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Abstract

In option pricing one of the main problems to solve is how to determine the fair price of an
option when no-arbitrage opportunity is considered. To solve this problem many models have
been developed but most of them there is no closed form solutions. In this paper, general mean
model is used to price Lookback option since it can entervene in determination of minimum and
maximum of underlying asset price under some conditions. The study shows the Construction
of lattice using moment-matching which provide a system of linear equations where real world
probabilities are unknown. To solve this system, Vandermonde matrix is preferred as one of
the easiest way to use. Since it is not allowed to price with real world probabilities and as this
paper deals with incomplete market which has more than one martingale measure, it is needed
to choose the best one to use in pricing. Therefore, the relative entropy method is introduced to
find the minimum entropy martingale measure which is the neutral probability in other words.
Finally, the results from pricing Binomial floating lookback option is compared to well known
Black-Scholes model.
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1 Introduction

Option trading has a long history even before Christ. Option is one of types of derivatives that
give the holder the rights but not obligation to buy or to sell an underlying asset at a fixed price
on the expiry date. Lookback option is one of Exotic options which is not new to the financial
market. It came into existence many years ago before the birth of the first organised option
exchange in the world named “Chicago Board of Option Exchange” in 1973 (Zhang, 1995).
This is the largest option exchange because it can provide more than one million contracts per
day (Boyle & Ananthanarayanan, 1977). In 1973, Myron Scholes and Fisher Black introduced
famous option pricing model named Black-Scholes model which deals with continuous time
under some assumptions. Since that time many research has been done in option pricing in
both continuous and discrete time and noticed that standard models in continuous time are not
doing well in discrete counterpart that it why other methods like lattice, Monte Carlo, numer-
ical, statistical methods,... were created to solve this problem. Since Exotic options can play
a special role in which standard options cannot do without difficulities, Exotic options are the
best to use with discrete time methods.

Lookback options are path-dependent exotic options whose payoffs depend on the maximum
and minimum of the underlying asset price attained throughout the optin lifetime. Standard
Lookback options was first introduced by (Goldman, Sosin & Gatto, 1979). Lookback option
as one of Exotic options allows the holders of the option to know the historical path of the
underlying asset and when to exercise. Holders can choose the most beneficial price of the un-
derlying asset which is occurred in that time. Lookback option provide numerous advantages
for option traders since always end up in money due to its floating strike price. The payoff for a
call option is provided by the asset price at maturity minus the minimum price observed during
the option lifetime. For put option the payoff is given by the maximum price observed during
the option lifetime minus the asset price at maturity time.

General mean function was used by (Zhang, 1998) to study the difference between arithmetic

mean and geometric mean in order to approximate mathematically, the arithmetic Asian op-



tions and geometric Asian options. Since Lookback option payoffs depend on minimum and
maximum of underlying asset, in this study general mean model is used to find minimum and
maximum of the underlying asset when the path of lattice is considered.

(Ogutu, Lundengard, Silvestrov & Weke, 2014) described how to construct lattice using moment-
matching technique to get a system of equations which contain jump probabilities as unknown.
To solve that system, a Vandemonde matrix was used with some condition on jump size denoted
as o which stands for the distance between two outcomes of stock when stock is considered as
an exponential Le' vy process. This paper is dealing with moment-matching and general mean
in pricing Lookback options and It has the following structure: First section is introduction,
Second section is moment matching technique in binomial model, section three is minimum
relative entropy martingale measure, section four is general mean model, and the last is to price

lookback option and compare the result to Black-Scholes model.

2 Moment-matching technique in binomial model

Consider the stochastic distribution of the price of paying non-dividend stock price in a risk-
neutral economy. Let stock price Y; be a stochastic random variable at time ¢ in a period [t, T']

such that Y; = Y;_{Z where Z is a discrete random variable defined as follows:

A1 with probability p;
Z = (D

A2 with probability p,

Such that \; > Ay implies \; # Ao
Matching the moments of a random variable X with a discrete random variable D where
E(X) = m, as given below

Dy =m +Y, 2)

wheret =1,2,3,...,T

Considering an incomplete market, the probabilities cannot be the same at each period.



Y1 = yoZ where Z is expressed in equation (1) then at ¢ = 1 the equation (2) will be

Dy=mi+Y;

By applying moment matching technique yields

EY?)=pi1+ps= 1o

E(Y1) = E(yoZ) = yop1 + Yorap2 = 11

In matrix form, it can be written as

Ho 1 1 P
= 3)
i YoA1 Yor2 | \ D2
1 1 . .
Let V = represents the Vandermonde matrix obtained in equation (3) then
Yo YoA2

jump probability can be determined as

7=V (4)

where ? and ﬁ are vectors containing the probabilities and moments respectively. The prob-
abilities p on each period is unique as it is possible to determine the inverse of Vandermonde

matrix since it has been confirmed by (Macon & Spitzbart, 1958).

Definition 2.1 Vandermonde matrix is investigated by Alexandre-Théophile Vandermonde, It

is a matrix with the terms of a geometric progression in each row. (Some authors use the



transpose of the matrix). It has the following form

1 1 1
01 09 on
w=|® & ... & 5)
5{\[—1 55[—1 . 5N_1
N

The determinant has been proven by (Gourdon, 1994) and it is written as

det(Vy) = [ (6;—6)

2<i<j<N

If all ¢; are distinct and different from zero then, the matrix is also guaranteed to be invertible.
Consider

0; = Yo\ where 1 <i{< N with N € R (6)
Will give the general lattice matrix with the final row missing.

Theorem 2.1 For a Vandermonde matrix Vi with elements defined by (6), the elements of

inverse are given by
(—1)"on—ji

chvzl,kyéi Yo(Ae — )

(Vi (7)

where on_j; is a cofactor matrix
Matching the lattice to the first N — 1 moments gives the equation (4) Using formulas (7) and

(4) gives
N N i
(=1 "on—ji

pi = Z(V_l)ijuj—l = Z o O )\i>/ﬁj—1 (8)

j=1 j=1

(Ogutu et al., 2014)



2.1 Determination of transition probabilities in binomial lattice

The expression of probabilities when NN is even is given in equation (8). For binomial lattice

N = 2, then by replacing the value of 7 anf j yields p; and p» respectively.

22: Y loa_ja " __Ouifo  Ooifh
= I, ki yo()\k — A1) Yo(A2 — A1) yo(A2 — A1)
2 .
(1) %09_j —01,2M0 00,2141
P2 = : Hi—1 = : + :
jZ1 Hi:l,k;éi Yo(Ar — o) ! YoM — A2) oA — Ag)

In matrix form we have

01,1 90,1

P1 PN vy ST G P Ho
7 = _ | vo(A2=A1) yo(A2—A1) (9)
—01,2 00,2
P2 yo(Ae—A1)  yo(ra—A1) H1

From equation (3) the Vandermonde matrix of order two is constructed and its inverse should
be compared to the inverse of Vandermonde matrix in equation (9) to get the adjacent matrix.

The deteminant of Vandermonde matrix V' of order two defined in equation (3) is given by

det(V) = yors — Yor1 = Yo(Aa — A1)

and the inverse is

— Yo -1
| VA ; Yo 1 _ yo(/\(;jh) Yo(A2—A1) (10)
Yo(r2 — A1) —yoAs 1

—3/0>\1 1 yo(A2—A1)  yo(Aa—A1)

From Algabra, two square matrices are equal if and only if the element located in the same
position are the same. Then by comparing inverse of Vandermonde matrix in equation (9) and

(10) yield
01,1 B Yoz . 00,1 —1

?Jo()\2 - )\1) B yo(/\2 - /\1)’ _yo(/\2 - /\1) B yo(>\2 - )\1)




01,2 . — Yo . 00,2 1

e = M) woe —A) e — M) yo(he — A1)

From the above equations we have
011 = YoA2; 001 = 1012 = YoA1;002 = 1 (11)

By replacing (11) in equation (9) then the binomial probabilities would be

Aaflg H

_ _ 12
n (A2 = A1) yo(Ae — A1) {12

A1 fo H1
- - + 13
P2 (A2 = A1) yo(A2 — M) (19

Since p; + p2 = po = 1, then p; > 0 if uy > Aoyo while po > 0 when p; < A\jyp which means
that both p; and p, are positive if and only if A\ayg < 1 < Ayg or Ay < % < A1. The above
assumptions indicate that all moments are positive which imply the positivity of probabilities.

In this study, the case yg\; > 1 is considered where © = 1, 2.

3 Minimal Relative Entropy Martingale Measure

Many authors have discused the minimal Entropy Martingale measure in different ways. Some
of them say (Ssebugenyi, Mwaniki & Konlack, 2013) described how to use minimal entropy
martingale measure to price American and European options in multinomial lattices which take
into cumulants information. (Frittelli, 2000) gave the sufficient conditions for the existence and
uniqueness of equivalent martingale measure which minimizes the relative entropy with respect
to the real world probabilities and many others. In this paper which deals with incomplete
market where there is more that one martingale measure, a good method is needed to choose a

suitable martingale measure that is why relative entropy were preferred.

Definition 3.1 Given two probability measure () = (q1,q2) and P = (py,p2) > 0 then



relative entropy of Q) with respect to P given by R(Q||P) is defined as

R(Q||P) = quzn (&) (14)

Consider binomial one-period model. Suppose A; has two possible values, denoted by \; and
Ao with corresponding probabilities from p; to p,. They must be a positive probability that the
stock will go down, similarly going up. We impose a probability distribution g on the set of
stock prices ypA1, Yo A2 such that the following two conditions are satisfied. If ¢ is a probability

measure, then can be expressed as
2
E ¢ =1
i=1

Another condition is that ¢ has risk neutal implies that the expected value of y; under g has to

be equal to ¥y, it can be written as
2
Z @iXi = Yo
i=1

The it is needed to solve the minimization problem of relative entropy between ¢ and the real
world probability p subject to these two contraints. Before to do so, let show that the relative

entropy 1s a convex function of g. Consider the function
2 .
F:V: R —R and q— F(q) = Zqiln(&) with
» Di

V=V"=R"Y=Y"=R" and g€V ig=(q,q),y€Y :v=(1,7)

Let the set of equivalent martingale measure be defined as

2 2
M. = {qE VY gi= I,Zqz-&:yo7q>0}
=1 i=1

then the convexity of relative entropy in (14) should be determined from

i(q.p) = RQ||P) = Zqzznql



Let ¢1,p1 and ¢2,p2 be the probability distribution, define ¢ and p as

qg=aq + (1 —a)g and p=ap + (1 —a)p with  «a€]0,1] then

2

i(¢,p) = i(aq + (1 — a)ga, apr + (1 — a)pa) = Z(aql + (1 — a)gz)in(

aqp + (1 B Q)QQ)
apy + (1 — a)p;

2 2
<adaln()+(1-a) 3 ain( %) = aila,p) + (1= a)iles,p2)
i=1 1 i=1 2

Hence relative entropy in equation (14) is convex. Then, the problem can be solved using the
Lagrange multipliers method by formulating the augmented cost function using the constraints

that has indicated in condition one and two respectively

2 2
5.1 Zizl g =1, Zizl qiNi = Yo
Where

2 2
BlZZ%‘—l and BQZZQi)\i_yO
i=1 i=1

Lagrange equation becomes

4715 72) Zqzln )+ 1B+ 2B = Zqzln +%Zqz—1 +722qu

where vy;and ~, are Lagrange multipliers. By minimizing L with respect to ¢ , set the partial

derlvatlve equal to zero for all ¢ € N. This leads to

(3 414+ 7 4+ A =0

7

by arranging yields

_ pexp(nX)  piexp(nAi)
%= =5 = (15)
S pexp(n);)  Elexp(nii), pl




and

_ . _ ElZexp(nZ),p] S Aipiezp(n\)
fn) =r= Elexp(nZ), p] Elexp(n\;), p] (16)

To determine the values of neutral probability ¢; we need to analyse the function of 7 and find
n* such that f(n*) = yo this can be determined by trial and error. By studying the limit of the
function in (16) yields

lim f(n)=X; lim f(n) =X\

n—>—00 N—>r+00
Proof 3.1 f(n) could be written as follows

_ Aiprexp(nAr) + Aepaexp(nAs)

f) prexp(ni) + paexp(niz)

Let consider ag = A\1; ag = Mp1, 5o = Ao, 1 = Aapo,a = p1, B = po then f(n) becomes

nog nB8o
f( )_ 1170 +51€nﬁ0 B %
— BenBo  aen@o+enfo
a1e%0
1 + aj ' Byentbo—ao) 1 + aj'pentbo=ao)
T alata lgenBoan) ¢ T 3en(Bo—ao)
a o+ ap Pentfomao 1+ o Pentbo=ao

Set & = e"Bo—a0) — en2=M) gince \; > \y then 1n — —oo implies t — +00 then

o' B _ B _ A2p2

lim f(n) = lim f(z) = a1 o8B = A

If n — o0 then x — 0 which means that

lim f(n) =lim f(z) = e = —
+o00 0
It is clear that in binomial case limit should be

lim  f(n) = A dm (n) =X\

n—>r—00

10



By studying equation (16) yields

f(eta) versus eta

fieta) in binomial model
- Initial stock y,

fleta)
w
o

-15 -1 05 o 05 1 15
eta

Figure 1: f(n) versus 1 in Binomial

Example 3.1 (Binomial case) Consider yy = 2.5, \y = 5, Ay = 2, pug = 1 from assumption
of moments in binomial, one can get 5 < | < 12.5, let in this case consider j1; = 10 then
by replacing back in equation (12) and (13) yields p; = 0.6667 and p, = 0.3333. From these

information f(n) in (16) is determined in Figure 1 where on should find n* by trial and error.

Consider n* = —0.8 and use it to determine neutral probabilities q;. From the equation (15)
we have
B prexp(n* i) B 0.6667exp(—0.8 % 5) 0154
n= prexp(n*Ay) + peexp(n*ds)  0.6667exp(—0.8 * 5) + 0.3333exp(—0.8 % 2)
A 0.3333 —0.8 %2
paep(n*Xs) exp(—=0.8 + 2) _ 0846

= prexp(n* A1) + peexp(n*As) - 0.6667exp(—0.8 * 5) + 0.3333exp(—0.8 * 2)

Therefore, after getting this neutral probabilities ¢; and ¢o, it is possible to price.

4 General Mean Function

Definition 4.1 If x is a non-zero real number and S, Ss, ..., S, are positive real numbers which

represent the stock, then general mean with exponential x of these positive real numbers is

M(Sla) = f(z) = (%Zsz)

11



Assume that forall i € 1,2,..., N and S; > 0 then in exponential form yields

1
x

N
1 1 N T 1
i=1

where N is number of observation, S is stock and x is a parameter which drive the behavior of

stock.

1. Domain of definition

Df:{xEB‘E:x#O,ZSf>O}:%—{O}ﬂ%:%—{O}:(—oo,O)U(O,oo)

i=1

2. Parity

f(x) # f(=x)
f(=x) # —f(z)

Forall ze€ Df,—x € Df, such that

Therefore, function f is neither even nor odd. Which means geometrically, that the
function adimits no symmetry with ordinate (y-axis) and no symmetry with the origine.
Other word, if f(—z) = f(x) means that there is symmetry with y since —z and x are

symmetry.
3. Limits on the boundaries

In order to prove geometric mean given by

lim M, = M,

z—0

We can rewrite the definition of ), using the exponential function as it is in equation
(17). Then if the limit + — 0, we can apply I’HOspital’s rule to the argument of the

exponential function. Differentiating the numerator and denominator with respect to z,

12



we have:

i wiS] In S
n n
. L w ST . L w; ST
hm Ez—l 1~ — hm Zz—l 1~
z—0 €T z—0 1

Let
Yy = i w; ST where ln(i wiSH) =x Z w;nS,
i=1 i=1
(in = / = iwilnS
i=1
y =y iwilnsi = iwiSf iwiln& = iwi(SflnSi) = iwiSflnSi
i=1 i=1 i=1 i=1 i=1

Then

/ n T
z Ei:l wiS;

1 n
— lim lel"”s n S, § wiln S; = ||S§”)
T—> ie1 paiey

By the continuity of the exponential function, we can substitute back into the above

relation to obtain

xlino M,(S1,...,S,) = exp(ln(ﬁ S:)) = ﬁSfl = ﬁ SZ% -
i=1 i=1

i=1

for other boundary we have

N A
1
lim M(z)= lim (N ZSf) = max (51, 59, ..., Sy) = 51 (19)

Tr—>+00 T—>+00

Where S; >S9 > ... > Sy >0

Proof 4.1 consider

S|ZB ( ZS@) _<Sl+52j_\|'f'--+sjv>m

13



— exp{iln (Sl +52;\;"'+SN>} = ewp{iln

:am{éhmﬁﬁ+%hx%)+lm[l+(i)—% +(?p}}

T

ST(L+ ()" + (8" + . + ()"
N

= exp {ln(Sl) + éln(%) + iln(l + Yz)}

Where
N g
Yo=Y (%) (20)

If vt — 400 then' Y, — 0 Since g—l < 1, for all i belong t0 {2,3, ..., N}.
Then In(1 +Y,) is equivalent to equation (20) at zero.

Therefore,

Msk = “p{ln@l )+ () } = eap {1n<sl>}exp{§m<%> +Z<§—j>x}

=

Since 1In(x) — 0 as x — +o0 and Zi\; <%> — 0 when x — 400 with

N
% < 1 for i belong to {2,3,4,...,.N} with finite number of observation N.
Therefore,

lim M(S|z) =S = max{Si, Sa, ..., Sn} (21)

T—>+00

Let show that for other boundary

r—>r—00 T—>r—00

lim M(S|z) = lim ( st) — min (S, Sy, ..., Sy) = Sn (22)

Where S; >S9 > ... > Sy >0

14



Proof 4.2

AL S 5 1, (S84S5 +..+ 5%
M(S|x) = ( ZS) —< I > —exp{xln< i

)

-1
mn N

_ ea:p{l [Sf”(( Sy (82)7 4 (BXt)T 4 1)

Let consider

N—-1 x x x
Si Sl SQ SN 1
K=Y = (2 2
— <5N> (SN) i (5N> I +< S )

{1,2,3,..,N —1}.

Then In(1 + K,) is equivalent to K, at zero.

Therefore,

M(Slz) = exp {1n<sN> Foin()+ Y S]'VV} — cap {1n<sN>}exp{ )+ 2

=1

. . l l .
Since mgrr_loo In(%) — 0and mirr_looz

N(S,L-

ie1(g2)* = 0 as number of observation N is
- N

finite. Then
lim M(S’ZL’) = SN = min{Sl, 52, ceny SN}

Tr—r—00

Example 4.1 Let find min(yo, yoa, YoA3)= min(2.5,5, 10). Using general mean, given
that N = 3, yo = 2.5, Y2 = b and yo\3 = 10 By using general mean equation in (19)
yields

lim M(S|z) = 2.5 %’ = 2.5 = min(2.5, 5, 10)

Example 4.2 [n the same example let determine the mazx (Yo, YoMz, YoA3)= max(2.5,5, 10).

Using general mean, given that N = 3, yo = 2.5, yo\o = 5 and yo\3 = 10 By applying

15
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general mean in (21) yields

1+imM(S|x) =10 %€’ = 10 = maz(2.5,5, 10)

4. Asymptotes
This function doesn’t admit vertical and oblic asymptotes. Horizontal asymptote as it has

been proved in part of limits on the boundaries. For all x € (—o0,0) U (0, c0)

u

Ty = MEry e -y S

\
|

ity = ity ()

0

Figure 2: Domain of general mean solutions

5. Local extrema

' Df — R

f(x) is continuous function on Domain x € D f

f(z) =exp {éln {% Z exp (xln(SZ))} }

=1

Recall:

f(z) = exp {EG($)} where G(z) =In {% Z exp (:Eln(SZ))}

=1

>y eap(aln(S;))

Since f(z) = exp { Gg(f)}

16



Forall z € D f, f’ could be determined as:

['(@) = { o) } cap {G—x)} 3)

X

Since (e“(w)), =/ (x)e"®

(G(az))’ _ G(z) — 2G'()

T T2

The sign of f’ depends on the sign of
G(z) — 2G'(x) (24)

From equation (23) the expression

G(x)\

X

G
exp {ﬁ} is always positive which means that ( ) is the term which can make f'(z) zero.
x

Therefore,

G(z) —zG'(x) =0 implies that G(x) = 2G'(x)

Whether S; > 1 or 0 < S; < 1 there is no problem because at t = 0, G’ (x) = 0
Then for all z € (0,400), G(x) > 0 and G'(z) > 0

The solution of f(x) where + — 0 exist since

N 1
lim‘r%o = limx_mf = limx_>0+ = H SiN € §Rj_
i=1
G(0) — 0G'(0) = 0

f'(xz) = 0 admits one solution at x = 0

17



Figure 3: The continuity of general mean function

6. Concavity

From (23) we set

H(x) = Glo) ;fG (z) such that

H'(z) =

- (x2G"(;c) — 220G (x) + 2G(x))

3

H'(xz) > 0if and only if

22G"(z) — 222G (z) + 2G(x)

3

<0 Then

2G(x) > 22G' (z) — 2°G"(x)

Therefore, we have H'(x) > 0 with x € (—o00,0). Since (H(x))? and exp {%} are

xT

positive. With H’(x) > 0 implies that f”(z) > 0 which means that f(z) is convex in the

interval of the domain (—o0, 0) and concave in the interval of domain (0, 00).

7. Graph

18



Figure 4: Graph representation of general mean function

4.1 General mean model

By referring to the concept of call and put option where X. = maz(Sr — K,0) and X, =
max(K — Sr,0) with 7" maturity time, K strike price and S the stock. We are considering
general mean function as in equation (17) to be the strike price depends on z and denoted by
K, where in (17) S is stock, /N is number of observation and x is a parameter. The function in
(17) is well defined since S; > 0 and x € (—o0,0) U (0, +00). Then by valuing the value of x
yields different strike price of exotic options as follows

lim f(z) =min(S;) = K_«

Tr—>r—00

< 1’.—>0 =11 (25)

f(l):%z:ﬁipsz':Kl

f(2) = \/%ZLS?:Kz

lim f(z) =max(S;) = K1

\ L—>+00

19



The function in (17) is just a generalization of strike price for options between Asian and

Lookback option as it is clear in (25). Therefore, the general mean model should be :
Xc = maxr (ST - f(x)a())

X, = mazx (f(z) — Sr,0)

Generally we call this function f(z) the general mean which is denoted by M (x). It is clear
that with = tends to —oo or 400 general mean function express the same strike price as the one

used in standard lookback option as it is shown in (22) and (19) respectively.

5 Pricing Lookback Option

Let Y;, denote the stock price at time ¢t = ¢,, withn = 0,1,2,...,n — 1. Suppose that \; € R

that satisfies 0 < Ay < 1+ r < A;. Then the binomial lattice diagram will be

t=0 t=1 t=2

Figure 5: Binomial tree in pricing Lookback option

Determining the stock price at A,B and C nodes. It is needed to consider payoffs and use the

backward to find the initial stock price A. Therefore, to determine the price at each node yields

1

B = 147 |:q1 (yO)\% - Kioo)—i_ + q2 (yo)q)\g — Kzoo)—i_]
1

¢= Tir [Q1 (?JO)\Q)q — Kioo)+ + @2 (y())\§ — Kioo)q

Where Kloo = min {yo, YoA1, y())\%}, KEOO = min {yo, YoA1, YoM Az} Kioo = min {yo, YoA2, Yor2A1 },

20



K*__ = min {yo, YoMz, Yo A3 }. With indixes 1, 2, 3, 4 to indicate number of paths in lattice. The

—oc0

initial stock price will be

1
A= —(q¢B
1+T(Q1 + ¢2C)

From Black-Scholes world, the following equations are used

U=\ = e"ﬁ, d= My = e=oVT and q= =

The Black Scholes formula for call option is given by

C = S;N(dy) — Ke ™" N(dy)

Where

In(58) + (r+ 2T In(58) + (r — )T
dy = —X 2 and  dp=—X 2 =dy—oVT
' oT ’ '

6 pricing lookback option via general mean model

Let consider \; =5, Ao = 2, yp = 2.5, 7 = 1.5, K =3, T =land 0 = % = 1.6. For p;
and p, to be positive this condition ygA; > 1 > 7oAz should hold. one can choose any value
in that interval. Let choose p; = 10 for example. As it has been done early ¢; = 0.154 and

q2 = 0.846. From the following figure

Payoff Call

625 60

52.5
3
B
2
125 25

t=0 t=1 t=2

Figure 6: Pricing floating lookback via general mean(Binomial case)
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Referring to the binomial formulas in section five, we can find the stock price at the nodes B
,C' and A respectively. The stock price should be B = 11.31,C' = 3.924 and A = 2.025 = 2.03
In Black-Scholes way, the results will be d; = 1.624,ds = 0.024 and C' = 2.029 ~ 2.03

7 Conclusion

Lattice method and Black-Scholes model are famous in financial world in pricing discrete and
continuous time respectively. By comparing Binomial model and Black-Scholes model in this
study, the out put shows that both models end up with approximately equal results considering
call option. It is clear that general mean model in this work helped in determining the payoff
of Lookback option can be also away of observing other option which is hidden between Asian
option and Lookback option. This work also make clear that even the minimum of the whole
lattice is considered in pricing the result will make sense. From the results, one can say that

comparing Binomial model and Black-Scholes model there is no significant difference.

References

Boyle, P. P. & Ananthanarayanan, A. L. (1977). The impact of variance estimation in option
valuation models. Journal of Financial Economics, 5(3), 375-387.

Frittelli, M. (2000). The minimal entropy martingale measure and the valuation problem in
incomplete markets. Mathematical finance, 10(1), 39-52.

Goldman, M. B., Sosin, H. B., & Gatto, M. A. (1979). Path dependent options:*“buy at the low,
sell at the high”. The Journal of Finance, 34(5), 1111-1127.

Gourdon, X. (1994). Les maths en téte.

Macon, N. & Spitzbart, A. (1958). Inverses of vandermonde matrices. The American Mathe-
matical Monthly, 65(2), 95-100.

Ogutu, C., Lundengard, K., Silvestrov, S., & Weke, P. (2014). Pricing asian options using

22



moment matching on a multinomial lattice. In AIP Conference Proceedings, volume
1637, (pp. 759-765). AIP.

Ssebugenyi, C. S., Mwaniki, 1. J., & Konlack, V. S. (2013). On the minimal entropy martingale
measure and multinomial lattices with cumulants. Applied Mathematical Finance, 20(4),
359-379.

Zhang, P. G. (1995). An introduction to exotic options. European Financial Management, 1(1),
87-95.

Zhang, P. G. (1998). Exotic options: a guide to second generation options. World Scientific.

23





