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Abstract

In this study, an unsteady fluid flow of a viscous, incompressible elec-
trically conducting fluid between two moving parallel porous plates of
infinite length in the x and z directions, subjected to a constant pressure
gradient and a constant injection and suction, in presence of an inclined
applied magnetic field whose lines are fixed relative to the moving plates,
is investigated. The study is aimed to determine the profiles of velocity,
temperature and the induced magnetic field, and the effects of vari-
ous flow parameters, namely Magnetic parameter M, Reynold’s number
Re, Eckert number Ec, Prandtl number Pr, magnetic inclination α and
injection parameter S0 on the flow variables and the induced field.
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1 Introduction

MHD Couette flow is the flow of an electrically conducting fluid between two
surfaces, one of which moves relatively to the other, in presence of a magnetic
field. The configuration of Couette flow often takes the form of two parallel
plates (called Planer-Couette flow) or the gap between two concentric cylin-
ders (called Taylor-Couette flow). The equations describing MHD flow are a
combination of continuity equation, Navier-stokes equations for fluids dynam-
ics and Maxwell’s equations for electromagnetism.
The MHD flow between porous plates studied has many important applica-
tions in areas such as the designing of cooling systems with liquid metals,
geothermal reservoirs, in petroleum and mineral industries, in underground
energy transport, MHD generators, pumps, flow meters, purification of crude
oil, among many other areas [12].
Studies related to MHD flow between two parallel porous plates have been
conducted on recent years by many other scientists and researchers.
[2] studied the unsteady magnetohydrodynamic Couette flow when the fluid
flow is confined to porous boundaries with suction and injection considering
two cases of interest, viz (i) impulsive movement of the lower plate and (ii)
uniformly accelerated movement of the lower plate. They concluded that the
suction exerted a retarding influence on the fluid velocity whereas injection
has accelerating influence on the flow. [3] studied MHD flow between two par-
allel plates through porous medium with one in uniform motion and the other
plate at rest and uniform suction at the stationary plate. They found that the
axial velocity of the fluid decreases as density, time, and Hartmann number
increases and that the transverse velocity of fluid increases as density, Hart-
mann number and suction increases. [4] analysed Unsteady MHD Couette flow
between two infinite parallel porous plates in an inclined magnetic field with
heat transfer and the lower plate considered porous. They concluded that mag-
netic field has significant effect on the flow. of an unsteady MHD Couette flow
between two infinite parallel.[5] considered Steady MHD flow of viscous fluid
between two parallel porous plates with heat transfer in an inclined magnetic
field. They observed that fluid with high viscosity causes reversed flow and
the applied magnetic force at different inclination controls this flow; also that
the temperature distribution in fluid layers is directly linked to the viscosity.
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[6] investigated Heat transfer between two parallel porous plates for Couette
flow under pressure gradient and Hall current. They concluded that the Hall
term gives rise to a velocity component w in the z-direction and affects the
main velocity u in the x-direction and that the viscosity variation parameter
has a marked effect on the velocity components u and w. They also found
that porosity parameter has a marked effect on the velocity and temperature
distributions and that by increasing Hartman number, the x-component of
the velocity u and temperature θ will decrease, while the z-component of the
velocity w will increase. [7] considered laminar viscous incompressible fluid be-
tween two infinite parallel plates when the upper plate is moving with constant
velocity and the lower plate is held stationary under the influence of inclined
magnetic field and concluded that the increase in magnetic field strength and
magnetic inclination results into decreases in the velocity profiles. [8] con-
sidered magneto hydrodynamic flow between two parallel porous plates with
injection and suction in the presence of a uniform transverse magnetic field
with the magnetic field lines fixed relative to the moving plate with a constant
pressure gradient and concluded that the magnetic field, pressure gradient,
time and injection have an accelerating influence on the fluid flow with a con-
stant pressure gradient in the direction of the flow on both cases of suction and
injection while viscosity and suction exert a retarding influence. [9] analysed
Hydromagnetic Fluid Flow between Parallel Plates where the upper plate is
porous in Presence of Variable Transverse Magnetic Field. They found that:
an increase in Suction parameter leads to a decrease in the velocity profile
and an increase in the temperature profiles respectively; imposing transverse
magnetic field decreases both velocity and temperature of the fluid; increasing
Eckert number causes an increase in temperature profiles whereas increasing
Prandtl number leads to a decrease in the temperature profiles. [10] investi-
gated hydrodynamic radiating fluid flow past an infinite vertical porous plate
in presence of chemical reaction and induced magnetic field and concluded that
velocity decreases with increasing magnetic parameter, which is due to Lorenz
force that opposes the fluid motion; velocity components are also reduced by
the increased values of the permeability of the plate; but velocity increases
with the increase of Grashof number. [10] also concluded that temperature
increases as the Eckert number, magnetic strength, radiation and surface per-
meability increase; and that induced magnetic field was elevated near the plate
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by increasing magnetic Prandtl number while this trend is reversed away from
the plate. [11] studied the effect of injection/suction on the free convective
flow through the porous medium bounded by two infinite vertical plates with
chemical reaction. They concluded that Velocity decreases with increasing val-
ues of chemical reaction parameter, Hartmann number and Schmidt number
while temperature decreases with increasing values of Prandtl number Pr. [12]
studied Unsteady hydromagnetic flow between parallel plates both moving in
presence of a constant pressure gradient. They concluded that the magnetic
field, pressure gradient, time and injection have an accelerating influence on
the fluid flow with a constant pressure gradient in the direction of the flow
on both cases of suction and injection; also, that the injection and suction of
fluid from either of the plates has a significant effect on the velocity profiles
with injection leading to increased velocities and suction leading to decreased
velocities of the fluid. Unsteady Stokes flow of dusty fluid between two parallel
plates through porous medium in the presence of magnetic field was analysed
by [13]. They concluded that the velocity of dust particle is higher than that
velocity of the fluid for all the parameters of the problem; the velocity of
the fluid and dust particle decreases as density and number of dust particles
increase.

2 Mathematical Formulation

The problem concerns the flow of an electrically conducting fluid between two
moving parallel porous plates assumed to be along y = 0 and y = h of infinite
length in x and z directions with a constant pressure gradient, suction and
injection through the walls of the channel in presence of an inclined applied
uniform magnetic field −→B0 taking into account the induced magnetic field. The
applied magnetic field is inclined to the (x, y) plane at an angle α from x-axis.
Initially (when time t ≤ 0), the fluid and the porous plates of the channel are
assumed to be at rest with the initial temperature T0. When time t > 0, the
two plates start moving with a constant velocity u0 in the x-direction with a
temperature Tp; a constant pressure gradient ∇p is imposed in the x-direction,
and a constant suction from above and injection from below, with velocity v0,
are impulsively applied.
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Figure 1: Flow Problem Configuration.

Since the plates are of infinite length in the x and z-directions, the physi-
cal quantities do not depend on x and z. The velocity of the fluid and the
magnetic induction vector are given as:
−→q = (u, v0, 0) −→

B = (B0 cosα + bx, B0 sinα + by, 0) = (Bx, By, 0)
where −→b = (bx, by, 0) represents the induced magnetic field.
In order to describe and analyse the problem mathematically, the following
assumptions are made:

1. The fluid flow is restricted to a laminar domain

2. The fluid is incompressible and Newtonian

3. Electrical and thermal conductivities, Dynamic viscosity are constant.

4. There is no chemical reaction

5. There is no applied external electric field.

6. The plates are non-conducting and uniformly porous.
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Momentum equation:

∂−→q
∂t

+
(
−→q ·
−→
∇
)
−→q = −1

ρ

−→
∇P + ν∇2−→q + 1

ρ

−→
F (1)

Where F = J ×B is the Lorentz force
Equation (1) reduces to:

∂u

∂t
+ v0

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

∂2u

∂y2 + 1
ρ
Fx (2)

Where Fx is the x− direction component of Lorentz force and is given by:

Fx = σ
[
u
(
B0 sinα)2 − v0

(
bx +B0 cosα

)(
B0 sinα

)]
(3)

In this case where the magnetic field lines are fixed relative to the moving
plates, from the model by [1], the velocity is considered as a relative velocity
and reflects how fast the fluid is moving relative to the plates. The equation
of motion hence becomes:

∂u

∂t
+v0

∂u

∂y
= −1

ρ

∂P

∂x
+ν ∂

2u

∂y2 + σ

ρ
B0 sinα

[
B0 sinα

(
u−u0

)
−v0

(
bx+B0 cosα

)]
(4)

Energy equation:

ρCp
DT

Dt
= k∇2T + µφ+ J2

σ
(5)

where D
Dt

is the material derivative.
The viscous dissipation function φ in three dimensions is expressed as:

φ =2
[(
∂u

∂x

)2
+
(
∂v

∂y

)2
+
(
∂w

∂z

)2]
+
[(
∂u

∂y
+ ∂v

∂x

)2
+
(
∂v

∂z
+ ∂w

∂y

)2
+
(
∂w

∂x
+ ∂u

∂z

)2]
− 2

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)2

(6)
For the present analysis, the viscous dissipation reduces to:

φ =
(
∂u

∂y

)2
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The joule heating term becomes:

J2

σ
= σ

[
uB0 sinα− v0

(
bx +B0 cosα

)]2

Again, since the magnetic lines are fixed relative to the moving plates, the
velocity is replaced by the relative velocity in the current density, thus the
viscous dissipation term is finally written as:

J2

σ
= σ

[(
u− u0

)
B0 sinα− v0

(
bx +B0 cosα

)]2

Substituting these in equation (5), yields:

ρCp

(
∂T

∂t
+v0

∂T

∂y

)
= k

∂2T

∂y2 +µ
(
∂u

∂y

)2
+σ

[(
u−u0

)
B0 sinα−v0

(
bx+B0 cosα

)]2

(7)

Induction equation

∂
−→
B

∂t
= 1
σµe
∇2−→B +−→∇ × (−→q ×−→B ) (8)

where 1
σµe

is the magnetic diffusivity of the fluid.
Using the information above and evaluating the terms in equation (8), it re-
duces to:

∂bx
∂t

+ v0
∂bx
∂y

= 1
σµe

∂2bx
∂y2 +B0 sinα∂u

∂y
(9)

Initial and boundary conditions of this flow problem are as follows:

t = 0 :


u = 0
T = T0

bx = 0

(10)

t > 0 :


u = u0

T = Tp at y = 0 and y = h

bx = 0

(11)
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Non-dimensionalization

The following non-dimensional transformations have been used to transform
the governing equations into their non-dimensional forms:
t∗ = tν

h2 , y∗ = y
h
, u∗ = uh

ν
, x∗ = x

h
,

T ∗ = T−T0
Tp−T0

, b∗
x = σh2B0

µ
bx, p∗ = h2p

ρν2 ,
Therefore it can be deduced that:
t = t∗h2

ν
, y = y∗h, x = x∗h, u = u∗ν

h

T = T ∗(Tp − T0) + T0, bx = µ
σh2B0

b∗
x, p = ρν2p∗

h2

Considering these, the equations (4), (7) and (9) become:

∂u∗

∂t∗
+S0

∂u∗

∂y∗ = β + ∂2u∗

∂y∗2 +M sinα
[(
u∗−Re

)
sinα−S0

(
b∗
x

M
+ cosα

)]
(12)

∂T ∗

∂t∗
+S0

∂T ∗

∂y∗ = 1
Pr

∂2T ∗

∂y∗2 + Ec

Re2

(
∂u∗

∂y∗

)2
+MEc

Re2

[(
u∗−Re

)
sinα−S0

(
b∗
x

M
+cosα

)]2

(13)
∂b∗

x

∂t∗
+ S0

∂b∗
x

∂y∗ = 1
PrM

∂2b∗
x

∂y∗2 +M sinα∂u
∗

∂y∗ (14)

Equations (12), (13), and (14) are respectively the equations of Momentum,
Energy and Induction in dimensionless form.
The initial and boundary conditions in dimensionless form become:

t∗ = 0 :


u∗ = 0
T ∗ = 0
b∗
x = 0

(15)

t∗ > 0 :


u∗ = Re

T ∗ = 1 at y∗ = 0 and y∗ = 1
b∗
x = 0

(16)
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3 Results and Discussion

The Crank-Nicholson method has been used to obtain the numerical scheme
for solving numerically the governing equations of the present flow problem.
The numerical results have been obtained by implementing the corresponding
Finite difference equations in a computer program.
The trends obtained by varying various fluid flow parameters, namely Mag-
netic parameter M, Reynold’s number Re, Injection parameter S0, Prandtl
number Pr, Eckert number Ec, Magnetic Prandtl number PrM and magnetic
inclination α are discussed and explained.

Figure 2: Effects of Magnetic parameter on velocity profiles

From Figure (2), it is observed that increasing Magnetic parameter (M) leads
to an increase in the velocity profiles. The Magnetic parameter is the ratio
of the magnetic forces to viscous forces. The magnetic field lines are applied
in the direction of the flow, inclined at an angle α to the plates. Following
the motion of the electrically conducting fluid through those lines, the Lorentz
force is generated. Since the magnetic field lines, in this case, are fixed relative
to the moving plates, the velocity of the fluid in the Lorentz force is replaced
by the relative velocity. The x − direction component of Lorentz force then
becomes positive, so, Lorentz force facilitates the fluid motion. An increase in
the magnetic parameter, meaning an increase in the magnetic forces, leads to
an increase in Lorentz force and therefore an increase in the fluid velocity.
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Figure 3: Effects of Reynold’s number on velocity profiles

From Figure (3), the fluid velocity increases with increasing Reynold’s num-
ber. Reynold’s number is the ratio of the inertia forces to viscous forces, thus
increasing Reynold’s number implies a decrease in the viscous forces which
oppose the motion of the fluid. Therefore an increase in Reynold’s number
leads to an increase in the velocity profiles.

Figure 4: Effects of Angle of inclination on velocity profiles

From Figure (4), it is noted that fluid velocity increases as α increases.
The magnetic field lines are applied at the angle α from the plate. The
x−component of the Lorentz force is proportional to sinα, and the sin function
is increasing on the interval [0, π/2]. Therefore, since the Lorentz force acts on
the direction of the flow, an increase in the angle of inclination α leads to an
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increase in the Lorentz force, and hence, an increase in the velocity profiles.

Figure 5: Effects of Injection parameter on velocity profiles

From Figure (5), it is noted that fluid velocity increases with increasing S0.
The Injection parameter, S0 increases with increasing the injection velocity v0,
and Lorentz force is increased by increasing the injection velocity. Since the
Lorentz force acts in the direction of the flow, therefore increasing S0 leads to
an increase in the Lorentz force, and hence an increase in the velocity profiles.

Figure 6: Effects of Magnetic parameter on Temperature profiles

From Figure (6), it is noted that fluid temperature increases as M in-
creases. The magnetic parameter (M) is the ratio of the magnetic forces to
viscous forces. Increasing M implies a decrease in viscous forces which oppose
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the fluid motion. When the viscous forces decrease, the velocity of the fluid
increases which increases the collision of the fluid particles leading to an in-
crease of the self-heating effects due to the dissipation of heat in the boundary
layers. Hence increasing M leads to an increase in temperature profiles.

Figure 7: Effects of Prandtl number on Temperature profiles

From Figure (7), it is observed that increasing Pr decreases fluid temperature.
Prandtl number (Pr) is the ratio of momentum diffusivity to thermal diffu-
sivity. A fluid with high Prandtl number possesses a relatively small thermal
conductivity. Thus, as Pr increases, there will be a reduction of the thermal
boundary layer thickness and hence a decrease in the temperature profiles.

Figure 8: Effects of Eckert number on Temperature profiles
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From Figure (8), it is observed that increasing Eckert number (Ec) leads to
increase fluid temperature. Ec is the ratio of kinetic energy to the enthalpy.
Increasing Ec leads to increase the kinetic energy. The kinetic energy increases
with increasing the fluid velocity. As the fluid velocity increases, the collision
of the fluid particles increases causing the dissipation of heat in the boundary
layers and hence an increase in fluid temperature.

Figure 9: Effects of Angle of inclination on Temperature profiles

From Figure (9), it is observed that an increase in the angle of inclination (α)
leads to an increase in the temperature profiles. By increasing α, the fluid
velocity increases, thus, the collision of fluid particles increases which brings
about dissipation of heat and hence an increase in the temperature profiles.

Figure 10: Effects of Injection parameter on Temperature profiles
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From Figure (10), it is oberseved that increasing injection parameter increases
the temperature profiles.
An increase in Injection parameter implies an increase of the injection velocity
v0. The Joule heating term in Energy equation is increased by increasing the
injection velocity. Therefore, increasing S0 leads to an increase in Joule heat-
ing term, and hence, an increase in the temperature profiles.

Figure 11: Effects of Magnetic parameter on the Induced magnetic field

From Figure (11), it is observed that an increase in magnetic parameter M
leads to an increase in the induced magnetic field on the interval 0.5 < y < 1
and a decrease on 0 < y < 0.5.
Increasing M implies increase in magnetic forces, implying also an increase of
the magnitude of the applied magnetic strength. The induced magnetic field
itself, is generated as a result of the motion of the electrically conducting fluid
in presence of magnetic field, so, as the magnitude of that field increases, the
magnitude of the induced field also increases.
The induced magnetic field is negative on the interval 0 < y < 0.5 and pos-
itive on 0.5 < y < 1. Since the magnitude of the induced field increases on
both intervals by increasing M, hence, as M increases, the induced field profile
decreases on 0 < y < 0.5 and increases on 0.5 < y < 1. Therefore an increase
in M leads to a decrease in the induced field profile on the interval 0 < y < 0.5
and an increase on 0.5 < y < 1.
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Figure 12: Effects of Magnetic Prandtl number on the induced magnetic field

From Figure (12), it is observed that an increase in PrM leads to a decrease
in the induced magnetic field on the interval 0.5 < y < 1 and a decrease on
0 < y < 0.5.
PrM is the ratio of momentum diffusivity to magnetic diffusivity. Increasing
PrM implies increasing the electrical conductivity of the fluid which makes
the fluid more conducting, and hence, increases the magnitude of the induced
magnetic field thus generated. Therefore, increasing PrM leads to an increase
in magnitude of the induced field, and hence, a decrease in the induced field
profile on the lower half of the channel and an increase on the upper half.

Figure 13: Effects of Angle of inclination on the induced magnetic field
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From Figure (13), it is observed that increasing α leads to a decrease in the
induced magnetic field on 0 < y < 0.5 and the reverse effect on 0.5 < y < 1.
It is noted that in the Induction equation, the induced magnetic field increases
with increase of the velocity gradient ∂u

∂y
. The velocity gradient in Induction

equation is amplified by sinα. So, as α increases, the term sinα∂u
∂y

decreases
on [0 0.5] and increases on [0.5 1] because the velocity gradient ∂u

∂y
is neg-

ative on [0 0.5] and positive on [0.5 1]. Therefore, increasing the magnetic
inclination leads to an increase in the induced magnetic field.

Figure 14: Effects of Injection parameter on the Induced magnetic field

From Figure (14), it is observed that increasing injection parameter leads
to a decrease in the induced magnetic field. This is due to the fact that, as
the injection velocity increases, the gradient of the induced magnetic field de-
creases which then leads to a decrease in the induced magnetic field.

4 Conclusion

The unsteady fluid flow between two moving plates in presence of an inclined
applied magnetic field with magnetic fields lines fixed relative to the moving
plates has been studied. The obtained model has been solved using Crank
Nicholson method and simulated with MATLAB.
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The effects of flow parameters have been determined. From the results ob-
tained, the following conclusions have been outlined:

The velocity increases with an increase in the magnetic parameter M, Reynold’s
number Re, the magnetic inclination α and the Injection parameter S0.

The temperature increases with an increase in M, α, Eckert number Ec and
the Injection parameter S0. However, the temperature decreases as Prandtl
number Pr increases.

An increase in M, magnetic Prandtl number PrM and α leads to a decrease in
the induced magnetic field in the lower half of the channel and an increase in
the upper half of the channel. Increasing S0 leads to a decrease in the induced
field but the effect is not well pronounced.
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Nomenclature

B Magnetic induction vector, [wbm−2]
B0 Applied uniform magnetic vector, [wbm−2]
H Magnetic field intensity, [wbm−2]
E Electric field intensity, [v]
D Electric displacement [Cm−2]
J Induction current density, [AM−2]
T Temperature of the fluid, [K]
Tp Temperature of the moving plates [K]
T0 Temperature at rest [K]
P Pressure force, [Nm−2]
q Velocity vector, [ms−1]
uo velocity of the moving plates, [ms−1]
vo Injection velocity, [ms−1]
k thermal conductivity, [Wm−1K−1]
F Body forces, [N ]
D
Dt

Material derivative, ( ∂
∂t

+ u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

)
ρ Fluid density, [kgm−3]
ρe Charge density, [C]
µ Coefficient of viscosity, [kgm−1s]
µe Magnetic permeability, [Hm−1]
σ Electrical conductivity, [Ω−1m−1]
α Magnetic inclination, [rad]
∇ Gradient operator, (i ∂

∂x
+ j ∂

∂y
+ k ∂

∂z
)

∇2 Laplacian operator ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 )
ν Kinematic viscosity [m2s−1]
φ Viscous dissipation function, [s−1]
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