection polynomial c(x) of degree n over {0, 1},
there is associated an n× n binary matrix L, called the state update matrix of the
LFSR [3],

L =




c1 c2 · · · cn−1 cn

1 0 · · · 0 0
0 1 · · · 0 0

...
0 0 · · · 1 0




.

For any t ≥ 0, let St = (st+n−1, st+n−2, . . . , st+1, st) denotes the state of the LFSR
at time t where S0 = (sn−1, . . . , s1, s0) is the initial state of the LFSR. Then,

St = Lt · ST
0 , ∀t ≥ 0
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where L0 is the n × n identity matrix, T represents the transpose of a matrix. In
the passive synchronization method, the state update matrix L plays a prominent
role.

Suppose the look-up table contains m frequencies {f0, f1, . . . , fm−1} where the
frequency fi is stored in ith location of the table for i = 0, 1, . . . ,m− 1. Suppose
m = 2n − 1, for some n. Then, one can choose a maximum-length LFSR of length
n to select frequencies from the table. Clearly, in one cycle of the LFSR, each
frequency is selected exactly once. One problem with this method is, though m is
large, (for example m = 1023, and hence n = 10), the hopping pattern is repeated
very quickly. To overcome this, the table must contain huge number of frequencies,
for example m ≥ 216, which may not be feasible for concrete applications.

Suppose m = 2k for some k. In this case, an n(> k)-stage maximum-length
LFSR can be used, and out of n stages, k stages of the LFSR can be designated to
select the frequencies from the table. Clearly, in one cycle, each frequency is selected
exactly 2n−k times except f0 which is at the table index zero and, the frequency f0

is selected 2n−k − 1 times as a maximum-length LFSR does not visit the all-zero
state. Further, if n is large, the hopping pattern will not be repeated quickly.

3 Revisiting the passive synchronization method

Consider a frequency hopping system that uses

1. m = 2k frequencies {f0, f1, . . . , fm−1} stored in a table H such that H[i] gives
the frequency fi for i ∈ {0, 1, . . . , m− 1}

2. a maximum-length LFSR of length n with the connection polynomial c(x) =
c0 + c1x + c2x

2 + · · ·+ cnxn of degree n.

Suppose out of n stages of the LFSR, k stages, numbered i0, i1, . . . , ik−1 where
i∗ ∈ {0, 1, . . . , n − 1}, are designated to select the frequencies from the table. For
example, if the binary number formed by the contents of these k stages is denoted
by i 2, the frequency H[i] = fi is selected from the look-up table.

Assume there is a node (call it as old node) in the network that is already
transmitting some data. Suppose a new node is brought into the network. In order
to communicate with the old node, the new node must be synchronized with the old
node. Synchronizing the new node with the old node means, at some time unit, the
LFSR at new node must be initialized with the state of LFSR at the old node. Once
this is accomplished, both nodes are synchronized and hence, they can communicate
to each other.

2Assuming i0 as the least significant bit and ik−1 as the most significant bit

4



To achieve this, the passive method proposed in [1] forms a system of linear
equations AX = b (at new node) whose solution reveals the state of the LFSR at
old node at some time unit. First, all elements of the coefficient matrix A and the
vector b are set to zero. To form the system, the new node picks up a frequency
from the table (does not matter which one) [1] and monitors for a valid transmission
on this frequency. Suppose at time t0 + l0 where l0 = 0, the first hit has occurred
and, the state of the LFSR (at new node) at this time unit is denoted by S0 =
(sn−1, . . . , sik−1

, . . . , si1 , . . . , si0 , . . . , s0). We call it as the initial state of the LFSR
(at new node). Clearly, the first hit reveals the contents of the stages i0, i1, . . . , ik−1

of the LFSR (i.e., the binary values of si0 , si1 , . . . , sik−1
) and helps in filling the k

rows of the augmented matrix [A, b] as below.



a0,0 · · · a0,ik−1 · · · a0,i1 · · · a0,i0 · · · a0,n−2 a0,n−1

.

.

.
0 · · · 1 · · · 0 · · · 0 · · · 0 0

.

.

.
0 · · · 0 · · · 1 · · · 0 · · · 0 0

.

.

.
0 · · · 0 · · · 0 · · · 1 · · · 0 0

.

.

.
an−1,0 · · · an−1,ik−1 · · · an−1,i1 · · · an−1,i0 · · · an−1,n−2 an−1,n−1




×




sn−1
.
.
.

sik−1
.
.
.

si1
.
.
.

si0
.
.
.

s0




=




bn−1
.
.
.

uik−1
.
.
.

ui1
.
.
.

ui0
.
.
.

b0




(1)

where ui0 , ui1 , . . . , uik−1
are the contents of the stages i0, i1, . . . , ik−1 of the LFSR

respectively. After the first hit, the LFSR at new node is updated at each time unit
(i.e., after the first hit, at each time unit, LFSRs at both nodes are updated). Fur-
ther, at each time unit t0+l, for any l > 0, the state Sl = (sl+n−1, sl+n−2, . . . , sl+1, sl)
of the LFSR at new node can be obtained as

Sl = Ll · ST
0

where S0 = (sn−1, . . . , sik−1
, . . . , si1 , . . . , si0 , . . . , s0) i.e., wth row of Ll expresses

sl+n−1−w as the linear combination of the bits of initial state, for all w ∈ {0, 1, . . . , n−
1}.

To fill the remaining rows of A, the new node monitors for some more valid
transmissions on the same frequency. Suppose, the second hit occurs at time unit
t0 + l1 where l1 > l0 = 0. Then at this time unit t0 + l1, once again contents of the
stages i0, i1, . . . , ik−1 of the LFSR are revealed. Now, choose one row among the
k rows of the matrix Ll1 corresponding to the stage numbers i0, i1, . . . , ik−1 that is
satisfying the following criteria to fill the wth-row of A (that is not yet filled):

1. it must not be identical with any of the non-zero rows of the incomplete
coefficient matrix A

2. it must have a non-zero element at the wth-column
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Whenever a row, satisfying the above criteria, is found that is used to fill the wth-row
of the matrix A and the corresponding frequency selection bit is placed at wth-row
of the column vector b.

Suppose mth hit occurs at time t0 + lm−1 where lm−1 > · · · > l1 > l0 = 0 and
after mth hit, all rows of the augmented matrix [A, b] are filled by using the above
procedure. If this linear system of equations has unique solution, it can be solved
using the gaussian elimination method to find the unknown initial state S0 of the
LFSR at new node. Observe that the state S0 corresponds to the first hit which
occurred at time t0 + l0 with l0 = 0. Hence, Slm−1 = Llm−1 · ST

0 gives the state of
the LFSR at time unit t0 + lm−1 and at this point, states of the LFSRs at old node
and new node are identical. Thus the new node is successfully synchronized with
the old node.

When the above criteria is used to fill the matrix A, it ensures that all rows of A
are distinct and non-zero and, all diagonal elements of A are non-zero. The passive
method in [1] believed that the matrix A formed by using this criteria has rank
n. This may not be true. There are two problems in the passive synchronization
method:

1. the coefficient matrix A formed by using the above criteria is not necessarily
to have rank n. For example, the matrix




1 0 0
0 1 1
1 1 1




has all distinct rows and all non-zero diagonal entries. However, rank of A is
2 as the last row is the linear combination of first two rows and hence, the
matrix is not invertible.

2. if the new node monitors the frequency f0 which is at the table index 0 (i.e.,
H[0] = f0) then at each hit, the contents of the stages i0, i1, . . . , ik−1 of the
LFSR are zero. This yields the linear system AX = 0. Hence, when the rank
of A is n, we have the all-zero solution for the unknown initial state S0 and
when the rank of A is less than n, more than one solution is exist for S0. In
both cases, synchronization is not assured.

In next section, the above criteria is refined in order to have a unique non-zero
solution for the system AX = b where b is a non-zero (column) vector.

4 Refined criteria to form the system of linear equations

It is apparent that the new node must not choose the frequency f0 which is at the
table index zero to monitor. Instead, it can choose any other frequency from the
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table. It ensures that b is always a non-zero vector as the contents of all k stages
i0, i1, . . . , ik−1 of the LFSR are considered for the first hit.

Clearly, after the first hit, the filled k rows of A are linear independent. The
notion behind filling the remaining rows of A is, whenever a subsequent hit occurs,
choose a row from the matrix Ll, where l > 0, corresponding to one of the stage
numbers i0, i1, . . . , ik−1 that is not in the linear span of the filled non-zero rows of A.
However, in general, generating the linear span of a given set of n dimensional vectors
over {0, 1} and ensuring that a vector is not in that linear span is computationally
intensive which is not feasible in concrete applications.

For this reason, to form the coefficient matrix A, the following criteria is used.
Suppose r rows of the matrix A are successfully filled with r linearly independent
vectors (for example, after the first hit, k rows of A are filled and, these k rows are
clearly linearly independent). Then n− r rows of A are yet to be filled and denote
the indices of these rows by w0, w1, . . . , wn−r−1. Now, choose a row from the k rows
of the matrix Ll, where l > 0, corresponding to the stage numbers i0, i1, . . . , ik−1 to
fill the wth

j -row of A that is satisfying the following criteria:

1. the row must have a non-zero element in the wth
j -column.

2. the row must have zeros at columns w0, w1, . . . , wj−1, wwj+1, . . . , wn−r−1.

This procedure is repeated until all rows of the matrix A are filled. When all rows of
A are filled, the refined criteria ensures not only all diagonal elements of A are non-
zero but also rank of A is n and therefore, the system AX = b always has a unique
solution. The solution can be found by using the gaussian elimination method.

Although existence of the matrix A is not discussed (i.e., in one cycle of the
LFSR, whether all rows of A can be filled since the time unit t0 + l0), during
simulations, it has been observed that the matrix A is found very likely for n ≤
16, k = 4, 5, 6, 7.

5 Conclusion

The passive synchronization method for frequency hopping systems has been re-
visited and described. The passive method works by forming a system of linear
equations whose unique solution reveals the synchronization information. As the
criteria used to form the system of equations does not always ensure a unique so-
lution, the criteria is refined. Hence, once the system of equations is formed using
the new criteria, the system always has a unique solution and the synchronization
of nodes is always ensured.
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