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Abstract. In this paper, we establish some mixed integral and integrodifferential inequalities
which can be used as handy tools to study properties of solutions of a certain mixed integral and

differential equations.

1. INTRODUCTION

In the theory of differential, integral and integro-differential equations one often has to deal with
certain differential and integro-differential inequalities. In the last few years with the development
of the theory of nonlinear differential and integral equations, many authors have established several
integral and integro-differential inequalities, see [1, 2, 4, 6, 7, 8, 9, 10, 11, 12]. These inequalities play
an important role in the study of some properties of differential, integral and integro-differential
equations. Existence of solutions of a certain mixed integral and integro-differential equations were
studied in [3, 13] by M. B. Dhakne and H. L. Tidke.

In this paper, we establish mixed integral and integro-differential inequalities which provide
an explicit bound on unknown function. In particular we extend the result established by B. G.
Pachpatte in [12]. Some applications are also given to convey the importance of our results.

2. Preliminaries and Statement of Result

Before proceeding to the statement of our main result, we state some important integral in-
equalities that will be used in further discussion.

Lemma 2.1 (Fangcui Jiang and Fanwei Meng [5]). Assume that a ≥ 0, p ≥ q ≥ 0, and p 6= 0, then

a
q
p ≤ q

p
k

q−p
p a+

p− q
p

k
q
p , for any k > 0. (2.1)

Theorem 2.2 (Pachpatte [12]). Let u(t), a(t), b(t), c(t) ∈ C(I = [α, β], R+), a(t) be continuously
differentiable on I, a′(t) ≥ 0 and

u(t) ≤ a(t) +

∫ t

α

b(s)u(s)ds+

∫ β

α

c(s)u(s)ds, t ∈ I. (2.2)

If p =

∫ β

α

c(s) exp

(∫ s

α

b(σ)dσ

)
ds < 1, then

u(t) ≤M exp

(∫ t

α

b(s)ds

)
+

∫ t

α

a′(s) exp

(∫ s

α

b(σ)dσ

)
ds, t ∈ I, (2.3)

where

M =
1

1− p

[
a(α) +

∫ β

α

c(s)

∫ s

α

a′(τ) exp

(∫ s

τ

b(σ)dσ

)
dτds

]
, t ∈ I. (2.4)
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3. Main Results

In this section, we state and prove mixed nonlinear integral inequalities to obtain explicit bound
on solutions of a certain mixed integral equations.

Theorem 3.1. Let u(t), f(t), g(t), c(t), c′(t) ∈ C(I = [α, β],R+) and p ≥ q ≥ 0, p 6= 0 be constants.
If

up(t) ≤ c(t) +

∫ t

α

f(s)uq(s)ds+

∫ β

α

g(s)up(s)ds

and Q =

∫ β

α

g(s) exp

(∫ s

α

n1f(σ)dσ

)
ds < 1, then

up(t) ≤
c(α) +

∫ β
α
g(s)

(∫ s
α

[c′(τ) + n2f(τ)] exp
(∫ s
τ
n1f(σ)dσ

)
dτ
)
ds

1−Q

× exp

(∫ t

α

mf(s)ds

)
+

∫ t

α

[c′(s) + n2f(s)] exp

(∫ t

s

n1f(σ)dσ

)
ds, (3.1)

where k > 0, n1 =
q

p
k

q−p
p and n2 =

p− q
p

k
q
p .

Proof. Define a function z(t) by

z(t) = c(t) +

∫ t

α

f(s)uq(s)ds+

∫ β

α

g(s)up(s)ds,

then u(t) ≤ z
1
p (t),

z(α) = c(α) +

∫ β

α

g(s)up(s)ds (3.2)

and

z′(t) = c′(t) + f(t)uq(t) ≤ c′(t) + f(t)z
q
p (t). (3.3)

From Lemma 2.1 and (3.3), we have

z′(t) ≤ c′(t) + n1f(t)z(t) + n2f(t),

or, equivalently,  z(t)

exp
(
n1
∫ t
α
f(s)ds

)
′ ≤ [c′(t) + n2f(t)] exp

(
−n1

∫ t

α

f(s)ds

)
. (3.4)

Setting t = s; in (3.4) and integrating with respect to s from α to t, we have

z(t) ≤ z(α) exp

(∫ t

α

n1f(s)ds

)
+

∫ t

α

[c′(s) + n2f(s)] exp

(∫ t

s

n1f(σ)dσ

)
ds. (3.5)

As up(t) ≤ z(t) from equation (3.5), we have

up(t) ≤ z(α) exp

(∫ t

α

n1f(s)ds

)
+

∫ t

α

[c′(s) + n2f(s)] exp

(∫ t

s

n1f(σ)dσ

)
ds. (3.6)

Now from (3.2) and (3.6), we have

z(α) ≤ c(α) + z(α)

∫ β

α

g(s) exp

(∫ s

α

n1f(σ)dσ

)
ds

+

∫ β

α

g(s)

(∫ s

α

[c′(τ) + n2f(τ)] exp

(∫ s

τ

n1f(σ)dσ

)
dτ

)
ds,

or, equivalently,

z(α)

(
1−

∫ β

α

g(s) exp

(∫ s

α

n1f(σ)dσ

)
ds

)
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≤ c(α) +

∫ β

α

g(s)

(∫ s

α

[c′(τ) + n2f(τ)] exp

(∫ s

τ

n1f(σ)dσ

)
dτ

)
ds,

z(α) ≤
c(α) +

∫ β
α
g(s)

(∫ s
α

[c′(τ) + n2f(τ)] exp
(∫ s
τ
n1f(σ)dσ

)
dτ
)
ds

1−Q
. (3.7)

Using inequality (3.7) in (3.6), we obtain the desired inequality (3.1). This completes the proof. �

Remark 3.1. It is interesting to note that when p = q = 1 the Theorem 3.1 reduces to the
inequality stated in Theorem 2.2 and when p = 1 and g = 0 it reduces to well known Gronwall-
Bellman inequality.

Theorem 3.2. Let u(t), f(t), g(t), h(t) ∈ C(I,R+) and c ≥ 0 be a constant. If

up(t) ≤ c+

∫ t

α

h(s)

[
uq(s) +

∫ s

α

f(σ)uq(σ)dσ +

∫ β

α

g(σ)up(σ)dσ

]
ds, for t ∈ I,

then

up(t) ≤ c exp

(∫ t

α

n1A(σ)dσ

)
+

∫ t

α

n2B(s) exp

(∫ t

s

n1A(σ)dσ

)
, (3.8)

where

A(t) = h(t)

[
1 +

∫ t

α

f(σ)dσ +
1

n1

∫ β

α

g(σ)dσ

]
, B(t) = h(t)

[
1 +

∫ t

α

f(σ)dσ

]
,

and p, q, n1, n2 are as same defined in Theorem 3.1.

Proof. Denoting a function z(t) by

z(t) = c+

∫ t

α

h(s)

[
uq(s) +

∫ s

α

f(σ)uq(σ)dσ +

∫ β

α

g(σ)up(σ)dσ

]
ds,

we have u(t) ≤ z
1
p (t), z(α) = c, z(t) is a nondecreasing and

z′(t) = h(t)

[
uq(t) +

∫ t

α

f(σ)uq(σ)dσ +

∫ β

α

g(σ)up(σ)dσ

]

≤ h(t)

[
z

q
p (t) +

∫ t

α

f(σ)z
q
p (σ)dσ +

∫ β

α

g(σ)z(σ)dσ

]

≤ h(t)

{[
1 +

∫ t

α

f(σ)dσ

]
z

q
p (t) +

[∫ β

α

g(σ)dσ

]
z(t)

}
. (3.9)

An application of Lemma 2.1 to (3.9), we have

z′(t) ≤ h(t)

{[
1 +

∫ t

α

f(σ)dσ

]
[n1z(t) + n2] +

[∫ β

α

g(σ)dσ

]
z(t)

}

= h(t)

{
n1

[
1 +

∫ t

α

f(σ)dσ +
1

n1

∫ β

α

g(σ)dσ

]
z(t) + n2

[
1 +

∫ t

α

f(σ)dσ

]}
= n1A(t)z(t) + n2B(t),

or, equivalently,  z(t)

exp
(∫ t

α
n1A(σ)dσ

)
′ ≤ n2B(t) exp

(
−
∫ t

α

n1A(σ)dσ

)
. (3.10)

By integrating (3.10), we get

z(t) ≤ z(α) exp

(∫ t

α

n1A(σ)dσ

)
+

∫ t

α

n2B(s) exp

(∫ t

s

n1A(σ)dσ

)
ds. (3.11)
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As up(t) ≤ z(t) from (3.11), we obtain

up(t) ≤ z(α) exp

(∫ t

α

n1A(σ)dσ

)
+

∫ t

α

n2B(s) exp

(∫ t

s

n1A(σ)dσ

)
ds. (3.12)

Using z(α) = c in (3.12), we get the desired inequality (3.8) and hence the proof. �

Remark 3.2. Note that when p = q = 1 the Theorem 3.2 reduces to the inequality established by
B.G. Pachpatte in ([12] page no.40).

Corollary 3.3. Let u(t), f(t), g(t), h(t) be as same defined in Theorem 3.2 and 1 ≤ c(t) be a
nondecreasing. If

up(t) ≤ c(t) +

∫ t

α

h(s)

[
uq(s) +

∫ s

α

f(σ)uq(σ)dσ +

∫ β

α

g(σ)up(σ)dσ

]
ds, for t ∈ I, (3.13)

then

up(t) ≤ cp(t) exp

(∫ t

α

n1A(σ)dσ

)
+ cp(t)

∫ t

α

n2B(s) exp

(∫ t

s

n1A(σ)dσ

)
, (3.14)

where p ≥ q ≥ 1, A(t), B(t) and n1, n2 are as same defined in Theorem 3.2 and Theorem 3.1
respectively.

Proof. Since 1 ≤ c(t) and nondecreasing, from (3.13), we have(
u(t)

c(t)

)p
≤ 1 +

∫ t

α

h(s)

[(
u(s)

c(s)

)q
(s) +

∫ s

α

f(σ)

(
u(σ)

c(σ)

)q
(σ)dσ +

∫ β

α

g(σ)

(
u(σ)

c(σ)

)p
(σ)dσ

]
ds,

(3.15)

for t ∈ I. Applying Theorem 3.2 to (3.15), we get (3.14). This completes the proof. �

Theorem 3.4. Let u(t), u′(t), f(t), g(t), c(t), c′(t) ∈ C(I,R+) and u(α) = 0. If

[u′(t)]p ≤ c(t) +

∫ t

α

f(s)uq(s)ds+

∫ β

α

g(s)[u′(s)]pds (3.16)

and Q1 =

∫ β

α

g(s) exp

(∫ s

α

(σ − α)qn1f(σ)dσ

)
ds < 1, then

[u′(t)]p ≤
c(α) +

∫ β
α
g(s)

(∫ s
α

[c′(τ) + (τ − α)qn2f(τ)] exp
(
n1
∫ s
τ

(σ − α)qf(σ)dσ
)
dτ
)
ds

1−Q1

× exp

(
n1

∫ t

α

(s− α)qf(s)ds

)
+

∫ t

α

[c′(s) + (s− α)qn2f(s)] exp

(
n1

∫ t

s

(s− α)qf(s)ds

)
ds, (3.17)

p, q, n1, n2 are as same defined in Theorem 3.1.

Proof. Define a function z(t) by

z(t) = c(t) +

∫ t

α

f(s)uq(s)ds+

∫ β

α

g(s)[u′(s)]pds,

then u(t) ≤
∫ t
α
z

1
p (s), z(t) is a nondecreasing,

z(α) = c(α) +

∫ β

α

g(s)[u′(s)]p(s)ds (3.18)

and

z′(t) ≤ c′(t) + (t− α)qf(t)z
q
p (t), . (3.19)

Applying Lemma 2.1 to (3.19), we have

z′(t) ≤ c′(t) + (t− α)qf(t)[n1z(t) + n2]
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= c′(t) + n1(t− α)qf(t)z(t) + n2(t− α)qf(t)

= c′(t) + n1(t− α)qf(t)z(t) + n2(t− α)qf(t),

or, equivalently, z(t)

exp
(
n1
∫ t
α

(s− α)qf(s)ds
)
′ ≤ [c′(t) + n2(t− α)qf(t)] exp

(
−n1

∫ t

α

(s− α)qf(s)ds

)
. (3.20)

By integrating (3.20), we get

z(t)

exp
(
n1
∫ t
α

(s− α)qf(s)ds
) ≤ z(α) +

∫ t

α

[c′(s) + n2(s− α)qf(s)] exp

(
−n1

∫ s

α

(s− α)qf(s)ds

)
ds,

z(t) ≤ z(α) exp

(∫ t

α

n1(s− α)qf(s)ds

)
+

∫ t

α

[c′(s) + n2(s− α)qf(s)] exp

(∫ t

s

n1(σ − α)qf(σ)dσ

)
ds.

(3.21)

As [u′(t)]p ≤ z(t) from (3.21), we have

[u′(t)]p ≤ z(α) exp

(∫ t

α

n1(s− α)qf(s)ds

)
+

∫ t

α

[c′(s) + n2(s− α)qf(s)] exp

(∫ t

s

n1(σ − α)qf(σ)dσ

)
ds.

(3.22)

Now from (3.18) and (3.22), we have

z(α) ≤ c(α) + z(α)

∫ β

α

g(s) exp

(∫ s

α

n1(σ − α)qf(σ)dσ

)
ds

+

∫ β

α

g(s)

(∫ s

α

[c′(τ) + n2(τ − α)qf(τ)] exp

(∫ s

τ

n1(σ − α)qf(σ)dσ

)
dσ

)
ds,

z(α)

(
1−

∫ β

α

g(s) exp

(∫ s

α

n1(σ − α)qf(σ)dσ

)
ds

)
≤ c(α)

+

∫ β

α

g(s)

(∫ s

α

[c′(τ) + n2(τ − α)qf(τ)] exp

(∫ s

τ

n1(σ − α)qf(σ)dσ

)
dτ

)
ds,

z(α) ≤
c(α) +

∫ β
α
g(s)

(∫ s
α

[c′(τ) + n2(τ − α)qf(τ)] exp
(∫ s
τ
n1(σ − α)qf(σ)dσ

)
dτ
)
ds

1−Q1
. (3.23)

The required inequality (3.17) follows, from inequalities (3.22) and (3.23). This completes the
proof. �

Theorem 3.5. Let u(t), f(t), g(t), h(t) ∈ C(I,R+) and c ≥ 0 be a constant. If

[u′(t)]p ≤ c+

∫ t

α

h(s)

[
uq(s) +

∫ s

α

f(σ)uq(σ)dσ +

∫ β

α

g(σ)[u′(σ)]pdσ

]
ds, for t ∈ I,

then

[u′(t)]p ≤ c exp

(∫ t

α

n1A1(σ)dσ

)
+

∫ t

α

n2B1(s) exp

(∫ t

s

n1A1(σ)dσ

)
, (3.24)

where

A1(t) = h(t)

[
[t− α]q +

∫ t

α

[σ − α]qf(σ)dσ +
1

n1

∫ β

α

g(σ)dσ

]
,

B1(t) = h(t)

[
[t− α]q +

∫ t

α

[σ − α]qf(σ)dσ

]
and p, q, n1, n2 are as same defined in Theorem 3.1.
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Proof. Denoting a function z(t) by

z(t) = c+

∫ t

α

h(s)

[
uq(s) +

∫ s

α

f(σ)uq(σ)dσ +

∫ β

α

g(σ)[u(σ)]pdσ

]
ds,

we have u′(t) ≤ z
1
p (t), z(α) = c, z(t) is a nondecreasing and

z′(t) = h(t)

[
uq(t) +

∫ t

α

f(σ)uq(σ)dσ +

∫ β

α

g(σ)[u′(σ)]pdσ

]

≤ h(t)

[
[t− α]qz

q
p (t) +

∫ t

α

[σ − α]qf(σ)z
q
p (σ)dσ +

∫ β

α

g(σ)z(σ)dσ

]

≤ h(t)

{[
[t− α]q +

∫ t

α

[σ − α]qf(σ)dσ

]
z

q
p (t) +

[∫ β

α

g(σ)dσ

]
z(t)

}
. (3.25)

An application of Lemma 2.1 to (3.25), we have

z′(t) ≤ h(t)

{[
[t− α]q +

∫ t

α

[σ − α]qf(σ)dσ

]
[n1z(t) + n2] +

[∫ β

α

g(σ)dσ

]
z(t)

}

= h(t)

{
n1

[
[σ − α]q +

∫ t

α

[σ − α]qf(σ)dσ +
1

n1

∫ β

α

g(σ)dσ

]
z(t) + n2

[
[t− α]q +

∫ t

α

[σ − α]qf(σ)dσ

]}
= n1A1(t)z(t) + n2B1(t),

or, equivalently,  z(t)

exp
(∫ t

α
n1A1(σ)dσ

)
′ ≤ n2B1(t) exp

(
−
∫ t

α

n1A1(σ)dσ

)
. (3.26)

By integrating (3.26), we get

z(t) ≤ z(α) exp

(∫ t

α

n1A1(σ)dσ

)
+

∫ t

α

n2B1(s) exp

(∫ t

s

n1A1(σ)dσ

)
ds. (3.27)

As [u′(t)]p ≤ z(t) from (3.27), we obtain

[u′(t)]p ≤ z(α) exp

(∫ t

α

n1A1(σ)dσ

)
+

∫ t

α

n2B1(s) exp

(∫ t

s

n1A1(σ)dσ

)
ds. (3.28)

Using z(α) = c in (3.28), we get the desired inequality (3.24) and hence the proof. �

4. Applications

One of the main motivations for the study of different type inequalities given in the previous
sections is to apply them as tools in the study of various classes of integral equations. In the
following section we give application of some theorems of previous sections. In fact we discuss the
boundedness behavior of solutions of a nonlinear mixed integral equations.

Example 4.1. Consider the following general mixed nonlinear integral equation

yp(t) = x(t) +

∫ t

α

F (s, yq(s))ds+

∫ β

α

G(s, yp(s))ds, (4.1)

for t ∈ I, where p ≥ q ≥ 0, p 6= 0, y(t) is unknown function, x ∈ C(I,Rn), F,G ∈ C(I × Rn,Rn),
I = [α, β],Rn is n dimensional Euclidean space with norm |.|.

Suppose that the functions x, y, F,G in equation (4.1) satisfy the following conditions:

|x(t)| ≤ c(t), (4.2)

|F (s, yq)| ≤ g(s)|y|q, (4.3)

|G(s, yp)| ≤ f(s)|y|p (4.4)
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where p ≥ q ≥ 0, p 6= 0, c, f, g are as same defined in Theorem 3.1. If y(t), t ∈ I is a solution of
equation (4.1) and Q < 1, then

|y(t)|p ≤
c(α) +

∫ β
α
g(s)

(∫ s
α

[c′(τ) + n2f(τ)] exp
(∫ s
τ
n1f(σ)dσ

)
dτ
)
ds

1−Q

× exp

(∫ t

α

mf(s)ds

)
+

∫ t

α

[c′(s) + n2f(s)] exp

(∫ t

s

n1f(σ)dσ

)
ds, (4.5)

where Q,n1, n2 are as same defined in Theorem 3.1.
From equation (4.1)-(4.4), we obtain

|y(t)|p ≤ |x(t)|+
∫ t

α

f(s)|y(s)|qds+

∫ β

α

g(s)|y(s)|pds. (4.6)

An application of Theorem 3.1, we get (4.6). This show that solution y(t) is bounded.

Example 4.2. Consider the following general mixed nonlinear integrodifferential equation

[y′(t)]p = x(t) +

∫ t

α

F (s, yq(s)) ds+

∫ β

α

G (s, [y′(s)]p) ds, (4.7)

for t ∈ I, where p ≥ q ≥ 0, p 6= 0, y(t) is unknown function, x ∈ C(I,Rn), F,G ∈ C(I × Rn,Rn),
I = [α, β],Rn is n dimensional Euclidean space with norm |.|.

Suppose that the functions x, y, F,G in equation (4.7) satisfy the following conditions

|x(t)| ≤ c(t), (4.8)

|F (t, s, yp)| ≤ g(t, s) |y′|p , (4.9)

|G(t, s, yq)| ≤ f(t, s)|y|q (4.10)

where p ≥ q ≥ 0, p 6= 0, c, f, g are as same defined in Theorem 3.4. If y(t), t ∈ I is a solution of
equation (4.7) and Q<1, then

|y(t)|p ≤
c(α) +

∫ β
α
g(s)

(∫ s
α

[c′(τ) + (τ − α)qn2f(τ)] exp
(
n1
∫ s
τ

(σ − α)qf(σ)dσ
)
dτ
)
ds

1−Q1

× exp

(
n1

∫ t

α

(s− α)qf(s)ds

)
+

∫ t

α

[c′(s) + (s− α)qn2f(s)] exp

(
n1

∫ t

s

(s− α)qf(s)ds

)
ds, (4.11)

where Q1, n1, n2 are as same defined in Theorem 3.4. From equation (4.7)-(4.10), we obtain

|y′(t)|p ≤ c(t) +

∫ t

α

f(s)|y(s)|qds+

∫ β

α

g(s)|y′(s)|pds. (4.12)

Applying Theorem 3.4 to (4.12), we get (4.11).

Example 4.3. We calculate the explicit bound on the solution of the following nonlinear integral
equation of the form:

u3(t) = 6 +

∫ t

0

1

1 + s
u(s)ds+

∫ 7

0

su3(s)ds (4.13)

where u(t) are defined as in Theorem 3.1 and we assume that every solution u(t) of (4.13) exists
on R+.

By Theorem 3.1, we have p = 3, q = 2, n1 = q
pk

q−p
p = 2

3k
−1
3 , n2 = p−q

p k
q
p = 1

3k
2
3 , α = 0, β = 1, k >

0, f(s) = 1
1+s , g(s) = s and

Q =

∫ β

α

g(s) exp

(∫ s

α

n1f(σ)dσ

)
ds

=

∫ 1

0

s exp

(
2

3

1
3
√
k

∫ s

0

1

σ + 1
dσ

)
ds
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=
3
(

3 3
√
k + 2

2

3
3√
k
+2
)

3
√
k

2
(

9k2/3 + 9 3
√
k + 2

) < 1, for any k > 0

Thus all the conditions of the Theorem 3.1 are satisfied, hence we obtain

u(t) ≤

∫ 1

0

1

3
s

k2/3 ∫ s

0

exp

(∫ s
τ

2 1
3√
k

3(σ+1) dσ

)
τ + 1

dτ

 ds+ 6

×
exp

(
2
3

1
3√
k

∫ t
0

1
s+1 ds

)
1−

∫ 1

0
s exp

(
2
3

1
3√
k

∫ s
0

1
σ+1 dσ

)
ds

+

∫ t

0

k2/3 exp
(

2
3

1
3√
k

∫ t
τ

1
s+1 ds

)
3(τ + 1)

dτ


1
3

=



k

(
3

(
2

2

3
3√
k

+2
−3
)

3√
k−2

)
4(9k2/3+9

3√
k+2)

+ 6

 (t+ 1)
2

3
3√
k

1−
3

(
3

3√
k+2

2

3
3√
k

+2
)

3√
k

2(9k2/3+9
3√
k+2)

+
1

2
k
(

(t+ 1)
2

3
3√
k − 1

)


1
3

.
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