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Abstract

Reduced form credit risk models provide a versatile platform to model

credit risks and to quantify the interplay between the stochastic dimension

of default probabilities and credit spread levels. This article gives a brief

introduction to the required technical foundations and discusses the ap-

proach to examine uncertainties regarding default probabilities and credit

spreads which has been established by Pan and Singleton (2008). The

intention of this article is to help academic researcher as well as practi-

tioners to understand related research projects, to do new research on this

question or to improve credit risk models used in financial institutions.
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1 Introduction

Reduced form credit risk models provide a versatile platform to model credit

risk and credit security prices. These models cannot only be used to model risks

from a financial market practitioner’s perspective but they can also be used to

analyze a wide range of questions in the field of financial market research. This

article gives a brief introduction to the technical foundations required to under-

stand and to work with reduced form credit risk models. Based on this, it is in

detail elaborated how the interplay between a possibly stochastic variation of

default probabilities and the level of credit spreads can be quantified by estimat-

ing these models under different probability measures. This approach has been

applied by Pan and Singleton (2008) for the first time and they show for three

sovereigns’ credit spreads, that the risk premium which refers to this “second”

risk dimension is a highly relevant driver of these spreads. A similar study has

been presented by Longstaff et al. (2011) and they also come to the conclusion

that the stochastic variation of the default probability is a very important driver

of the credit spreads included in their sample.

These studies provide very interesting insights into credit spreads’ development

and the results suggest to pursue further financial market research based on

the applied approach as well as to extend existing credit risk models to ac-

count for the relevance of the “second dimension” risk premium. Accordingly, a

understanding of this approach would be very helpful for researchers and prac-

titioners from wide range of professional backgrounds. The mentioned articles

do however not elaborate on the details of the applied approach but focus on

the application. For many readers and potential applicators who do not have a

strong academic focus on quantitative credit risk models, this discussion of the

basic approach itself is not detailed enough to get the necessary understanding

which is required to interpret related results or to pursue new research within

the applied modelling framework. This article is intended to fill this gap and to

provide researchers and practitioners a understanding of the doubly stochastic

credit risk models and especially of second dimension risk premium analysis in
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this framework.

The second section gives a general introduction to doubly stochastic reduced

form credit risk models. Cox-Ingersoll-Ross (CIR) diffusions (c.f. Cox et al.

(1985)) are introduced as possible modelling choice for the second stochastic

dimensions. The third section shows how pricing formulas can be derived based

on that model. In the fourth section, it is elucidated how second dimension

risk premium analysis can be conducted based on doubly stochastic reduced

form models. The last section discusses a possible estimation strategy for the

presented model framework.

This presentation is based on the characteristics of the CIR type diffusion. This

diffusion type has been chosen for the presentation of examples because it is

very easy to handle and formulas for the first two moments are well known in

closed form. However, the results can directly be transferred to differently spec-

ified models. The model setting is applied to credit default swaps (CDS) as an

example for credit securities which has also be chosen for the model estimation

in Pan and Singleton (2008) and Longstaff et al. (2011).

2 Doubly stochastic reduced form framework

2.1 Basic ideas

Reduced form credit risk models go back to Jarrow and Turnbull (1995), Lando

(1998) and Duffie and Singleton (1999). The basic idea of the reduced form

approach is to model a default as a jump of a stochastic (Poisson) process. This

implies that default time is viewed as the stopping time of that process. A

helpful feature of this class of “reduced form” models is the direct link between

the underlying Poisson parameter and the default probability. The following

introduction builds on Duffie (2005) and Duffie (1999).

To establish the basic setting of a reduced form model a measure space

(Ω1,F1, P1) with the corresponding filtration F1,s, a measurable space (M1,M1)
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and an index set S 6= ∅ be defined. In addition, a Poisson process

Poi = (Pois, s ∈ S) (1)

is defined as a family of measurable mappings between probability and measure

space:

Pois : (Ω1,F1, P1)→ (M1,M1) (2)

ω1 7→ Pois(ω1) (3)

with ω1 ∈ Ω1. Pois counts the number of events up to time s. In the present

case, Pois = 1 means that a credit event has already occurred at time s, while

Pois = 0 denotes that it has not. The increments Pois1 −Pois0 are for s0, s1 ∈

S and s1 − s0 ≥ 0 independently Poisson distributed, the Poisson parameter

depends on the length of the respective period [s0, s1] only and Markov property

is satisfied accordingly. At the first point in time, the process value be almost

surely zero and the process be supported by the probability space introduced

above. The intensity parameter of this Poisson process is denoted by λs with

s ∈ S. The probability distribution PrPoi(Pois0+t = 0|Pois0 = 0) of the

process value in [s0, s0 + t] ⊂ S conditioned on Pois0 = 0 is accordingly given

by the poisson probability distribution POI(j|ev) for j = 0 with ev denoting

the expected value. This implies in closed form:

PrPoi(Pois0+t = 0|Pois0 = 0) = POI(j = 0|ev = λs0,s0+t) = e−λs0,s0+t . (4)

This implies in turn (as the default time denoted as τ ∈ S is in this context also

stopping time for Pois
1) that

PrPoi(Pois0+t > 0|Pois0 = 0) = 1− e−λs0,s0+t . (5)

1It is assumed that the model holds only up to the first credit event.
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If λs is constant for all s ∈ [0, t], one can rewrite λs0,s0+t = λt̂ × t for all

t̂ ∈ [s0, s0 + t]. For non constant λs, one rewrites

λs0,s0+t =

∫ s0+t

s0

λsds. (6)

The filtration F1,s is generated by realizations of the underlying process Poi

prior to time s:

F1,s = σ{Poit : 0 ≤ t ≤ s}. (7)

So far, the intensity has been assumed to be deterministic. This does not seem

to be plausible for real world applications. Therefore a second stochastic

dimension is added and diffusions are introduced as stochastic drivers of the

default intensities. Diffusions are stochastic differential equations characterized

by a specific functional form, which will be introduced in detail later. A Pois-

son process with stochastic intensity is called “Cox” process and the framework

then becomes “doubly stochastic” (c.f. Duffie and Singleton (2008)).

To introduce this “second stochastic dimension” in the model set up, a probabil-

ity space (Ω2,F2, P2) with corresponding filtration F2,s and a measurable space

(M2,M2) with M2 ⊆ Rn for n ∈ N+ denoting a multivariate state vector be de-

fined. The index set S 6= ∅ is still the same as in the subsection before. Finally, a

Brownian motion Bs ∈ Rn and the following “diffusion” process Y = (Ys, s ∈ S)

is defined as a family of measurable mappings between probability and measure

space:

Ys : (Ω2,F2, P2)→ (M2,M2) (8)

ω2 7→ Ys(ω2). (9)
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Ys be moreover distinguished by the family of transition probability laws

PrY(Ys0+t|Ys0+t−1, .., Ys0) and satisfies the Markov law, i.e.

PrY (Ys0+t = m2,s0+t|Ys0+t−1 = m2,s0+t−1, Ys0+t−2 = m2,s0+t−2, · · ·, Ys0 = m2,s0)

(10)

= PrY (Ys0+t = m2,s0+t|Ys0+t−1 = m2,s0+t−1) (11)

with s0, s0 + 1, · · ·, s0 + t ∈ S, t ≥ 2 and m2s0
,m2,s0+1, · · ·,m2,s0+t ∈ M2 with

F2,s0 ⊆ F2,s0+1 ⊆ · · · ⊆ F2,s0+t. Intuitively, one can say that the filtration F2,s0

– containing the information provided by all realization of Ys up to time s0 ∈ S

– does not provide more information on the future development of Ys than the

single realization of Ys0 .

The change in the process is moreover determined by a stochastic differential

equation of the following form:

dYs = µYsds+ σYsdBs (12)

with µ : M2 → Rn and σ : M2 → Rn×n. The change in the “diffusion”

process Ys is therefore explained by a deterministic part consisting of a so called

drift parameter µYs , which is weighted by the respective time horizon, and

a stochastic part. The stochastic component is driven by the change in the

previously introduced Brownian motion Bs. The diffusion process Ys is the

solution to the stochastic differential equation of the diffusion type.

In the doubly stochastic framework, the intensity λs is assumed to depend on

the “state vector” Ys in linear form:

λs = ρ̃0 + ρ̃1Ys, (13)

with ρ̃0 ∈ R1 and ρ̃1 ∈ Rn. In the most simple and therefore most frequently

applied case, the state vector is one dimensional, respectively Ys = λs. λs itself

is then the only state variable driven by the underlying diffusion. This implies

6



Ys ∈ R and one dimensionality of both the drift and the diffusion coefficients in

the underlying stochastic differential equation.

2.2 Modelling the intensity process

The set of possible specifications of a diffusion – i.e. the functional forms the

coefficients µYs and σYs are assumed to be defined by – is rather large. In this

article we introduce one special specification which is very frequently applied in

Quantitative Finance: the square root model by Cox-Ingersoll-Ross (CIR) which

has a rather simple form and is particularly popular for short term interest rate

modelling:

dλs = (µ0 − µ1λs) + σ1

√
λsdBs (14)

with Bs denoting a Brownian motion and µ0, µ1 and σ1 being constant coeffi-

cients. This complies with µYs = µ0 − µ1λs and σYs = σ1

√
λs.

The CIR process is only defined for positive process values. Moreover, the

process is non-negative for i) µ0 > 0 and ii) µ1 > 0. Then, the stochastic differ-

ential equation also has a “unique strong solution”2 for every starting point Y0

(Overbeck and Ryden (1997)) and the conditional distribution of Yt approaches

the gamma distribution for large t (Cox et al. (1985)). A CIR process satisfying

the “Feller”-condition iii) 2µ0 > σ2
1 is also strictly positive (Feller (1951)). For

iv) 0 < µ0 < σ2
1 , the zero bound can be reached, but it is directly reflecting

(Overbeck and Ryden (1997)). Because the diffusion coefficient σ1 tends to zero

when the process values approaches to zero. The change in the process then

becomes deterministic with the mean reverting drift part being the only relevant

determinant. The zero bound is, moreover, “absorbing” (Overbeck and Ryden

(1997)) for µ0 = 0. For µ0 < 0, the process is “pushed” out of the defined

domain ((R+)N ). This makes CIR diffusions with negative drift coefficients a

rather abstract concept and will not be discussed in this section.

For CIR processes, satisfying conditions i), ii) as well as condition iv) or con-

2This means: E
[∫ s0+t

s0
|Y 2

s |ds <∞
]

for all s ∈ [s0, s0 + t] with s ∈ S (c.f. Oksendahl

(2003) or Iacus (2008)).
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dition iii), the probability distribution of the process value conditioned on a

previous value is known in closed form (Cox et al. (1985)). For univariate cases,

the conditional first two moments are known in closed form. This can be very

helpful for analyzing estimated models with respect to the second dimension

risk premium. The respective formulas for the conditional expectations and the

conditional variance can be found in Cox et al. (1985) or in Iacus (2008):

E (Ys+t|Ys) =
µ0

µ1
+

(
Ys −

µ0

µ1

)
e−µ1t (15)

V ar (Ys+t|Ys) = Ys
σ2

0

(
e−µ1t − e−2µ1t

)
µ1

+
µ0σ

2
0

(
1− e−2µ1t

)
2µ2

1

(16)

Cov (Ys+t1 , Ys+t2 |Ys) = Ys0
σ2

0

2µ1
e−µ1(t1+t2)

(
e2µ1t2 − 1

)
(17)

for t2 ≥ t1. The conditional expectations are linear in ys and the coefficient

multiplied with Ys is exp−µ1t. This reflects a stronger persistence of the process

for weak mean reversion. Moreover, the level of the conditional variance is

proportional to σ2
0 and the persistence of the conditional variance increases

with µ1/σ
2
0 .

3 Pricing formulas in the doubly stochastic re-

duced form framework

For the derivation of pricing formulas, the filtration F2,s needs to be specified

in more detail, similar to F1,s. It is the σ-algebra generated by the realization

of the diffusion process Y prior to s:

F2,s = σ{Yt : 0 ≤ t ≤ s} (18)

So far, two different probability spaces have been introduced: one referring

to stochastic movement in the underlying intensity λs and one directly referring
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to the random jumps of the Poisson process. Both probability spaces are now

combined to a single one. This is necessary for the calculation of expected val-

ues, which depend both on possible jumps given certain jump intensities, and on

the future (stochastic) developments of the underlying intensity. A new sample

space Ω = Ω1 × Ω2, a new sigma algebra F = σ{F1 ∨ F2}3 and the respective

filtration Fs are introduced. Moreover, a probability measure P is introduced

which satisfies all general requirements regarding probability measures with re-

spect to F and Fs, i.e.: P (Ω) = 1, P (F ) <∞ for all F ∈ F as well as countable

additivity for disjoint collections (c.f. Davidson (1994)).

Based on this framework, pricing formulas for future payoffs, which depend

on the respective credit risks, are now derived. This can be used to deduce pric-

ing formulas for credit securities. One important input for net present values4,

which will be used for deriving pricing formulas, is still missing: the discount

rate rs and the respective discount factor for any t ∈ R+:

νs0,s0+t = e
−

∫ s0+t
s0

rsds. (19)

The expected return is however usually not observable and is therefore usually

substituted by the risk free-rate. The concept of risk neutrality is applied.

This presumption implies that the expected payoffs can be discounted by the

risk free rate in order to obtain market prices. This may seem odd at first

glance as real world investors are usually assumed to be risk averse and the real

world market prices should ceteris paribus be inferior to the ones obtained from

a model based on the risk free rate. It will be shown that the assumption of

risk neutral investors is only a hypothetical auxiliary construct, not leading to

model prices which generally are below real market prices. Instead, the pricing

formulas are further adapted.

The mechanics behind this are shown based on the value of a zero bond ZBs0,s0+t

3In this context, “∨” denotes the union of σ-fields.
4Net present value refers to the current value of future payoffs
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in time s0 with an underlying default process driven by λs, a payment Cs sum-

ming to the face value c at maturity s0 + t, if no default has occurred. It is

assumed that the payoffs sum up to zero in the case of default. In other words,

there is no recovery. The rate expected by risk averse market investors be rs

for all s ∈ [s0, s0 + t]. Therefore, the following equation holds :

ZBs0,s0+t = Es0
[
e
−

∫ s0+t
s0

rsdsCs0+t|Fs0
]

= Es0
[
e
−

∫ s0+t
s0

rsdse
−

∫ s0+t
s0

λsdsc|Fs0
]

= e
−

∫ s0+t
s0

rsdscEs0
[
e
−

∫ s0+t
s0

λsds|Fs0
]

= e
−

∫ s0+t
s0

rsdscEs0
[
e
−

∫ s0+t
s0

λsds|F2,s0

]
(20)

The final transformation basically says that the current price of the zero bond

ZBs0,s0+t equals the discounted expected payoff. The expectation still included

does not directly refer to the question whether a default occurs, but it refers to

the future development of λs. The expectation is therefore only conditioned on

the part of the filtration which refers to the development of λs, namely F2,s.

The return is factored out because it is assumed to be deterministic. A detailed

proof was presented by Lando (1998).

This equation includes several unknown variables: both λs and rs are - in

opposition to rfs - not directly observable for any s ∈ S. Just substituting rs by

rfs is not an appropriate approach to reduce the numbers of unknown variables

to one, because the equation then should not hold anymore since

Es0
[
e
−

∫ s0+t
s0

λs+rsds|F2,s0

]
c < Es0

[
e
−

∫ s0+t
s0

λs+r
f
s ds|F2,s0

]
c. (21)

A standard trick in the context of risk neutral pricing is to adapt λs in a way

that the expected payoffs discounted by the risk free discount rate are in ac-

cordance with the observed market prices of the respective zero bonds (Duffie

and Singleton (2008)). For the presentation of this step in the present model

framework, the intensity is assumed to be deterministic.
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The risk premium, which is originally defined as the difference between expected

return and risk free return, is roughly speaking assigned to the default intensity

which is then denoted as “risk neutral”-default intensity λQs , whereas the actual

default intensity is denoted as λPs . λ
Q
s is the intensity process which would be

implied as true intensity process in market prices of zero bonds, if these were

observed in a risk neutral world. λQs should ceteris paribus be higher than λPs

to counterbalance the lower discount rate and one has

Es0
[
e
−

∫ s0+t
s0

λP
s+rsds|F2,s0

]
c = Es0

[
e
−

∫ s0+t
s0

λQ
s+rfs ds|F2,s0

]
c (22)

with λQs ≥ λPs and rs ≥ rfs for all s ∈ S. The pricing formula for the zero bond

is then given by

ZBs0,s0+t = Es0
[
e
−

∫ s0+t
s0

λQ
s+rfs ds|F2,s0

]
c (23)

So far, the difference in measures applies in a framework with a deterministic

intensity. The original framework originally is, however, doubly stochastic and

that implies a second source of risk: this “second dimension” risk refers to the

uncertainty regarding current and future default intensity levels. Risk averse

investors may expect a risk premium for this kind of uncertainty in addition

to a premium for the risk of a default given certain intensity levels. From the

perspective of a bond buyer, it is not guaranteed – in this context – that this

source of risk leads to an increase in the expected return. The respective uncer-

tainty is also relevant for (short) sellers of credit securities or investors in credit

securities as a sudden drop in default probabilities should ceteris paribus lead

to an increase the prices of bonds and to a decrease of insurance prices. The

“second dimension” risk premium could – in other words – become negative.

This may rather be the case for units with particular low anticipated default

probabilities: Investors may – for example – rather insure people against the

unlikely default of such a unit instead of insuring themselves or instead of bet-

ting on the occurrence of a credit event. The risk premium for the parties that
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profit from higher intensities might then dominate the risk premium from the

other side. The main part of the debate in this chapter is, however, restricted

to increases in returns due to the second dimension of risk respectively a pos-

itive second dimension risk premium because the empirical results in Pan and

Singleton (2008) and Longstaff et al. (2011) suggest this to be the more relevant

case.

It seems reasonable to consider both kinds of risk and the respective premia

separately as they are indeed related, but not in 1:1 relation. It might, for ex-

ample, be the case that the expected intensity levels and the respective default

risk premium are particularly low, while the variance of the intensity and the

respective “second dimension” risk premium are very high. On the other hand,

it might be the case, that the expected intensity levels and the respective risk

premium are very high, while the uncertainty regarding the intensity level re-

spectively the second dimension risk premium is very low.

The presented approach therefore has to be further adapted to equate the ex-

pected payoff of the zero bond, which is discounted based on the risk free rate,

and the observed market prices. Consequently, two new measures with respect

to λQs respectively two different versions of P2 are introduced which both refer

to the variation in the risk neutral intensity λQs but not – at least not directly

– to the actual intensity λPs . The measure P̂ refers to the actual movement of

the risk neutral intensity λQs . The measure Q̂, on the other hand, refers to the

distribution of λQs , which the expectations in pricing equation 23 are built on, so

the pricing formula still holds in the context of stochastic intensities. It refers,

in other words, to the expectations with respect to λQs , that would be implied

by market spreads in a world that is second dimension risk neutral.

Under the new (second dimension) risk neutral measure Q̂, the expectations

with respect to future λQs are from now on denoted as EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
.

This term differs only from EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
, if market participants’ ex-

pected returns change due to the uncertainty regarding λQs . If a risk premium

is only demanded by investors for taking the default risk per se – i.e. the risk
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existing no matter whether the default probability is deterministic or not – there

should only be a difference between λQs and λPs , but not between the two expec-

tations with respect to the future development of λQs .

With a discount factor based on the risk free rate rfs based on that framework

the pricing formula of this zero bond becomes:

ZBs0,s0+t = Es0
[
e
−

∫ s0+t
s0

λs+rsds|F2,s0

]
c

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
s+rfs ds|F2,s0

]
c

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ZBfs0,s0+tc. (24)

The next section discusses how an estimated model can be analyzed with respect

to the second dimension risk premium. In this section, the type of payoffs to be

priced is extended first:

So far, the valuation of credit payments was based on the assumption of zero

payments in the case of default, i.e. there was no recovery. This will be different

now and the pricing of recovery payments is introduced. In this context,

one has to think about the valuation of a payment that is executed in the case of

default right after the default occurred. This be exemplified based on a payment

obligation with payoff Zτ . This obligation pays the amount z if the underlying

unit defaults before maturity s0 + t and nothing otherwise. The payment is

moreover supposed to be executed right after default time τ . The value of that

default payment DPs0,s0+t at time s0 is

DPs0,s0+t = Es0
[
e
−

∫ s0+τ
s0

rsdsZτ |Fs0
]
. (25)

The payoff of this obligation may be positive at each point in time until maturity

because a default may occur in each point in time. The expectation therefore

refers at each particular point in time until maturity to the question whether a

default occurs just at that time and not to the question whether a default occurs

anytime until maturity. This implies an expectation regarding the level of the
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intensity at each point conditioned on the fact that no default hast occured yet.

Lando (1998) shows that the discounted expectation of the payment can be

rewritten as

Es0
[
e
−

∫ s0+τ
s0

rsdsZτ |Fs0
]

= EQ̂
s0

[∫ s0+t

s0

λQs e
−

∫ s
s0
λQ
u+rfuduzds|F2,s0

]
= zEQ̂

s0

[∫ s0+t

s0

λQs e
−

∫ s
s0
λQ
u+rfududs|F2,s0

]
(26)

The expectations denoted by EQ̂
s now again only refer to the future development

of λQs . Again the expectation based on the true distribution law of λQs would only

equate this pricing formula if market participants’ return expectations did not

change because of the uncertainty with respect to λQs . Based on this formula,

one can easily derive an equation, which links the previously introduced risk

neutral pricing formula and the value DPs0,s0+t of a contract with maturity

s0 + t paying off Zs in all s ∈ [s0, s0 + t] with Zs = z if s = τ and Zs = 0

otherwise.:

DPs0 = Es0
[(∫ s0+t

s0

Zse
−

∫ s
s0
rudu

)
|Fs0

]
(27)

=

∫ s0+t

s0

Es0 [Zs|Fs0 ] e
−

∫ s
s0
rudu (28)

= z

∫ s0+t

s0

EQ̂
s0

[(
λQs e

−
∫ s
s0
λQ
u+rudu

)
|F2,s0

]
(29)

= z

∫ s0+t

s0

ZBfs0,sE
Q̂
s0

[(
λQs e

−
∫ s
s0
λQ
udu
)
|F2,s0

]
, (30)

with discount factor ZBfs0,s denoting a risk-free zero bond issued in s0 and with

maturity s. Now, the pricing of credit default swaps (CDS) is discussed

as an example. Before this specific functional link between default intensity λs

and CDS spreads is presented, the functionality of this class of credit securities

is introduced.

CDS are insurance contracts between two parties with respect to the default of
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a third party. This basically means that the insurer or CDS seller pays a certain

amount to the insurance or CDS buyer if the third party defaults. The insured

party in return pays a semi- or quarter-annual payment – which is usually called

“spread” payment (denoted by SPs0(M) for a CDS issued in s0 and maturity

M in years) – until the contract ends. This is either the case when maturity

s0 +M is reached or after a possible default of the respective third party. The

spread is constant for one single CDS contract. Historical data of CDS spreads

usually refer to newly issued contracts. Accordingly, s0 usually complies with

the index for CDS spread time series.

The amount to be paid by the insurance seller in the case of default depends on

the proportion of debt which is not repaid by the third party in the context of

default. This share is called the “loss rate” LR. In the present framework, LR

is defined with respect to the face value of an ordinary bond. If a third party

is, for example, only able to pay back 50% of the issued bonds’ face value, the

seller of a CDS referring to this defaulting unit as third party has to pay 50% of

the respective CDS contract’s face value. This would usually lead to a payment

of 50 cents per contract as the face value of an ordinary CDS contract is one.

LR is in the following assumed to be constant for the respective third party5.

LR is identical for all CDS contracts with respect to the same third party. It is

finally important to notice that the insured person does not necessarily hold a

security issued by the respective third party.

For the pricing of newly issued CDS contracts, the single spread payment

claims can be considered as 2×M zero bonds, with maturity n
2 and face values

SPs0(M), with n ∈ {1, · · · , 2 ·t} for a CDS maturity of s0 +M , [s0, s0 +M ] ⊂ S,

M ∈ N+ ∪ {0.5} and semi-annually spread payment. n denotes the number of

the respective spread payment. This set up implies sn − sn−1 = 0.5 for all

n ≥ 1. The value SVs0,sn of one single payment obligation to be paid in sn is

5This is of course a simplifying assumption and assuming the loss rate to be stochastic and
uncertain would be more realistic. An additional risk premium for uncertainty with respect
to the loss rate would then be possible. This might be a field for future research.
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in s0 based on the pricing formulas for defaultable zero bonds:

SVs0,sn = EQ̂
s0

[
e
−

∫ sn
s0

λQ
sds|F2,s0

]
ZBfs0,snSPs0(s0 + t). (31)

The value SV totals0 (M) of the whole set of spread payments SPs0(s0 +t) referring

to a CDS contract issued in s0 with maturity s0 + t is then in s0:

SV totals0 (M) = SPs0(M)

2t∑
n=1

(
EQ̂
s0

[
e
−

∫ sn
s0

λQ
sds|F2,s0

]
ZBfs0,sn

)
. (32)

For valuation of the spread payment counterpart, i.e. the insurance obli-

gation, one can go back to the recovery payments presented in the previous

section. The insurance obligation again refers to a possible payment at each

point in time until maturity. This payment sums up to zero, if the respective

third party has not defaulted yet and it is positive right at the point in time the

default occurs. The payoff is now denoted by INSs. The amount paid in this

case of default is LR. The value of the insurance claim from the perspective of

the CDS buyer is denoted by V INSs0 (M) and can be obtained based on the

following formula:

V INSs0 (M) = Es0
[∫ s0+t

s0

e
−

∫ s
s0
rsdsINSs|Fs0

]
(33)

= LR

[∫ s0+t

s0

ZBfs0,sE
Q̂
s0

[
λQs e

−
∫ s
s0
λQ
udu|F2,s0

]
ds

]
. (34)

The “market” spread SPs0(M) is then the one that equates the values of

both payment sides, namely the value of total spread payments SV totals0 (M),

and the value of the insurance claim V INSs0 (M). The following equation is

supposed to hold accordingly (c.f. Duffie (1999)):

SPs0(M)

2M∑
n=1

(
EQ̂
s0

[
e
−

∫ s0+0.5n
s0

λQ
sds|F2,s0

]
ZBfs0,s0+0.5n

)
= LR

[∫ s0+M

s0

ZBfs0,sE
Q̂
s0

[
λQs e

−
∫ s
s0
λQ
udu|F2,s0

]
ds

]
. (35)
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So far, two versions of P2 have been introduced: Q̂ and P̂. Now, the notation

of the CIR diffusions, which determine the distribution law of λQs , is extended to

distinguish between the diffusions under both measures (c.f. Pan and Singleton

(2008)). This is done referring to the CDS pricing formula. Then, it is shown in

the context of the CDS pricing formula 35, how the coefficients of the respective

stochastic differential equation can be interpreted with respect to the second

dimension risk premium.

4 The second dimension risk premium and dif-

fusions under both measures

In the previous section, the difference between Q̂ and P̂ has already been dis-

cussed. The difference between both measures refers to the distribution law of

λQs . The distribution law of the diffusion process λQs is generally determined by

an underlying stochastic differential equation like the CIR diffusion. Consider-

ing these two ingredients of the model set up, it seems to be reasonable to adjust

the notation of the respective diffusion accordingly. The diffusion determining

the distribution law under Q̂ is denoted in the following way:

dλQs =
(
µQ̂

0 − µ
Q̂
1 λ

Q
s

)
ds+ σ1

√
λQs dB

Q̂
s . (36)

The true distribution law of λQs is given by:

dλQs =
(
µP̂

0 − µP̂
1λ

Q
s

)
ds+ σ1

√
λQs dB

P̂
s . (37)

Drift coefficients and Brownian motion differ in both equations, while the

diffusion coeffient is identical. The reason for that lies in equation 15: only

the drift coefficient and the respective value of the process itself go into the

formula for the conditional expectation. And the expectations regarding the

intensities are what matters in the “second dimension” risk premium context.

This is shown based on the CDS pricing formula 35 and the idea of a positive
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second dimension risk premium introduced before:

The “first dimension” risk premium, i.e. the premium with respect to the de-

fault risk per se (i.e. given a specific deterministic series of intensities), is already

taken into account by substituting λPs by λQs . Because of the uncertainty with

respect to λQs , the discount factor ZBfs,s+t may, however, still be larger (or

smaller) than the discount factor based on the expected return, even after this

substitution. In other words, the discount factor ZBfs,s+t might only be the

appropriate one without any further adjustments, if there is no “second dimen-

sion” risk premium in this model. In the following, this is shown referring to

the case of positive second dimension risk premia. To adjust for the effect of the

lower discount factor respectively the higher discount rate, positive payoffs have

to get lower weights and negative payoffs have to get higher weights6. This is

the case, if the expectations regarding future intensities, which are conditioned

on the current intensity levels, tend to be higher. Then, the negative payoff

in the default case is more likely and the actual payment of all single spreads

is more unlikely. The reasoning for a negative second dimension risk premium

works accordingly.

This can be shown based on the expectations with respect to functions de-

pending on the intensity process, which are included in formula 35 as well.

The expectation with respect to the first function (e
−

∫ s0+0.5n
s0

λQ
sds) refers to the

probability that a default has not occurred yet at the point in time chosen as

higher boundary of the included integral. This figure is lower if expected future

intensities are higher – both intuitively and based on mathematical reasoning7.

Accordingly, single positive payoffs are weighted by lower weights if the expected

future intensities are higher – which is in accordance with the presented eco-

nomic reasoning.

6In a risk neutral world, the observed spreads and loss rates would only be reasonable from
a no aribtrage pricing point of view, if the expected values of λQs respectively the expected
default probabilities were higher (than they actually are). The actualexpectations regarding
future intensities would be as pessimistic as they are when based under the diffusion referring
to Q̂.

7The intensity goes into the exponential function negatively.
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The relation between future intensities and the level of the second function

(λQs e
−

∫ s
s0
λQ
udu) is not directly clear. The intensities’ expected values enter this

function in two ways: the function decreases in the intensity, which goes into the

exponential function negatively, and it increases with the intensity, by which the

exponential function is multiplied. Considering the economic meaning of this

function, this is reasonable: As discussed before, the function value refers to the

probability that the default has not yet occurred at the point in time chosen

as upper border in the included integral, but occurs just right then. There is,

moreover, an integral built over that function. This integral over the function

refers to the probability that the default occurs at any point in time between

the time chosen as lower boundary of the outer integral and the time chosen

as higher boundary of the outer integral. The insurance payment is, in other

words, weighted higher if the expectations of the future default intensity tend

to be higher. This is again in accordance with the presented economic reason-

ing. The risk neutral expectations regarding the future values of the intensities

therefore have to be higher (compared to expectations based on the true dis-

tribution law), the stronger the expected return (after taking into account the

“first dimension” risk premium) exceeds the risk free return8.

The established positive relation between the second dimension risk premium

and the expected values of the intensities can also be explained in a less compli-

cated fashion based on the temporary assumption that there is no first dimen-

sion risk premium (i.e. λPs = λQs ) and the zero bond pricing formula 24, which

refers to the price of a zero bond without recovery. If the second dimension risk

premium is zero as well, the following version of the pricing equation 24 holds:

ZBs0,s0+t = EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rsds

= EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rfs ds (38)

If there exists a positive second dimension risk premium, the risk-free rate

8The opposite is the case if the second dimension risk premium is negative.
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is not equal to the expected return (rs > rfs ) and the equation 38 does not hold

anymore. As described before, one can adjust for the difference between the

discount factors resulting from rfs respectively rs by introducing the risk-free

measure Q̂:

ZBs0,s0+t = EP̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rsds (39)

= EQ̂
s0

[
e
−

∫ s0+t
s0

λQ
sds|F2,s0

]
ce
−

∫ s0+t
s0

rfs ds. (40)

If the expected return is higher (lower) than the risk-free return because of a

positive (negative) second dimension risk premium, the intensity values which

are expected under the measure Q̂ should exceed (be inferior to)9 the values

expected under P̂.

Accordingly, the difference between the conditional expectations of the in-

tensity under both measures directly measures the “second dimension” risk pre-

mium. Formula 15 shows how the drift coefficients impact the conditional ex-

pectations. If the ratio µ0

µ1
(i.e. the mean reversion) is the same under both

measures, a comparison of the drift parameter µ1 is sufficient to evaluate the

difference in the conditional expectations. A larger value for µ1 implies a larger

conditional expectation (closer to the mean reversion level), if the value of the

intensity, which the expectation is conditioned on, is below the mean reversion

level. The opposite holds if the value of the intensity is above the mean reversion

level. If µ0

µ1
is higher and µ1 is smaller under one measure, still not a general

statement can be made. In most cases, the conditional expectation would be

larger under the previously described measure. It might, however, still be the

case that – if the intensity value is below the mean reversion level under both

measures – the conditional expectation is higher under the described measure.

The difference between both measures with respect to the “second dimen-

sion” risk premium is therefore optimally evaluated with reference to the actual

9The intensity goes into the exponential function negatively.
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time series of λQs . Based on the CIR coefficients under both measures and this

time series, conditional expectations can be calculated for all horizons t. The

difference between the resulting conditional expected values can then be evalu-

ated:

EP̂
s0

[
λQs0+t|F2,s0

]
− EP̂

s0

[
λQs0+t|F2,s0

]
(41)

Another reasonable approach to evaluate the relevance of the “second dimen-

sion” risk premium is the following: the model implied CDS spreads can be

calculated based on the respective time series of λQs . The expectations can be

calculated based on both Q̂ leading to “true” model spreads ŜP s0 and P̂ leading

to “wrong” model spreads ŜP
P̂
s0 . The latter is calculated based on this formula:

ŜP
P̂
s0(M) =

L̂R
[∫ s0+M

s0
ZBfs0,sE

P̂
s0,µ̂P̂

0,µ̂
P̂
1,σ̂1

[
λ̂Qs e

−
∫ s
s0
λ̂Q
udu|F2,s0

]
ds
]

∑2M
n=1

(
EP̂
s0,µ̂P̂

0,µ̂
P̂
1,σ̂1

[
e
−

∫ s0+0.5n
s0

λ̂Q
sds|F2,s0

]
ZBfs0,s0+0.5n

) (42)

with L̂R, µ̂P̂
0, µ̂

P̂
1, σ̂1 denoting estimated coefficients, EP̂

s0,µ̂P̂
0,µ̂

P̂
1,σ̂1

denoting the re-

sulting expectation and λ̂s denoting the estimated intensity process. The true

model spreads are accordingly calculated as

ŜP
Q̂
s0(M) =

L̂R

[∫ s0+M

s0
ZBfs0,sE

Q̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[
λ̂Qs e

−
∫ s
s0
λ̂Q
udu|F2,s0

]
ds

]
∑2M
n=1

(
EQ̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂1

[
e
−

∫ s0+0.5n
s0

λ̂Q
sds|F2,s0

]
ZBfs0,s0+0.5n

) . (43)

A great difference between the true and wrong model spreads implies that the

“second dimension” risk premium is an important driver of credit spreads.

Finally, the difference in the undelying diffusions under both measures can be –

as by Pan and Singleton (2008) – evaluated based on the Girsanov theorem.

This standard theorem is frequently used in the Quantitative Finance stock

price- or short term rate context and is introduced in the next paragraphs:

Consider a measure space
(

Ω̂, P̂,F
)

. B̂s be Brownian motion under probability
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measure P̂, Θt be an adapted process to the resulting filtration Fs , the index

set S be the same as before and a process Zt be defined as

Zs = e[−
∫ s
0

ΘtdB̂t− 1
2

∫ s
0

Θ2
tdt] (44)

for t ∈ S and s ≥ t. P̂ be, moreover, related to the second probability measure

P̃ with Zs being Radon-Nykodin derivative linking these two measures:

dP̃
dP̂

= Zs (45)

According to the Girsanov theorem, under mild technical conditions, B̃ de-

fined as B̃s = B̂s +
∫ s

0
Θtdt is a Brownian motion under the measure P̃. In

equity modelling, the variable Θs is frequently considered to be the market

price of risk. Applying this approach to the presented framework shall elucidate

its reasonability. Θs be in this context denoted by ηs and the Radon-Nykodin

derivative relating Q̂ and P̂ be defined by

Ẑs = e

[
−

∫ s
0
ηtdB

Q̂
t − 1

2

∫ s
0
η2t dt

]
(46)

for t ∈ S and s ≥ t so that
dP̂
dQ̂

= Zs. (47)

This implies that

dλQs =
(
µP̂

0 − µP̂
1λ

Q
s

)
ds+ σ1

√
λQs
(
dBQ̂

s + ηsds
)
. (48)

σ1

√
λQs ηs accordingly gives the difference in change in λQs between P̂ and Q̂. The

greater ηs, the greater is the increase of λQs under Q̂ compared to the increase

under P̂. ηs is therefore another reasonable measure for the size of the “second

dimension” risk premium. A negative value for ηs would refer to situations

in which the insurance buyer expects a price reduction for the possibility of

changes in the default intensity as the insurance may be worthless in the case
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of a sudden decrease in default intensities.

ηs is in the following assumed to depend on λQs in a specific functional form. This

step is line with the literature on quantitative equity modelling (c.f. Karatzas

and Shreve (1991), Duffie (2008), Singleton (2001)). The specific form is chosen

based on the plausible assumption that the difference in change should increase

linearly in the level of the underlying intensity (c.f. Cheridito et al. (2007) and

Duffee (2002)). ηs already goes into the change of λQs as a factor multiplied by

σ1

√
λQs . To obtain a linear form, it is accordingly assumed that ηs depends on

λQs in the following way:

ηs =
ρ0√
λQs

+ ρ1

√
λQs . (49)

This results in the actual difference in change of λQs being given by

σ1

(
ρ0 + ρ1λ

Q
s

)
(50)

which is a linear function in λQs as it is supposed to be. This implies the following

link between ρ0, ρ1 and the CIR coefficients under both measures:

ρ0 =
µQ̂

0 − µP̂
0

σ1
(51)

ρ1 =
µP̂

1 − µ
Q̂
1

σ1
. (52)

Accordingly, the coefficients ρ0 and ρ0 can be derived from the CIR coeffi-

cients and a time-series of the process ηs can be calculated and analyzed.

5 Estimation procedure

The estimation of this model-framework implies the estimation of the following

coefficients: {µ̂P̂
0, µ̂

P̂
1µ̂

Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R}. After the parameters under Q̂ have been

estimated, the coefficients under P̂ can be estimated based on frequently dis-
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cussed time-series methods for diffusion processes. Therefore, this second step

is not discussed in detail in this paper.

5.1 Estimation of the diffusion parameters under Q̂

To estimate the distribution law of λQs under the risk neutral measure Q̂ is a

challenging task since only a set of spread time series SPs0(M) and approxima-

tions for the risk neutral discount factors ZBfs0,s0+s
10 are directly observable.

A loss rate LR is frequently assumed ex-ante as well. However, Pan and Single-

ton (2008) demonstrate that LR is suggest based on the term structure of CDS

identifiable and show that the typically assumed loss rate level of 70 percent is

sometimes far from the loss rate equating the pricing formula in their model11.

The suggested iterative procedure is – as mentioned before – restricted to mod-

els driven by affine diffusion processes (c.f. Duffie et al. (2003a), Duffie et al.

(2003b)) since the theory on affine processes is exploited to substitute the ex-

pectations included in formula 55. Duffie and Singleton (1999) show that ex-

pectations with respect to transforms of such affine processes can be depicted

in exponential linear form depending on the value of the state process at the

point in time when the expectation is built in. The coefficients of this function

can be obtained as solutions to given ODEs that depend on the parameters of

the underlying diffusions.

Adapting the results in Duffie et al. (2000) to the expectations included in the

CDS pricing formula, one yields

E
[
e
∫ s1
s0

λQ
sds|λQs0

]
= eαs1−s0+βs1−s0λ

Q
s0 (53)

E
[
λse

∫ s
s0
λQ
uds|λQs0

]
= eαs1−s0+βs1−s0λ

Q
s0 (As1−s0 +Bs1−s0)λQs0 (54)

10For example based on the yield-curve for AAA-bonds which is published on a daily basis
by the ECB

11Considering for example sovereign data shows that loss rates can strongly vary. Historical
data as published by Moody’s (2008) reflect a wide range of loss rates, ranging from 1.9% in
the case of Belize in 2006, to 82 % in the Russian case.
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with αs1−s0 , βs1−s0 , As1−s0 and Bs1−s0 being solutions to ODEs. The coeffi-

cients depend on the parameter of the diffusion equation driving λQs under the

respective measure.

Knowledge regarding the diffusion coefficients would therefore allow to substi-

tute the expectations in the CDS pricing formula by the exponential linear func-

tions depending on the intensity’s current realization λQs0 only. The coefficients

of this exponential linear form are, however, still unknown as the diffusion coeffi-

cients are not known either. The set of coefficients {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R} is therefore

assumed ex-ante and the resulting ODEs are solved to get a series of coeffi-

cients for the exponential linear form. The expectations in the pricing formula

are then substituted by the respective exponential linear functions depending

on the realization of λQs0 and an estimation λ̂Qs0i
can then be obtained for each

observation s0i ∈ [s01 , s02 .., s0N ] with N denoting the respective sample size:

define

f(λQs0 |µ̂
Q̂
0 , µ̂

Q̂
1 , σ̂

Q̂
1 , L̂R)

= SPs0(M)

2M∑
n=1

(
EQ̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
e
−

∫ s0+0.5n
s0

λQ
sds|λQs0

]
ZBfs0,s0+0.5n

)

− L̂R

[∫ s0+M

s0

ZBfs0,sE
Q̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
λQs e

−
∫ s
s0
λQ
udu|λQs0

]
ds

]
. (55)

EQ̂
s0,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

denotes expectations built in s0 under Q̂ depending on the set of

coefficients {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂

Q̂
1 }. For each time step s0i ∈ [s01

, s02
.., s0N ], one searches

for λ̂Qs0i
which satisfies f(λ̂Qs0i

|µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R) = 0. The extracted time series

λ̂Qs0i
is then however depending on the ex-ante determined coefficient set and it

is therefore probably biased. This bias is, however, still going to be corrected:

spreads from contracts with other maturities (i.e. in the present case 1,3,7 and

10 years) are taken and the sum of squared distances between these observed

spreads SPs0i (M) and the model spreads ŜP s0i (M) based on the time series

of intensities estimated in our first step is minimized by choosing a new set

of coefficients. Model spreads can in this context be calculated based on this
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formula:

ŜP s0i (M) =

L̂R

[∫ s0i+M
s0i

ZBfs0i ,s
EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
λ̂Qs e

−
∫ s
s0i

λ̂Q
udu|λQs0i

]
ds

]
∑2M
n=1

(
EQ̂
s0i ,µ̂

Q̂
0 ,µ̂

Q̂
1 ,σ̂

Q̂
1

[
e
−

∫ s0i+0.5n

s0i
λ̂Q
sds|λQs0i

]
ZBfs0i ,s0i+0.5n

) (56)

and the minimization problem is accordingly given by

min︸︷︷︸
{µ̂Q̂

0 ,µ̂
Q̂
1 ,σ̂1,L̂R}

∑
M∈{1,3,7,10}

∑
s0i∈{s01 ,..,s0N }

[
ŜP s0i (M)− SPs0i (M)

]2
. (57)

This new set of coefficients {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R} is, however, again biased as it

depends in turn on the time series of intensities estimated based on the coeffi-

cient values, which were chosen ex-ante. The estimation has therefore not been

completed yet. The new set of coefficients is subsequently used for estimating a

times series λ̂Qs0i
which is again based on the time series of SPs0i (5). The esti-

mated time series λ̂Qs0i
is in turn used for the estimation of a new coefficient set

by comparing model spreads ŜP s0i (M) with the actual spreads SPs0i (M) for

M ∈ [1, 3, 7, 10]. Both steps are afterwards repeated until the estimates of the

coefficients and the intensities converge. All variables are identified (c.f. Pan

and Singleton (2008)). The final estimates of the coefficients and the time-series

of intensities are characterized by approximately equating the pricing formula

in each observation date s0i for each maturity M . The ODEs resulting in the

coefficients of the exponential linear form for the conditional expectations have

thereby of course to be solved over and over again. On the one hand, this can

be done numerically but there are on the other hand fortunately also analytical

solutions available that were presented by Longstaff et al. (2005).

5.2 Estimation of the diffusion parameter under P̂

After having estimated {µ̂Q̂
0 , µ̂

Q̂
1 , σ̂1, L̂R} as well as a times series of intensities

λQ̂s0i
, the set of CIR drift coefficients under the historical measure Q̂ can be
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estimated. The diffusion coefficient σ under P̂ is the same as under Q̂ and

therefore only {µP̂
0, µ

P̂
1} are left for estimation under Q̂. There are many publi-

cations which deal with the estimation of stochastic differential equations based

on time-series data. For the CIR case, the estimation is particularly simple:

The transition probability distribution of the CIR process is known to be a non-

central χ2-distribution. Overbeck and Ryden (1997) present closed form rep-

resentations for probability distributions of diffusion process realization λQs0+t

based on the underlying CIR coefficient and conditioned on a specific previous

realization λQs0 . The set of possible approaches to estimate the drift parameters

under the historical measure based on the times series of extracted risk neu-

tral intensities is accordingly wide, including maximum-likelihood estimators

(MLE), quasi-maximum-likelihood estimators (QML) or methods-of-moments

estimators (MoM).

6 Conclusion

This article introduces doubly stochastic reduced form credit risk models. Based

on this, it shown in detail, how the relevance of the second dimension risk pre-

mium can be assessed based on these models. It is elucidated that the diffusions

driving the stochastic variation of the default intensity can be interpreted di-

rectly, in combination with a time-series of default intensities, or based on the

Girsanov theorem. Moreover, an estimation strategy for reduced form credit

risk models is described. Based on this presentation, the reader is intended to

better understand ongoing research, to conduct related research on its own or

to complement credit risk models used by practitioners.
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