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Abstract

In option pricing one of the main problems to solve is how to determine the fair price of an

option when no-arbitrage opportunity is considered. To solve this problem many models have

been developed but most of them there is no closed form solutions. In this paper, general mean

model is used to price Lookback option since it can entervene in determination of minimum and

maximum of underlying asset price under some conditions. The study shows the Construction

of lattice using moment-matching which provide a system of linear equations where real world

probabilities are unknown. To solve this system, Vandermonde matrix is preferred as one of

the easiest way to use. Since it is not allowed to price with real world probabilities and as this

paper deals with incomplete market which has more than one martingale measure, it is needed

to choose the best one to use in pricing. Therefore, the relative entropy method is introduced to

find the minimum entropy martingale measure which is the neutral probability in other words.

Finally, the results from pricing Binomial floating lookback option is compared to well known

Black-Scholes model.
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1 Introduction

Option trading has a long history even before Christ. Option is one of types of derivatives that

give the holder the rights but not obligation to buy or to sell an underlying asset at a fixed price

on the expiry date. Lookback option is one of Exotic options which is not new to the financial

market. It came into existence many years ago before the birth of the first organised option

exchange in the world named ”Chicago Board of Option Exchange” in 1973 (Zhang, 1995).

This is the largest option exchange because it can provide more than one million contracts per

day (Boyle & Ananthanarayanan, 1977). In 1973, Myron Scholes and Fisher Black introduced

famous option pricing model named Black-Scholes model which deals with continuous time

under some assumptions. Since that time many research has been done in option pricing in

both continuous and discrete time and noticed that standard models in continuous time are not

doing well in discrete counterpart that it why other methods like lattice, Monte Carlo, numer-

ical, statistical methods,... were created to solve this problem. Since Exotic options can play

a special role in which standard options cannot do without difficulities, Exotic options are the

best to use with discrete time methods.

Lookback options are path-dependent exotic options whose payoffs depend on the maximum

and minimum of the underlying asset price attained throughout the optin lifetime. Standard

Lookback options was first introduced by (Goldman, Sosin & Gatto, 1979). Lookback option

as one of Exotic options allows the holders of the option to know the historical path of the

underlying asset and when to exercise. Holders can choose the most beneficial price of the un-

derlying asset which is occurred in that time. Lookback option provide numerous advantages

for option traders since always end up in money due to its floating strike price. The payoff for a

call option is provided by the asset price at maturity minus the minimum price observed during

the option lifetime. For put option the payoff is given by the maximum price observed during

the option lifetime minus the asset price at maturity time.

General mean function was used by (Zhang, 1998) to study the difference between arithmetic

mean and geometric mean in order to approximate mathematically, the arithmetic Asian op-
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tions and geometric Asian options. Since Lookback option payoffs depend on minimum and

maximum of underlying asset, in this study general mean model is used to find minimum and

maximum of the underlying asset when the path of lattice is considered.

(Ogutu, Lundengård, Silvestrov & Weke, 2014) described how to construct lattice using moment-

matching technique to get a system of equations which contain jump probabilities as unknown.

To solve that system, a Vandemonde matrix was used with some condition on jump size denoted

as α which stands for the distance between two outcomes of stock when stock is considered as

an exponential Le′vy process. This paper is dealing with moment-matching and general mean

in pricing Lookback options and It has the following structure: First section is introduction,

Second section is moment matching technique in binomial model, section three is minimum

relative entropy martingale measure, section four is general mean model, and the last is to price

lookback option and compare the result to Black-Scholes model.

2 Moment-matching technique in binomial model

Consider the stochastic distribution of the price of paying non-dividend stock price in a risk-

neutral economy. Let stock price Yt be a stochastic random variable at time t in a period [t, T ]

such that Yt = Yt−1Z where Z is a discrete random variable defined as follows:

Z =


λ1 with probability p1

λ2 with probability p2

(1)

Such that λ1 > λ2 implies λ1 6= λ2

Matching the moments of a random variable X with a discrete random variable D where

E(X) = m1 as given below

Dt = m1 + Yt (2)

where t = 1, 2, 3, ..., T

Considering an incomplete market, the probabilities cannot be the same at each period.
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Y1 = y0Z where Z is expressed in equation (1) then at t = 1 the equation (2) will be

D1 = m1 + Y1

By applying moment matching technique yields


E(Y 0

1 ) = p1 + p2 = µ0

E(Y1) = E(y0Z) = y0λ1p1 + y0λ2p2 = µ1

In matrix form, it can be written as

µ0

µ1

 =

 1 1

y0λ1 y0λ2


p1
p2

 (3)

Let V =

 1 1

y0λ1 y0λ2

 represents the Vandermonde matrix obtained in equation (3) then

jump probability can be determined as

−→p = V −1−→µ (4)

where −→p and −→µ are vectors containing the probabilities and moments respectively. The prob-

abilities p on each period is unique as it is possible to determine the inverse of Vandermonde

matrix since it has been confirmed by (Macon & Spitzbart, 1958).

Definition 2.1 Vandermonde matrix is investigated by Alexandre-Théophile Vandermonde, It

is a matrix with the terms of a geometric progression in each row. (Some authors use the
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transpose of the matrix). It has the following form

VN =



1 1 · · · 1

δ1 δ2 · · · δN

δ21 δ22 · · · δ2N
...

... . . . ...

δN−11 δN−12 · · · δN−1N


(5)

The determinant has been proven by (Gourdon, 1994) and it is written as

det(VN) =
∏

2≤i<j≤N

(δj − δi)

If all δi are distinct and different from zero then, the matrix is also guaranteed to be invertible.

Consider

δi = y0λi where 1 ≤ i ≤ N with N ∈ ℵ (6)

Will give the general lattice matrix with the final row missing.

Theorem 2.1 For a Vandermonde matrix VN with elements defined by (6), the elements of

inverse are given by

(V −1N )ij =
(−1)j−iσN−j,i∏N

k=1,k 6=i y0(λk − λi)
(7)

where σN−j,i is a cofactor matrix

Matching the lattice to the first N − 1 moments gives the equation (4) Using formulas (7) and

(4) gives

pi =
N∑
j=1

(V −1)ijµj−1 =
N∑
j=1

(−1)j−iσN−j,i∏N
k=1,k 6=i y0(λk − λi)

µj−1 (8)

(Ogutu et al., 2014)
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2.1 Determination of transition probabilities in binomial lattice

The expression of probabilities when N is even is given in equation (8). For binomial lattice

N = 2, then by replacing the value of i anf j yields p1 and p2 respectively.

p1 =
2∑
j=1

(−1)j−1σ2−j,1∏2
k=1,k 6=i y0(λk − λ1)

µj−1 =
σ1,1µ0

y0(λ2 − λ1)
− σ0,1µ1

y0(λ2 − λ1)

p2 =
2∑
j=1

(−1)j−2σ2−j,2∏2
k=1,k 6=i y0(λk − λ2)

µj−1 =
−σ1,2µ0

y0(λ1 − λ2)
+

σ0,2µ1

y0(λ1 − λ2)

In matrix form we have

−→p =

p1
p2

 =

 σ1,1
y0(λ2−λ1) −

σ0,1
y0(λ2−λ1)

−σ1,2

y0(λ2−λ1)
σ0,2

y0(λ2−λ1)


µ0

µ1

 (9)

From equation (3) the Vandermonde matrix of order two is constructed and its inverse should

be compared to the inverse of Vandermonde matrix in equation (9) to get the adjacent matrix.

The deteminant of Vandermonde matrix V of order two defined in equation (3) is given by

det(V ) = y0λ2 − y0λ1 = y0(λ2 − λ1)

and the inverse is

V −1 =
1

y0(λ2 − λ1)

 y0λ2 −1

−y0λ1 1

 =

 y0λ2
y0(λ2−λ1)

−1
y0(λ2−λ1)

−y0λ1
y0(λ2−λ1)

1
y0(λ2−λ1)

 (10)

From Algabra, two square matrices are equal if and only if the element located in the same

position are the same. Then by comparing inverse of Vandermonde matrix in equation (9) and

(10) yield
σ1,1

y0(λ2 − λ1)
=

y0λ2
y0(λ2 − λ1)

;− σ0,1
y0(λ2 − λ1)

=
−1

y0(λ2 − λ1)
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− σ1,2
y0(λ2 − λ1)

=
−y0λ1

y0(λ2 − λ1)
;

σ0,2
y0(λ2 − λ1)

=
1

y0(λ2 − λ1)

From the above equations we have

σ1,1 = y0λ2;σ0,1 = 1;σ1,2 = y0λ1;σ0,2 = 1 (11)

By replacing (11) in equation (9) then the binomial probabilities would be

p1 =
λ2µ0

(λ2 − λ1)
− µ1

y0(λ2 − λ1)
(12)

p2 = −
λ1µ0

(λ2 − λ1)
+

µ1

y0(λ2 − λ1)
(13)

Since p1 + p2 = µ0 = 1, then p1 > 0 if µ1 > λ2y0 while p2 > 0 when µ1 < λ1y0 which means

that both p1 and p2 are positive if and only if λ2y0 < µ1 < λ1y0 or λ2 < µ1
y0
< λ1. The above

assumptions indicate that all moments are positive which imply the positivity of probabilities.

In this study, the case y0λi ≥ 1 is considered where i = 1, 2.

3 Minimal Relative Entropy Martingale Measure

Many authors have discused the minimal Entropy Martingale measure in different ways. Some

of them say (Ssebugenyi, Mwaniki & Konlack, 2013) described how to use minimal entropy

martingale measure to price American and European options in multinomial lattices which take

into cumulants information. (Frittelli, 2000) gave the sufficient conditions for the existence and

uniqueness of equivalent martingale measure which minimizes the relative entropy with respect

to the real world probabilities and many others. In this paper which deals with incomplete

market where there is more that one martingale measure, a good method is needed to choose a

suitable martingale measure that is why relative entropy were preferred.

Definition 3.1 Given two probability measure Q = (q1, q2) and P = (p1, p2) > 0 ; then
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relative entropy of Q with respect to P given by R(Q||P ) is defined as

R(Q||P ) =
2∑
i=1

qiln(
qi
pi
) (14)

Consider binomial one-period model. Suppose λi has two possible values, denoted by λ1 and

λ2 with corresponding probabilities from p1 to p2. They must be a positive probability that the

stock will go down, similarly going up. We impose a probability distribution q on the set of

stock prices y0λ1, y0λ2 such that the following two conditions are satisfied. If q is a probability

measure, then can be expressed as
2∑
i=1

qi = 1

Another condition is that q has risk neutal implies that the expected value of y1 under q has to

be equal to y0, it can be written as
2∑
i=1

qiλi = y0

The it is needed to solve the minimization problem of relative entropy between q and the real

world probability p subject to these two contraints. Before to do so, let show that the relative

entropy is a convex function of q. Consider the function

F : V : <n −→ < and q ⇁ F (q) =
2∑
i=1

qiln(
qi
pi
) with

V = V ∗ = <n, Y = Y ∗ = <m and q ∈ V : q = (q1, q2), γ ∈ Y : γ = (γ1, γ2)

Let the set of equivalent martingale measure be defined as

Me =

{
q ∈ V :

2∑
i=1

qi = 1,
2∑
i=1

qiλi = y0, q > 0

}

then the convexity of relative entropy in (14) should be determined from

i(q, p) = R(Q||P ) =
2∑
i=1

qiln(
qi
pi
)
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Let q1,p1 and q2,p2 be the probability distribution, define q and p as

q = αq1 + (1− α)q2 and p = αp1 + (1− α)p2 with α ∈ [0, 1] then

i(q, p) = i(αq1 + (1− α)q2, αp1 + (1− α)p2) =
2∑
i=1

(αq1 + (1− α)q2)ln(
αq1 + (1− α)q2
αp1 + (1− α)p2

)

≤ α

2∑
i=1

q1ln(
q1
p1
) + (1− α)

2∑
i=1

q2ln(
q2
p2
) = αi(q1, p1) + (1− α)i(q2, p2)

Hence relative entropy in equation (14) is convex. Then, the problem can be solved using the

Lagrange multipliers method by formulating the augmented cost function using the constraints

that has indicated in condition one and two respectively


L(q, γ) = F (q) +

∑m
i=1 γiBi

s.t
∑2

i=1 qi = 1,
∑2

i=1 qiλi = y0

Where

B1 =
2∑
i=1

qi − 1 and B2 =
2∑
i=1

qiλi − y0

Lagrange equation becomes

L(q, γ1, γ2) =
2∑
i=1

qiln(
qi
pi
) + γ1B1 + γ2B2 =

2∑
i=1

qiln(
qi
pi
) + γ1(

2∑
i=1

qi − 1) + γ2(
2∑
i=1

qiλi − y0)

where γ1and γ2 are Lagrange multipliers. By minimizing L with respect to q , set the partial

derivative ∂L
∂qi

equal to zero for all i ∈ N. This leads to

ln(
qi
pi
) + 1 + γ1 + γ2λi = 0

by arranging yields

qi =
piexp(ηλi)∑2
i=1 piexp(ηλi)

=
piexp(ηλi)

E[exp(ηλi), p]
(15)
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and

f(η) = r =
E[Zexp(ηZ), p]
E[exp(ηZ), p]

or

∑2
i=1 λipiexp(ηλi)

E[exp(ηλi), p]
(16)

To determine the values of neutral probability qi we need to analyse the function of η and find

η∗ such that f(η∗) = y0 this can be determined by trial and error. By studying the limit of the

function in (16) yields

lim
η−→−∞

f(η) = λ2; lim
η−→+∞

f(η) = λ1

Proof 3.1 f(η) could be written as follows

f(η) =
λ1p1exp(ηλ1) + λ2p2exp(ηλ2)

p1exp(ηλ1) + p2exp(ηλ2)

Let consider α0 = λ1; α1 = λ1p1,β0 = λ2,β1 = λ2p2,α = p1,β = p2 then f(η) becomes

f(η) =
α1e

ηα0 + β1e
ηβ0

αeηα0 + βeηβ0
=

α1eηα0+β1eηβ0

α1eηα0

αeηα0+βeηβ0

α1eηα0

=
1 + α−11 β1e

η(β0−α0)

α−11 α + α−11 βeη(β0−α0)
= α1α

[
1 + α−11 β1e

η(β0−α0)

1 + α−11 βeη(β0−α0)

]
Set x = eη(β0−α0) = eη(λ2−λ1) since λ1 > λ2 then η −→ −∞ implies x −→ +∞ then

f(x) = α1α
−1
[
1 + α−11 β1x

1 + α−1βx

]

lim
−∞

f(η) = lim
+∞

f(x) = α1α
−1α

−1
1 β1
α−1β

=
β1
β

=
λ2p2
p2

= λ2

If η −→ +∞ then x −→ 0 which means that

lim
+∞

f(η) = lim
0
f(x) = α1α

−1 =
α1

α
=
λ1p1
p1

= λ1

It is clear that in binomial case limit should be

lim
η−→−∞

f(η) = λ2; lim
η−→+∞

f(η) = λ1
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By studying equation (16) yields

Figure 1: f(η) versus η in Binomial

Example 3.1 (Binomial case) Consider y0 = 2.5, λ1 = 5, λ2 = 2, µ0 = 1 from assumption

of moments in binomial, one can get 5 < µ1 < 12.5, let in this case consider µ1 = 10 then

by replacing back in equation (12) and (13) yields p1 = 0.6667 and p2 = 0.3333. From these

information f(η) in (16) is determined in Figure 1 where on should find η∗ by trial and error.

Consider η∗ = −0.8 and use it to determine neutral probabilities qi. From the equation (15)

we have

q1 =
p1exp(η

∗λ1)

p1exp(η∗λ1) + p2exp(η∗λ2)
=

0.6667exp(−0.8 ∗ 5)
0.6667exp(−0.8 ∗ 5) + 0.3333exp(−0.8 ∗ 2)

= 0.154

q2 =
p2exp(η

∗λ2)

p1exp(η∗λ1) + p2exp(η∗λ2)
=

0.3333exp(−0.8 ∗ 2)
0.6667exp(−0.8 ∗ 5) + 0.3333exp(−0.8 ∗ 2)

= 0.846

Therefore, after getting this neutral probabilities q1 and q2, it is possible to price.

4 General Mean Function

Definition 4.1 If x is a non-zero real number and S1, S2, ..., Sn are positive real numbers which

represent the stock, then general mean with exponential x of these positive real numbers is

M(S|x) = f(x) =

(
1

N

N∑
i=1

Sxi

) 1
x
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Assume that for all i ∈ 1, 2, ..., N and Si > 0 then in exponential form yields

f(x) = e
1
x
ln[ 1

N

∑N
i=1 S

x
i ] =

(
1

N

N∑
i=1

Sxi

) 1
x

(17)

where N is number of observation, S is stock and x is a parameter which drive the behavior of

stock.

1. Domain of definition

Df =

{
x ∈ < : x 6= 0,

N∑
i=1

Sxi > 0

}
= <− {0} ∩ < = <− {0} = (−∞, 0) ∪ (0,∞)

2. Parity

For all x ∈ Df,−x ∈ Df, such that


f(x) 6= f(−x)

f(−x) 6= −f(x)

Therefore, function f is neither even nor odd. Which means geometrically, that the

function adimits no symmetry with ordinate (y-axis) and no symmetry with the origine.

Other word, if f(−x) = f(x) means that there is symmetry with y since −x and x are

symmetry.

3. Limits on the boundaries

In order to prove geometric mean given by

lim
x−→0

Mx =M0

We can rewrite the definition of Mx using the exponential function as it is in equation

(17). Then if the limit x −→ 0, we can apply l’Hôspital’s rule to the argument of the

exponential function. Differentiating the numerator and denominator with respect to x,

12



we have:

lim
x−→0

∑n
i=1 ωiS

x
i

x
= lim

x−→0

∑n
i=1 ωiS

x
i lnSi∑n

i=1 ωiS
x
i

1

Let

y =
n∑
i=1

ωiS
x
i where ln(y) = ln(

n∑
i=1

ωiS
x
i ) = x

n∑
i=1

ωilnSi

(ln(y))′ =
y′

y
=

n∑
i=1

ωilnSi

y′ = y

n∑
i=1

ωilnSi =
n∑
i=1

ωiS
x
i .

n∑
i=1

ωilnSi =
n∑
i=1

ωi(S
x
i lnSi) =

n∑
i=1

ωiS
x
i lnSi

Then
(ln
∑n

i=1 ωiS
x
i )
′

x′
=

∑n
i=1 ωiS

x
i lnSi∑n

i=1 ωiS
x
i

= lim
x−→0

∑n
i=1 ωiS

x
i lnSi∑n

i=1 ωiS
x
i

=
n∑
i=1

ωi lnSi = ln(
n∏
i=1

Sωii )

By the continuity of the exponential function, we can substitute back into the above

relation to obtain

lim
x−→0

Mx(S1, ..., Sn) = exp(ln(
n∏
i=1

Sωii )) =
n∏
i=1

Sωii =
n∏
i=1

S
1
n
i = n

√√√√ n∏
i=1

Si =M0(S1, ..., Sn).

(18)

for other boundary we have

lim
x−→+∞

M(x) = lim
x−→+∞

(
1

N

N∑
i=1

Sxi

) 1
x

= max (S1, S2, ..., SN) = S1 (19)

Where S1 > S2 > ... > SN > 0

Proof 4.1 consider

M(S|x) =

(
1

N

N∑
i=1

Sxi

) 1
x

=

(
Sx1 + Sx2 + ...+ SxN

N

) 1
x
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= exp

{
1

x
ln

(
Sx1 + Sx2 + ...+ SxN

N

)}
= exp

{
1

x
ln

[
Sx1 (1 + (S2

S1
)x + (S3

S1
)x + ...+ (SN

S1
)x)

N

]}

= exp

{
1

x
ln(Sx1 ) +

1

x
ln(

1

N
) +

1

x
ln

[
1 + (

S2

S1

)x + ...+ (
SN
S1

)x
]}

= exp

{
ln(S1) +

1

x
ln(

1

N
) +

1

x
ln(1 + Yx)

}
Where

Yx =
N∑
i=2

(
Si

S1

)x (20)

If x −→ +∞ then Yx −→ 0 Since Si
S1
< 1, for all i belong to {2, 3, ..., N}.

Then ln(1 + Yx) is equivalent to equation (20) at zero.

Therefore,

M(S|x) = exp

{
ln(S1) +

1

x
ln(

1

N
) +

N∑
i=2

(
Si
S1

)x

}
= exp {ln(S1)} exp

{
1

x
ln(

1

N
) +

N∑
i=2

(
Si
S1

)x

}

Since 1
x
ln( 1

N
) −→ 0 as x −→ +∞ and

∑N
i=1

(
Si
S1

)x
−→ 0 when x −→ +∞ with

Si
S1
< 1 for i belong to {2,3,4,...,N} with finite number of observation N .

Therefore,

lim
x−→+∞

M(S|x) = S1 = max{S1, S2, ..., SN} (21)

Let show that for other boundary

lim
x−→−∞

M(S|x) = lim
x−→−∞

(
1

N

N∑
i=1

Sxi

) 1
x

= min (S1, S2, ..., SN) = SN (22)

Where S1 > S2 > ... > SN > 0
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Proof 4.2

M(S|x) =

(
1

N

N∑
i=1

Sxi

) 1
x

=

(
Sx1 + Sx2 + ...+ SxN

N

) 1
x

= exp

{
1

x
ln

(
Sx1 + Sx2 + ...+ SxN

N

)}

= exp

{
1

x
ln

[
SxN((

S1

SN
)x + ( S2

SN
)x + ...+ (SN−1

SN
)x + 1)

N

]}

= exp

{
1

x
ln(SN)

x +
1

x
ln

[
( S1

SN
)x + ( S2

SN
)x + ...+ (SN−1

SN
)x + 1

N

]}

= exp

{
ln(SN) +

1

x
ln(

1

N
) +

1

x
ln(1 +Kx)

}

Let consider

Kx =
N−1∑
i=1

(
Si
SN

)x
=

(
S1

SN

)x
+

(
S2

SN

)x
+ ...+

(
SN−1
SN

)x

If x −→ −∞ then Kx −→ 0 Since Si
SN

> 1, for all i belong to {1, 2, 3, ..., N − 1}.

Then ln(1 +Kx) is equivalent to Kx at zero.

Therefore,

M(S|x) = exp

{
ln(SN) +

1

x
ln(

1

N
) +

N−1∑
i=1

(
Si
SN

)x

}
= exp {ln(SN)} exp

{
1

x
ln(

1

N
) +

N−1∑
i=1

(
Si
SN

)x

}

Since lim
x−→−∞

1
x
ln( 1

N
) −→ 0 and lim

x−→−∞

∑N
i=1(

Si
SN

)x = 0 as number of observation N is

finite. Then

lim
x−→−∞

M(S|x) = SN = min{S1, S2, ..., SN}

Example 4.1 Let find min(y0, y0λ2, y0λ22)= min(2.5, 5, 10). Using general mean, given

that N = 3, y0 = 2.5, y0λ2 = 5 and y0λ22 = 10 By using general mean equation in (19)

yields

lim
+∞

M(S|x) = 2.5 ∗ e0 = 2.5 = min(2.5, 5, 10)

Example 4.2 In the same example let determine themax(y0, y0λ2, y0λ22)=max(2.5, 5, 10).

Using general mean, given that N = 3, y0 = 2.5, y0λ2 = 5 and y0λ22 = 10 By applying
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general mean in (21) yields

lim
+∞

M(S|x) = 10 ∗ e0 = 10 = max(2.5, 5, 10)

4. Asymptotes

This function doesn’t admit vertical and oblic asymptotes. Horizontal asymptote as it has

been proved in part of limits on the boundaries. For all x ∈ (−∞, 0) ∪ (0,∞)

Figure 2: Domain of general mean solutions

5. Local extrema

f ′ : Df −→ <

f(x) is continuous function on Domain x ∈ Df

Recall:

f(x) = exp

{
1

x
ln

{
1

N

N∑
i=1

exp (xln(Si))

}}

f(x) = exp

{
1

x
G(x)

}
where G(x) = ln

{
1

N

N∑
i=1

exp (xln(Si))

}

G′(x) =

∑N
i=1 ln(Si)exp(xln(Si))∑N

i=1 exp(xln(Si))

Since f(x) = exp
{
G(x)
x

}
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For all x ∈ Df , f ′ could be determined as:

f ′(x) =

{
G(x)

x

}′
exp

{
G(x)

x

}
(23)

Since
(
eu(x)

)′
= u′(x)eu(x)

(
G(x)

x

)′
=
G(x)− xG′(x)

x2

The sign of f ′ depends on the sign of

G(x)− xG′(x) (24)

From equation (23) the expression

exp

{
G(x)

x

}
is always positive which means that

(
G(x)

x

)′
is the term which can make f ′(x) zero.

Therefore,

G(x)− xG′(x) = 0 implies that G(x) = xG′(x)

Whether Si > 1 or 0 < Si < 1 there is no problem because at x = 0 , xG′(x) = 0

Then for all x ∈ (0,+∞), G(x) > 0 and G′(x) > 0

The solution of f(x) where x −→ 0 exist since

limx−→0 = limx−→0− = limx−→0+ =
N∏
i=1

S
1
N
i ∈ <∗+

If x = 0, G(0) = ln( 1
N

∑N
i=1 1)=ln(

1
N
.N) = 0

G(0)− 0G′(0) = 0

f ′(x) = 0 admits one solution at x = 0

17



Figure 3: The continuity of general mean function

6. Concavity

From (23) we set

H(x) =
G(x)− xG′(x)

x2
such that

H ′(x) = −
(
x2G′′(x)− 2xG′(x) + 2G(x)

x3

)
H ′(x) > 0 if and only if

x2G′′(x)− 2xG′(x) + 2G(x)

x3
< 0 Then

2G(x) > 2xG′(x)− x2G′′(x)

Therefore, we have H ′(x) > 0 with x ∈ (−∞, 0). Since (H(x))2 and exp
{
G(x)
x

}
are

positive. With H ′(x) > 0 implies that f ′′(x) > 0 which means that f(x) is convex in the

interval of the domain (−∞, 0) and concave in the interval of domain (0,∞).

7. Graph

18



Figure 4: Graph representation of general mean function

4.1 General mean model

By referring to the concept of call and put option where Xc = max(ST − K, 0) and Xp =

max(K − ST , 0) with T maturity time, K strike price and S the stock. We are considering

general mean function as in equation (17) to be the strike price depends on x and denoted by

Kx where in (17) S is stock, N is number of observation and x is a parameter. The function in

(17) is well defined since Si > 0 and x ∈ (−∞, 0) ∪ (0,+∞). Then by valuing the value of x

yields different strike price of exotic options as follows



lim
x−→−∞

f(x) = min(Si) = K−∞

...

f(−1) = N
1
x1

+ ...+ 1
xN

= K−1

...

lim
x−→0

f(x) =
∏N

i=1 S
1
N
i = K0

...

f(1) = 1
N

∑N
i=1 Si = K1

f(2) =
√

1
N

∑N
i=1 S

2
i = K2

...

lim
x−→+∞

f(x) = max(Si) = K+∞

(25)
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The function in (17) is just a generalization of strike price for options between Asian and

Lookback option as it is clear in (25). Therefore, the general mean model should be :

Xc = max (ST − f(x), 0)

Xp = max (f(x)− ST , 0)

Generally we call this function f(x) the general mean which is denoted by M(x). It is clear

that with x tends to −∞ or +∞ general mean function express the same strike price as the one

used in standard lookback option as it is shown in (22) and (19) respectively.

5 Pricing Lookback Option

Let Yn denote the stock price at time t = tn with n = 0, 1, 2, ..., n − 1. Suppose that λi ∈ <

that satisfies 0 < λ2 < 1 + r < λ1. Then the binomial lattice diagram will be

Figure 5: Binomial tree in pricing Lookback option

Determining the stock price at A,B and C nodes. It is needed to consider payoffs and use the

backward to find the initial stock price A. Therefore, to determine the price at each node yields

B =
1

1 + r

[
q1
(
y0λ

2
1 −K1

−∞
)+

+ q2
(
y0λ1λ2 −K2

−∞
)+]

C =
1

1 + r

[
q1
(
y0λ2λ1 −K3

−∞
)+

+ q2
(
y0λ

2
2 −K4

−∞
)+]

WhereK1
−∞ = min {y0, y0λ1, y0λ21},K2

−∞ = min {y0, y0λ1, y0λ1λ2},K3
−∞ = min {y0, y0λ2, y0λ2λ1},
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K4
−∞ = min {y0, y0λ2, y0λ22}. With indixes 1, 2, 3, 4 to indicate number of paths in lattice. The

initial stock price will be

A =
1

1 + r
(q1B + q2C)

From Black-Scholes world, the following equations are used

u = λ1 = eσ
√
T , d = λ2 = e−σ

√
T and q =

erT − d
u− d

=
erT − λ2
λ1 − λ2

The Black Scholes formula for call option is given by

C = StN(d1)−Ke−rTN(d2)

Where

d1 =
ln(St

K
) + (r + σ2

2
)T

σ
√
T

and d2 =
ln(St

K
) + (r − σ2

2
)T

σ
√
T

= d1 − σ
√
T

6 pricing lookback option via general mean model

Let consider λ1 = 5, λ2 = 2, y0 = 2.5, r = 1.5, K = 3, T = 1 and σ = ln(λ1)√
T

= 1.6. For p1

and p2 to be positive this condition y0λ1 > µ1 > y0λ2 should hold. one can choose any value

in that interval. Let choose µ1 = 10 for example. As it has been done early q1 = 0.154 and

q2 = 0.846. From the following figure

Figure 6: Pricing floating lookback via general mean(Binomial case)
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Referring to the binomial formulas in section five, we can find the stock price at the nodes B

,C and A respectively. The stock price should be B = 11.31,C = 3.924 and A = 2.025 ≈ 2.03

In Black-Scholes way, the results will be d1 = 1.624,d2 = 0.024 and C = 2.029 ≈ 2.03

7 Conclusion

Lattice method and Black-Scholes model are famous in financial world in pricing discrete and

continuous time respectively. By comparing Binomial model and Black-Scholes model in this

study, the out put shows that both models end up with approximately equal results considering

call option. It is clear that general mean model in this work helped in determining the payoff

of Lookback option can be also away of observing other option which is hidden between Asian

option and Lookback option. This work also make clear that even the minimum of the whole

lattice is considered in pricing the result will make sense. From the results, one can say that

comparing Binomial model and Black-Scholes model there is no significant difference.
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