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1Département de Mathématiques et Informatique, Université d’Agadez, NIGER,
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Abstract

The aim of this paper is to determine the optimal initial height
of a sand dune that may favor its formation when it is com-
pletely immersed in an aquatic environment. We formulate an
optimal control problem governed by the equations which model
the formation dynamics of this dune through its height under the
effect of the incompressible flows in space dimension 2, where
the control plays the role of an uncertainty on the initial height.
To solve this problem, we use a Chebyshev-Gauss-Lobatto spectral
approach PN−2,M−2-type in space and the Second-order backward
Euler scheme. The Chebyshev-Gauss-Lobatto quadrature and the
Composite-Trapezoidal method are also used. Further numerical
tests are given to illustrate our approch and compare the approach
and optimal solutions.
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1 Introduction
Sanding is an environmental phenomenon whose stake has been the subject of

many contributions for an effective struggle [12, 13, 15, 16, 17, 18, 19]. Yet we can
not influence this phenomenon until we have a good understanding of the process
that governs its formation. It is in this perspective that we have developed and
studied numerically a mathematical model [17, 18] that describes the sand dune
formation dynamics across its height in an incompressible flows where the dune
is supposed to be completely submerged and occupies a bounded open regulated
domain Γµ =]−1

µ
, 1
µ
[2, (µ > 1) of R2.

The results obtained allowed us to understand the sand dune formation dynamics
in an aquatic environment over a time interval [0, T ], T > 0 [17, 18]. Thus, in
order to implement these results, we were interested in this work to determine the
optimal initial height which can favor the dune formation at a given instant t,
with the same initial data [17, 18] that we consider as the observation data. And
to better understand the control action on the approximate height, we use this
optimal value as initial data to calculate the optimum height.To achieve this, we
formulate an optimal control problem governed by the equations which model the
dune formation dynamics, while acting on the initial height of this dune with a
control that plays the uncertainty role on This one [1, 5, 20, 22].
Several approaches are used to solve a large class of optimal control problems
[1, 4, 6, 7, 14, 20, 24, 26]. For our problem, we use the Second-order backward Euler
scheme for time semi-discretization and the Chebyshev-Gauss-Lobatto spectral
approach PN−2,M−2-type [2, 8, 18, 21] for spatial discretization. This approach
is based on use Chebyshev polynomials of degree at most N − 2 following x and
at most M − 2 following y to approximate the functions and their derivatives
on the Chebyshev-Gauss-Lobatto usual grid of collocation points. Furthermore,
we approximate the cost function using the Chebyshev-Gauss-Lobatto quadrature
method for integral on Γµ domain and the Composite-Trapezoidal method for
integral on time interval [3, 9].
The paper is organized as follows : Section 2 is devoted to the formulation of
optimal control problem. In Section 3 we present the numerical schemes that we
used. Numerical results are presented and discussion in Section 4. We concludes
this paper in section 5.

2 Problem Formulation
Let Γµ =]−1

µ
, 1
µ
[2, (µ > 1), a regular bounded domain occupied by a sand dune

which is supposed to be completely immersed in an incompressible flows in a
regular open domain Ω =]− 1, 1[2 of R2.
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Let T > 0. Note : Q =]0, T [×Γµ and the control space U = L2(Γµ).
The model problem under consideration is to find the optimal control vopt and the
optimal height hopt which minimize the cost function :

J(v) = 1
2

∫ T

0
‖ h(t, x, y)− hobs ‖2

L2
w(Γµ) dt+ α

2 ‖ v ‖
2
L2
w(Γµ), (1)

subject to : 
∂h

∂t
−∇.(m∇h) = Φ(t, x, y) in Q (2)

‖ ∇h ‖≤ 1, m(‖ ∇h ‖ −1) = 0 in Q (3)
h(0, x, y) = hobs + v(x, y) on Γµ, (4)

where
• h(t, x, y) is the dune height;
• hobs is an observation data;
• Φ(t, x, y) is a source term;
• m(t, x, y) is the mass density of the sand grains transported by the flows;
• v(x, y) denotes the control variable that plays the role of an uncertainty on the
initial height of the dune;
• α denotes a real coefficient of regularization.
The norm ‖ ‖L2

w(Γµ) is defined for a continuous function φ to a weight function w
[8, 21], by the following relation :

‖ φ ‖L2
w(Γµ)= (

∫ 1
µ

− 1
µ

∫ 1
µ

− 1
µ

| φ(x, y) |2 w(x)w(y)dxdy) 1
2 . (5)

Note Uad = {u ∈ U : ‖ ∇u ‖≤ 1}, the admissibles controls set.
Choose Φ, m and h in L2(Q), and the observation data hobs in L2(Γµ).
We assume that problem (1)-(4) has a unique solution (hopt, vopt). We propose a
reformulation as follows :

J(u) = min
v∈Uad

J(v), (6)

subject to Eqs. (2)-(4).

3 Numerical Schemes
In this section, we give the numerical Schemes that we use to discrete problem

(1)-(4). The approximate process of the considered problem includes the approxi-
mation as well as the discretization of the cost function and the constraints model.
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3.1 Approximation of the Constraints model
For a given positif integer r, we consider a time step discretisation ∆t = T

r
, with

T ≥ 1. Then we define the knots of the interval [0;T ] given by tn = n∆t, with
n ∈ {0, . . . , r}.
For a given continues function ϕ(t, x, y), we approximate ϕ at the knots tn by :
ϕ(tn, x, y) ≈ ϕn(x, y).
In order to approach in time the Eq. (2), we used second-order backward Euler
scheme which is given by :

∂tϕ(tn+1, x, y) ≈ 3ϕn+1(x, y)− 4ϕn(x, y) + ϕn−1(x, y)
2∆t , for n = 1, . . . , r. (7)

Let Λ =]−1, 1[. For a given positive integers N and M we denote by PN−2(Λ) and
PM−2(Λ) sets of orthogonal polynomials of degree less than or equal to N − 2 and
M − 2, respectively.
Let denote PN−2,M−2(Λ×Λ) = PN−2(Λ)⊗PM−2(Λ), the set of polynomials defined
on Λ×Λ of degree N − 2 according to the variable x and degree M − 2 according
to the variable y,
where ⊗ denotes Kronecker product [11].
The Chebyshev-Gauss-Lobatto spectral approach PN−2,M−2-type consists in ap-
proaching functions and its derivatives using Chebyshev polynomials and the
Chebyshev-Gauss-Lobatto mesh [8, 21].
For µ > 1, interval ]−1

µ
, 1
µ
[ subset ]− 1, 1[, PN−2,M−2(Γµ) subset PN−2,M−2(Λ× Λ).

Let (xxi, yyj) a grid of Γµ defined by :
xxi = 1

µ
cos( iπ

N
), i = 1, . . . , N − 1

yyj = 1
µ
cos( jπ

N
), j = 1, . . . ,M − 1.

We write Eqs. (2)-(4) at the nodes (xxi, yyj) and at point tn+1 for i = 1, . . . , N−1,
j = 1, . . . ,M − 1 and n = 0, 1, . . . , r.
Let us consider the following approximations :

h(tn+1, xxi, yyi) ≈ hn+1
i,j ,

m(tn+1, xxi, yyi) ≈ mn+1
i,j ,

φ(tn+1, xxi, yyi) ≈ φn+1
i,j ,

v(xxi, yyi) ≈ vi,j.

(8)
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We approach the first and secondary operators of derivation of ϕ = m,h in
PN−2,M−2(Γµ)

∂ϕn+1(xi; yj)
∂x

=
N∑
k=0

d̃N,1i,k ϕ
n+1
k,j ;

∂ϕn+1(xi; yj)
∂y

=
M∑
l=0

d̃M,1
j,l ϕ

n+1
i,l

∂2ϕn+1(xi; yj)
∂x2 =

N∑
k=0

d̃N,2i,k ϕ
n+1
k,j ;

∂2ϕn+1(xi; yj)
∂y2 =

M∑
l=0

d̃M,2
j,l ϕ

n+1
i,l ,

(9)

where d̃N,1i,k and d̃N,2, 1 ≤ i ≤ N−1; 1 ≤ k ≤ N−1 are coefficients of the Chebyshev
differentiation matrix of order 1 D̃N and order 2 (D̃N)2 in PN−2(Λ) [8, 21].
Using the approximations (8) and the schemes (7) and (9) we obtain the discrete
form of Eq. (2) as follows :

3hn+1
i,j − 4hni,j + hn−1

i,j

2∆t −
(N−1∑
k=1

d̃N,1i,k m
n+1
k,j

)(N−1∑
k=1

d̃N,1i,k h
n+1
k,j

)
−mn+1

i,j

N−1∑
k=1

d̃N,2i,k h
n+1
k,j

−
(M−1∑

l=1
d̃M,1
j,l m

n+1
i,l

)(M−1∑
l=1

d̃M,1
j,l h

n+1
i,l

)
−mn+1

i,j

M−1∑
l=1

d̃M,2
j,l h

n+1
i,l = Φn+1

i,j ,

(10)

For n = 0, 1, . . . , r Let

An+1
1 = 2∆t(diag[(D̃N ⊗ IN−1)mn+1]I). ∗ (D̃N ⊗ IM−1), (11)

An+1
2 = 2∆t

[
diag

(
mn+1

)
I
]
. ∗
(
(D̃N)2 ⊗ IM−1

)
, (12)

An+1
3 = 2∆t

(
diag

[
(IM−1 ⊗ D̃M)mn+1

]
I
)
. ∗
(
IN−1 ⊗ D̃M

)
, (13)

An+1
4 = 2∆t

[
diag

(
mn+1

)
I
]
. ∗
(
IN−1 ⊗ (D̃M)2

)
, (14)

where
IN−1, IM−1 are (N − 1) × (N − 1) and (M − 1) × (M − 1) dimensional identity
matrices,
I is (N − 1)(M − 1)× (N − 1)(M − 1) dimensional matrix with entries equal to 1,
mn+1 is a vector of order (N − 1)(M − 1)× 1 given by:

mn+1 = (mn+1
1,1 ; ...;mn+1

1,M−1;mn+1
2,1 ; ...;mn+1

2,M−1; .....;mn+1
N−1,1; ...;mn+1

N−1,M−1)t,
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An+1
1 , An+1

2 , An+1
3 , An+1

4 are (N−1)(M−1)×(N−1)(M−1) dimensional matrices
given by the second, third, fourth and fifth terms, respectively, in the first member
of Eq. (10).
.∗ denotes multiplication element per element of the same dimensional matrices.
Then using Eqs. (11)-(14), we can write the matrice formulation for Eq. (10) as
follows :

Cn+1Hn+1 = 4Hn −Hn−1 +Rn+1, n = 1, . . . , r, (15)

where Hn+1, Rn+1 are vectors of order (N − 1)(M − 1)× 1 given by :

Hn+1 = (hn+1
1,1 , . . . , h

n+1
1,M−1, h

n+1
2,1 , . . . , h

n+1
2,M−1, . . . , h

n+1
N−1,1, . . . , h

n+1
N−1,M−1)t,

Rn+1 = 2∆t(Φn+1
1,1 , . . . ,Φn+1

1,M−1,Φn+1
2,1 , . . . ,Φn+1

2,M−1, . . . ,Φn+1
N−1,1, . . . ,Φn+1

N−1,M−1)t.

Cn+1 is (N − 1)(M − 1)× (N − 1)(M − 1) dimensional matrix given by :

Cn+1 = 3(IN−1 ⊗ IM−1)− An+1
1 − An+1

2 − An+1
3 − An+1

4 . (16)

Assuming Cn+1 reversible, we can rewrite Eq. (15) as follows :

Hn+1 = (Cn+1)−1(4Hn −Hn−1 +Rn+1), n = 1, . . . , r. (17)

3.2 Approximation of the Cost Function
The basic principle of the Chebyshev-Gauss-Lobatto quadrature and the Composite-
Trapezoidal method is describe in many references [3, 9, 10, 23, 25].
Using Eq. (5) and the Chebyshev-Gauss-Lobatto quadrature, we obtain the fol-
lowing approximations :

‖ h(t, x, y)− hobs ‖2
L2
w(Γµ) =

∫ 1
µ

− 1
µ

∫ 1
µ

− 1
µ

| h(t, x, y)− hobs |2 w(x)w(y)dxdy

=
∫ 1

µ

− 1
µ

( ∫ 1
µ

− 1
µ

| h(t, x, y)− hobs |2 w(x)dx
)
w(y)dy

≈
∫ 1

µ

− 1
µ

(N−1∑
i=1
| h(t, xxi, y)− hobs |2 wi

)
w(y)dy

≈
M−1∑
j=1

(N−1∑
i=1
| h(t, xxi, yyj)− hobs |2 wi

)
wj

(18)
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and

‖ v(x, y) ‖2
L2
w(Γµ) =

∫ 1
µ

− 1
µ

∫ 1
µ

− 1
µ

| v(x, y) |2 w(x)w(y)dxdy

=
∫ 1

µ

− 1
µ

( ∫ 1
µ

− 1
µ

| v(x, y) |2 w(x)dx
)
w(y)dy

≈
∫ 1

µ

− 1
µ

(N−1∑
i=1
| v(xxi, y) |2 wi

)
w(y)dy

≈
M−1∑
j=1

(N−1∑
i=1
| v(xxi, yyj) |2 wi

)
wj,

(19)

where wi, is the Chebyshev-Gauss-Lobatto coefficient [8, 9, 21], define by :

wi =
{

π
2N , i = 0, N
π
N
, i = 1, . . . , N − 1, (20)

as well as wj, j = 0, 1, . . . ,M.
By subtituting Eqs. (18)-(19) in Eq. (1) we get for i = 1, . . . , N − 1 and
j = 1, . . . ,M − 1 :

JN,M(v) ≈ 1
2

∫ T

0

(M−1∑
j=1

N−1∑
i=1
| h(t, xxi, yyj)− hobs |2 wiwj

)
dt

+α2

M−1∑
j=1

N−1∑
i=1
| v(xxi, yyj) |2 wiwj. (21)

Using composite trapezoidal formula on interval [0, T ], we obtain from Eq. (21) :

JnN,M(v) ≈
(∆t

4

n∑
k=0

(M−1∑
j=1

N−1∑
i=1

[(hki,j − hobs)2 + (hk+1
i,j − hobs)2]

)

+α2

M−1∑
j=1

N−1∑
i=1

v2
i,j

)
wiwj. (22)

We can rewrite Eq. (22) in the following form :

JnN,M(V ) ≈
(∆t

4

n∑
k=0

([
(diag(Hk −Hobs))(Hk −Hobs)

]t
+
[
(diag(Hk+1 −Hobs))(Hk+1 −Hobs)

]t)
+ α

2
(
(diag(V ))V

)t)
(WN ⊗WM), (23)

where
Hobs, V are vectors of order (N − 1)(M − 1)× 1 given by :

Hobs = (hobs, . . . , hobs)t, (24)
V = (v1,1, . . . , v1,M−1, v2,1, . . . , v2,M−1, . . . , vN−1,1, . . . , vN−1,M−1)t, (25)
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WN , WM are vectors of order (N − 1)× 1 and (M − 1)× 1, respectively, given by :

WN = (w1, . . . , wN−1)t,
WM = (w1, . . . , wM−1)t,

diag(X) is L× L dimensional matrix define from X = (X1, X2, . . . , XL)t by :

diag(X) =



X1 0
0 X2 0

. . . . . . . . .
0 XL−1 0

0 XL

 , with L = (N − 1)(M − 1). (26)

From the discrete form of Eq. (4), we obtain :

H0
opt = Hobs + Vopt, (27)

where
H0
opt and Vopt are vectors of order (N−1)(M−1)×1 denotes initial optimal height

and optimal control, respectively, given by:

H0
opt = (h0,opt

1,1 , . . . , h0,opt
1,M−1, h

0,opt
2,1 , . . . , h0,opt

2,M−1, . . . , h
0,opt
N−1,1, . . . , h

0,opt
N−1,M−1)t, (28)

Vopt = (vopt1,1 , . . . , v
opt
1,M−1, v

opt
2,1 , . . . , v

opt
2,M−1, . . . , v

opt
N−1,1, . . . , v

opt
N−1,M−1)t. (29)

We deduce from Eq. (17) and (27) the optimal height vector Hopt given by :

Hn+1
opt = (Cn+1)−1(4Hn

opt −Hn−1
opt +Rn+1), n = 1, . . . , r. (30)

4 Numerical Results
We choose N = M = 20, T = 1, α = 10−2, ∆t = 2.10−3 and consider observation
data as follows :

hobs = (1− x2)(1− y2).
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Figure 1: Spatial profile of optimal
control for ∆t = 2.10−3, N = M =
20 and µ = 10.

Figure 2: Spatial profile of optimal
control for ∆t = 2.10−3, N = M =
20 and µ = 150.

Figure 3: Spatial profile of optimal
control for ∆t = 2.10−3, N = M =
20 and µ = 200.

Figure 4: Spatial profile of optimal
control for ∆t = 2.10−3, N = M =
20 and µ = 300.
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Figure 5: Spatial profile of approach
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 10.

Figure 6: Spatial profile of approach
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 150.

Figure 7: Spatial profile of optimum
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 10.

Figure 8: Spatial profile of optimum
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 150.
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Figure 9: Spatial profile of approach
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 200.

Figure 10: Spatial profile of approach
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 300.

Figure 11: Spatial profile of optimum
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 200.

Figure 12: Spatial profile of optimum
dune height at t = 0, 042, for ∆t =
2.10−3, N = M = 20 and µ = 300.
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FIGS. 1, 2, 3 and 4 describe the spatial profile of the optimal control for 501
time discretization points and 361 nodes of the Γµ domain for µ = 10, 150, 200, 300.
These graphics show that, as the domain is small, the optimal control is compact
With the same parameters, the spatial profiles of the approximate height (FIGS
5, 6, 9, 10) and the optimum height (FIGS. 7, 8, 11, 12) of the dune are shown
at t = 0.042 for a time steps ∆t = 2.10−3. These graphics show that more the
Γµ domain is small, more the control affects the approximate height, significantly.
The control action generates a significant disturbance of this height, causing a
sharpening of the dune. The spatial profile of optimum height in FIGS. 7, 8, 11
and 12 confirm this.

5 Conclusion
In this paper we have studied numerically an optimal control problem of sand

dune formation dynamics in an aquatic environment. The aim is to determine the
initial optimal height which favor dune formation in aquatic environment. we are
formulate an optimal control problem governed by the equations which model the
dune formation dynamics, while acting on the initial height of this dune with a
control that plays the uncertainty role on This one. We are using the Chebyshev-
Gauss-Lobatto spectral approach PN−2,M−2-type and the second-order backward
Euler scheme to approach the constraints model. The Chebyshev-Gauss-Lobatto
quadrature and the Composite-Trapezoidal method are used to approximate the
cost function. Numerical results that we obtain show that the methodology that
we used is effective and convenient to approach the optimal control problem con-
sidered. Our futur work will be devoted to study an optimal distributed control
problem of the dune formation dynamics in an aquatic environment or under the
wind effect.
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