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Abstract

We present an optimal control of Malaria epidemic model with Chemoprophylaxis
to describe the interaction between human and Malaria disease Mosquito popula-
tion. We applied an optimal control strategy (single intervention) to the Malaria
model.We derived the basic properties of the model, including the basic reproduction
number. We applied an optimal control method in order to find the best strategy
to combat the disease. Numerical simulations are further carried out to establish
and extend our analytical results.
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1 Introduction

The incidence of malaria has been growing recently due to increasing parasite drug-
resistance and mosquito insecticide-resistance[4]. Therefore, we find it useful and im-
portant to study and understand the important parameters in the dynamics of trans-
mission of the disease in order to help in the effective control strategies. Malaria is
an infectious disease caused by a parasite that is transmitted by the bite of a female
Anopheles mosquito.Malaria is one of the world’s most prevalent vector-borne disease.
Despite decades of global eradication and control efforts, the disease is re-emerging in
areas where control efforts were once effective and emerging in areas thought free of the dis-
ease[32,17,25,15,26].As reported in World Health Organisation(WHO) fact sheet(2009),malaria
a life threatening disease caused by parasites that are transmitted to people through the
bites of infected mosquitoes, which resulted in the death of a child from malaria every
30secs[16]. An estimated 40percent of the world’s population live in malaria endemic
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areas. The disease kills about 1 to 3million people a year, 75percent of whom are African
children.

Mathematical models for transmission dynamics of malaria are useful in providing
a better knowledge of the disease, to plan for the future and consider appropriate con-
trol measures. Models have played great roles in the development of the epidemiology
of the disease. The study on malaria using mathematical modeling originated from the
works of Ross [21]. According to Ross, if the mosquito population can be reduced to
below a certain threshold then malaria can be eradicated. MacDonald did some modi-
fication to the model and included superinfection [15,13]. He showed that reducing the
number of mosquitoes have little effect on epidemiology of malaria in areas of intense
transmission. Dietz et al [1,13] added two classes of humans in their mathematical model,
namely those with low recovery rate (more infections, greater susceptibility) and high
recovery rate (less infections, less susceptibility). Compartmental models of malaria and
differential equations are constructed to model the disease [31,8,5,9,13,20].[1] compare two
mathematical models of transmission for P.vivax and P.falciparum parasites their work
suggested that artemisinin-based combination therapy combined with a hypnozoite killing
drug, would eliminate both species. Nevertheless, P.vivax ’s ability to relapse accelerated
the acquisition of presenile clinical immunity. This parasite transmission persisted in ar-
eas of low mosquito abundance and was robust to drug administration initiatives due to
relapse.Nevertheless, P.vivax was less lethal than P.falciparum.

Optimal control theory is a powerful mathematical tool that can be used to make
decisions involving complex biological situations[26].It is another area of mathematics
that is used extensively in controlling the spread of infectious diseases. It is often used
in the control of the spread of most diseases for which either vaccine or treatment is
available[42].[16] applied optimal control theory to a set of epidemiological model in their
attempt to find the most effective control strategy to minimize the number of individuals
who become infected in the course of an epidemic using both treatment and vaccination
as control measures.[20] used optimal control theory to determine the optimal treatment
strategy for the administration of antiretroviral drug(Reverse Transcriptase Inhibitors)
in HIV positive individuals. Blayneh et al [4], used a time dependent model to study
the effects of prevention and treatment on malaria, similarly [33] used a time dependent
model to study the impact of a possible vaccination with treatment strategies in con-
trolling the spread of malaria in a model that includes treatment and vaccination with
waning immunity.[27] applied an optimal strategies for disease control using Pontryagin’s
Maximum Principle(PMP). They derived and analyzed a mathematical model that de-
scribes the dynamics of malaria infection with the recruitment of infected immigrants,
treatment of infectives and spray of insecticides against mosquitoes in the population.[34]
applied optimal control theory to a simple SI malaria model with non-linear incidence
rate. They derived basic properties of the model, including the epidemic threshold. Their
model is found to show transcritical bifurcation and they conclude from their study that
an optimal controlled treatment strategy would ensure significant reduction in malaria
incidence if fully adhered to.

Our goal is to develop mathematical model for human-mosquito interactions with
single control strategy, with the aim of investigating the role of chemoprophylaxis in
order to determine optimal control strategies with the control measure for controlling the
spread of malaria transmission.In this paper, we present a malaria transmission model
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formulation in section 2, where the general mathematical framework, notations and model
equations including the ShIhRhSh+SvIv model were analyzed and the basic reproduction
number were derived. In Section 3, we state the control problem as well as the objective
functional to be minimized, we then apply the Pontryagins Maximum Principle to find
the necessary conditions for the optimal control. In Sections 4, we show the simulation
results to illustrate the population dynamics with chemoprophylaxis measures as control
while in section 5 we conclude.

2 Model formulation

We consider a standard ShIhRhSh+SvIv with bilinear incidence and variable total human
population. Suppose Sh represents the number of susceptible humans, Ih represents the
number of individual who are infected and infectious, and Rh represents the number of
individuals who recovered from the malaria disease for a while. The model subdivides
the total vector population at time t denoted by Nv(t), into susceptible vector (Sv(t)),
Infected vectors (Iv(t)), so that

Nv(t) = Sv(t) + Iv(t).

Similarly, the total human population at time t, denoted by Nh(t) is subdivided into
Susceptible humans (Sh(t)), Exposed humans Eh, Infected humans (Ih(t)), Recovered
humans (Rh(t)). Therefore,

Nh(t) = Sh(t) + Ih(t) +Rh(t)

. The population of susceptible humans is generated by intrinsic growth rate of humans
(at a per capita rate bhNh) and the recovered human losses their immunity due to wanning
effect of the chemo-prophylaxis. It is reduced by infection, following contacts with infected
vectors (at a rate α1ShIv

Nv
) where α1 is the product of the transmission probability per bite

and the biting rate of mosquitoes and the contact rate of vector per human per unit
time, while M is the carrying capacity for human.It is further reduced by the effort of the
control(chemo-prophylaxis). Thus,

dSh
dt

= bhNh −
α1ShIv
Nv

+ qu1Rh − u1Sh −
bhShNh

M

The population of Infected humans is given by

dIh
dt

=
α1ShIv
Nv

− γIh − ρIh −
bhIhNh

M

where γ is the per capita rate of recovery of the hosts.
The population of recovered human is generated following a human spontaneous recov-
ery(at a rate γ) and decreased by loss of immunity(at a rate γ). The population of
recovered humans is given by

dRh

dt
= u1Sh − qu1Rh + γIh −

bhRhNh

M
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The population of susceptible vector is generated by birth (recruitment) of humans (at a
per capita rate bv,). It is reduced by Infection, following number of bites of a Susceptible
vector on Infected human per unit time(α2SvIh

Nh
) and also reduced by natural death at (a

rate dv).
dSv
dt

= bv −
α2SvIh
Nh

− dvSv

Hence, the population of Infected vector is given by

dIv
dt

=
α2SvIh
Nh

− dvIv

The model equation is given below;

dSh
dt

= bhNh − α1ShIv
Nv

+ qu1Rh − u1Sh − bhShNh
M

dIh
dt

= α1ShIv
Nv
− γIh − ρIh − bhIhNh

M
dRh
dt

= u1Sh − qu1Rh + γIh − bhRhNh
M

dSv
dt

= bv − α2SvIh
Nh
− dvSv

dIv
dt

= α2SvIh
Nh
− dvIv.

(1)

subject to the initial conditions

Sh(0) = Sh,0, Ih(0) = Ih,0, Rh(0) = Rh,0, Sv(0) = Sv,0, Iv(0) = Iv,0.

which together with Nh = Sh + Ih +Rh and Nv = Sv + Iv imply
dNh
dt

= bhNh(1− Nh
M

)− ρIh
dNv
dt

= bv − dvNv

Table 2.1 State Variables of the Malaria Model

Symbol Descriptions
Sh(t) Number of Susceptible humans at time t
Ih(t) Number of Infected humans at time t
Rh(t) Number of Recovered humans at time t
Sv(t) Number of Susceptible vector at time t
Iv(t) Number of Infected vector at time t.

2.1 Basic Properties of the Malaria Model with Single Inter-
vention

Positivity and Boundedness of the Solutions
We realized that for our malaria transmission model with control variable to be epidemi-
ologically meaningful. It is very important to prove that all its state variable are non-
negative at time t. That is, the solution of the model system (1) with non-negative initial
data will remain non-negative at all time t > 0. The system of equation ShIhRh + SvIv
malaria model will be analyzed in a biologically feasible region. This region should be
feasible for both humans and mosquito population. Hence, we have
Theorem 1. If the initial data Sh ≥ 0, Ih ≥ 0, Rh ≥ 0, Sv ≥ 0 and Iv ≥ 0, then the
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solution (Sh(t), Ih(t), Rh(t), Sv(t), Iv(t)) of the malaria control model (1) are non-negative
for all t > 0. Therefore,

lim
t→inf

supNh(t) ≤M, lim
t→∞

supNv(t) ≤
bv
dv

and Nv = Sv + Iv, Nh = Sh + Ih +Rh.
Proof. We let θ1 = sup{t > 0 : Sh(t) > 0, Ih(t) > 0, Rh(t) > 0, Sv(t) > 0, Iv(t) > 0}.
The variables Sh(0) > 0, Ih(0) > 0, Rh(0) > 0, Sv(0) > 0 and Iv(0) > 0 then, θ1 > 0. If
θ1 < ∞, then Sh, Ih, Rh, Sv, Iv is equal to zero at θ1 following from the first equation of
the model equation (1) that

dSh
dt

= bhNh −
α1ShIv
Nv

+ qu1Rh − u1Sh −
bhShNh

M
.

Therefore,

d

dt
{Sh(t) exp [(

α1Iv
Nv

+ u1 +
bhNh

M
)t]} = (bhNh + qu1Rh) exp [(

α1Iv
Nv

+ u1 +
bhNh

M
)t].

Hence

Sh(t) exp [(
α1Iv
Nv

+u1 +
bhNh

M
)t]−Sh(0) =

∫ θ1

0

(bhNh + qu1Rh) exp [(
α1Iv
Nv

+u1 +
bhNh

M
)]dP

then

Sh(θ1) = Sh(0) exp [− (
α1Iv
Nv

+ u1 +
bhNh

M
)θ1] + exp [− (

α1Iv
Nv

+ u1 +
bhNh

M
)θ1]

×
∫ θ1

0

(bhNh + qu1Rh) exp [(
α1Iv
Nv

+ u1 +
bhNh

M
)P ]dp > 0

and

Iv(θ1) = Iv(0) exp[−dvt] + exp[−dvt]×
∫ θ1

0

α2IhSv
Nh

exp[dv]PdP > 0.

We can as well show this similarly for Ih > 0, Rh > 0 and SV > 0 for all t > 0. For the
other part of the proof, it should be noted that 0 ≤ Ih(t) ≤ Nh(t) and 0 ≤ Iv(t) ≤ Nv(t).
Adding the first three equations of the model and we have

dNh

dt
= bhNh(1−

Nh

M
)− ρIh.

Adding the last two equation of the model equation (1) we have

dNv

dt
= bv − dvNv.

Therefore

bhNh(1−
Nh

M
)− ρNh ≤

dNh

dt
≤ bhNh(1−

Nh

M
)

bv − dvNv ≤
dNv

dt
≤ bv − dvNv.
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Hence
M − ρ

bh
≤ lim

t→∞
inf Nh(t) ≤ lim

t→∞
supNh(t) ≤M

and
bv
dv
≤ lim t→∞ inf Nv(t) ≤ lim

t→∞
supNh(t) ≤

bv
dv

Just as we need.

2.2 The Invariant Region

We analyzed the model equation (1) in a biological feasible region. We divided the system
equation (1) into two parts such that: the human population; Nh = Sh + Ih +Rh and the
mosquito population Nv = Sv + Iv. We therefore consider the feasible region.
Ω = Ωh ∪ Ωv ⊂ R3

+ × R2
+

Ωh = {(Sh, Ih, Rh) ∈ R2
+ : Sh + Ih +Rh ≤M}

Ωv = {(Sv, Iv) ∈ R2
+ : Sv + Iv ≤ bv

dv
}.

We established the positive invariance of Ω following the steps below:
The rate of change of humans and mosquitos population is given in equation (2) above.
It follows that

dNh

dt
≤ bhNh(1−

Nh

M
)

dNv

dt
≤ bv − dvNv.

We follow the standard comparison theorem to show that

Nh(t) ≤
MNh(0)

Nh(0) + (M −Nh(0))e−tbh
and Nv(t) ≤ Nv(0)e−dvt +

bv
dv

(1− e−dvt).

In particular

Nh(t) ≤
M

1 + (u− 1)e−tbh
and Nv(t) ≤

bv
dv

whenever Nh(0) ≤ 1 and Nv(0) ≤ 1 respectively.
Therefore, the region Ω is positively invariant wherefore it is sufficient to consider the
dynamics of the flow generated by (1) in Ω. In this region, the model can be taken to be
epidemiologically and mathematically well posed. Therefore, every solution of the model
equation (1) with initial condition in Ω remains in Ω for all t > 0.
Theorem 2. The region Ω = Ωh ∪ Ωv ⊂ R3

+ × R2
+ is positively invariant for the model

with single intervention (vaccination) (1) with non-negative initial condition in R5
+.

2.3 The Reproductive number

In this section, we determine the threshold parameter that govern the spread of the disease
which is the effective reproduction number. We try to explore the local stability of E0

first by using the next generation matrix. The next generation method is used to find
the effective reproduction number. Mathematically, it is the spectral radius of the next
generation matrix. Using the notation F as the non-negative matrix of new Infection
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terms and the M -matrix, V of the transition associated with our model (1) are given
respectively by

F =

(
0 α2S∗

v

Nh
α1S∗

h

Nv
0

)

V =

(
γ + ρ+ bhNh

M
0

0 dv

)
It follows that the effective equilibrium Reproduction number of the model (1) with

single intervention (vaccination) denoted by Reff is given by

Reff = ρ(FV −1)

where ρ denotes the spectral radius or the dominant eigenvalues.
Hence, the positive dominant eigenvalues of the matrix FV −1 is given by

R2
0 =

α1α2bvbhNhM
3γ−α1α2bvbhNhqu1M

3−α1α2bvb2hNhM
2

(N3
vNhdvMγ+N3

vNhMρdv+N3
vN

2
hdvbh)(bhNhγM−bhNhqu1M−N

2
hb

2
h+u1M

2γ−u1MbhNh)

The Reproduction number R0 is solved by using system equation (1)

2.4 Non-dimensionalization of the system

For convenience we rewrite these equation in terms of proportion of the individual class
by defining sh = Sh

Nh
, ih = Ih

Nh
, rh = Rh

Nh
, sv = Sv

Nv
, iv = Iv

Nv
as the proportion for the classes

Sh, Ih, Rh, Sv, and Iv and let m = Nv
Nh

be the female mosquito-human population ration
defined as the number of female mosquito per human host.Note that the ratio m is taken
as a constant because a mosquito vector takes a fixed number of blood meals per unit time
independent of the population density of the host[25]. By differentiating with respect to
time t,it is easy to verify that sh, ih, rh, sv, iv and Nh satisfy the system of differential
equations.
The model equation is now;

dsh
dt

= bhsh − ρih − bh + α1shiv − qu1rh + u1sh
dih
dt

= bhih − ρi2h − α1shiv + γih + ρih
drh
dt

= bhrh − ρrhih − u1sh + qu1rh − γih
dsv
dt

= bvsv
Nv
− bv

Nv
+ α2svih

div
dt

= bvsv
Nv
− α2svih.

(2)

sh + ih + rh = 1, sv + iv = 1 dNv
dt

= bv − dvNv

We observe that the system(2) involves the total human population size Nh in the propor-
tion for the human population. We now reduce system (2) to a four dimensional system
by eliminating sh and sv. Since rh = 1− sh − ih and sv = 1− iv respectively.

dsh
dt

= (bh + α1iv + qu1 + u1)sh + (qu1 − ρ)ih − bh − qu1
dih
dt

= (bh − ρih + γ + ρ)ih − α1shiv
div
dt

= bvsv
Nv
− α2ivih

dNv
dt

= ( bv
Nv
− dv)Nv.

(3)

where Ω = {(sh, ih, iv, Nv) ∈ R4
+ : 0 ≤ sh, 0 ≤ ih, sh + ih ≤ 1, 0 ≤ iv ≤ 1, Nv ≤ bv

dv
} From

system (3), we notice that the third equation depend on the total mosquito population,Nv.
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So substituting for bv
Nv

= dv into the third equation of the system gives the following system
:

dsh
dt

= (bh + α1iv + qu1 + u1)sh + (qu1 − ρ)ih − bh − qu1
dih
dt

= bhih − ρi2h − α1shiv + γih + ρih
div
dt

= ivdv − α2ih + α2ivih.

(4)

It can be verified that the region
V = {(sh, ih, iv) ∈ R3

+ : 0 ≤ sh, 0 ≤ ih, sh + ih ≤ 1, 0 ≤ iv ≤ 1} is positively invariant
with respect to system(4), where R3

+ denotes the non-negative cone of R3
+ including its

lower dimensional face. We represent the boundary and the interior of V by ∂V and V̇
respectively. Hence, the system (4) is bounded.
To compute the steady states of the system (4) we set the derivatives with respect to time
in system (4) equal to zero and then on simplification, the following algebraic expressions
are obtained
sh = (bh+qu1−qu1ih+ρih)(dv+α2ih)

bh(dv+α2ih)+α1α2ih+qu1(dv+α2ih)+u1(dv+α2ih)

ih = α1α2ihsh−bh(dv+α2ih)
(dv+α2ih)(bh−ρih+γ+ρ)

iv = α2ih
dv+α2ih

We now obtain the disease-free equilibrium point given by P0 = (1, 0, 0) and the endemic
equilibrium point P1, with the co-ordinates
sh = (bh+qu1−qu1ih+ρih)(dv+α2ih)

bh(dv+α2ih)+α1α2ih+qu1(dv+α2ih)+u1(dv+α2ih)

ih = α1α2ihsh−bh(dv+α2ih)
(dv+α2ih)(bh−ρih+γ+ρ)

iv = α2ih
dv+α2ih

3 Analysis of Optimal Control Techniques applied to

the model under consideration

The control 0 ≤ u1 ≤ 1 is the use of chemo-prophylaxis. This control is bounded and our
model equation is given below

dsh
dt

= (bh + α1iv + qu1 + u1)sh + (qu1 − ρ)ih − bh − qu1
dih
dt

= bhih − ρi2h − α1shiv + γih + ρih
div
dt

= ivdv − α2ih + α2ivih.

(5)

Our goal is to minimize the total number of infective individuals and the cost associated
with the use of chemoprophylaxis on [0, T ].Now we define the objective functional as

J(u1) =

∫ T

0

(Aih +
u21
2

) dt

subject to the system of equation (4) with appropriate state initial condition while the
Lebesgue measurable control set U is defined as

U = {(u1(t)|0 ≤ u1 ≤ 1, t ∈ [0, T ])} (6)

where u1(t) is a measurable function such that: 0 ≤ u1 ≤ 1, t ∈ [0, T ]. A is a weight pa-
rameter which describes the comparative importance of the two terms in the functional.
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We consider a quadratic cost on the control, which is the simplest and widest used non-
linear representation of vaccination cost (Asano et.al;Math Biosci Engr 5 (2008), Jung
et. al; Disc. Cont. Dyn. Syst. B, 2(2002), Jung et. al; J.Theor. Biol;260(2009)).The
quadratic term is particularly chosen to describe the nonlinear behaviour of the cost of
implementing the chemoprophylaxis.

3.1 The Optimal Control Problem

We are seeking 0 ≤ u1 ≤ 1, for t ∈ [0, T ], to minimize

J(u1) =

∫ T

0

(Aih +
u21
2

) dt

subject to the system of equation (4)

dsh
dt

= (bh + α1iv + qu1 + u1)sh + (qu1 − ρ)ih − bh − qu1
dih
dt

= bhih − ρi2h − α1shiv + γih + ρih
div
dt

= ivdv − α2ih + α2ivih.

(7)

and sh(0) ≥ 0, ih(0) ≥ 0, iv(0) ≥ 0, Nh(0) = 0, sh + ih(0) ≥ 1, 0 ≤ iv(0) ≥ 1

3.2 Existence and Uniqueness of the control

Theorem 6.: Suppose the objective functional J(u1) = min{J(u1) =
∫ T
0

(Aih +
u21
2

) dt
where u = {u1 : ui measurable 0 ≤ u1(t) ≤ 1, t ∈ [t0, T ] ∈ R+ for i = 1, 2...} subject to
the dynamic constraints of system equations (2) and (3) with sh(0) = Sh0, ih(0) = ih0 and
iv(0) = iv0, then there exists an optimal control u∗ = (u∗1) such that minu1∈u J(u1) = J(u∗1)
Subject to the control system (4) with the initial conditions
Proof.:
To prove the existence of an optimal control pair we use the result in [16] and [Fleming and
Rishel (1975)].The control and the state variables are non-negative values and are non-
empty. In the minimization problem, the necessary convexity of the objective functional
in u1 is satisfied. The control variable u1 ∈ U is also convex and closed by definition. The
optimal system is bounded which determines compactness needed for the existence of the

optimal control. Furthermore, the integrand in the objective functional which is (A
u21
2

) is
convex on the control set U . There exists constants b1, b2 > 0 and β > 1 such that the

integrand of the objective functional J is convex and satisfies J(u1, u2) ≥ b1(|u
2
1

2
|2)β2 − b2.

By standard control arguments involving the bounds on the control, we conclude

u∗1 =



0 if η∗1 ≤ 0,

η∗1 if 0 < η∗1 < 1,

1 if η∗1 ≥ 1

(8)

where
η∗1 = λ1(q + 1)sh − q
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By the apriori boundedness of the state system, adjoint system and the resulting Lipschitz
structure of the ODEs, we obtain the uniqueness of the optimal control for small T.The
uniqueness of the optimal control follows from the uniqueness of the optimality system,
which consist of (6), (7) and (8) with characterization (9) and (10). We impose a bound on
the length of time interval in order to guarantee the uniqueness of the optimality system.
The smallness restriction of the length on the state problem has initial values and the
adjoint problem has final values. This restriction is very common in control problems(See
Josh,2002;Lenhart and Workman, 2007; Lenhart and Yong, 1997).

3.3 Necessary conditions of the control

Theorem 7.: Given an optimal control u∗1 and a solution X∗(t) = (s∗h(t), i
∗
h(t), i

∗
v(t))

of the corresponding state system (4) there exist adjoint variables λ1(t), λ2(t) and λ3(t)
which satisfies the following:
We first derive the Hamiltonian which is given by

H = Aih +
u21
2

+ λ1((bh + α1iv + qu1 + u1)sh + (qu1 − ρ)ih − bh − qu1) + λ2(bhih − ρi2h −
α1shiv + γih + ρih) + λ3(ivdv − α2ih + α2ivih)

λ́1 = −∂H
∂S

= −[λ1(bh + α1iv + qu1 + u1) + λ2(−α1iv)]

λ́2 = −∂H
∂I

= −[A+ λ1(qu1 − ρ) + λ2(bh − ρih + γ + ρ) + λ3(−α2 − α2iv)]

λ́3 = −∂H
∂N

= −[λ1(α1sh) + λ2(−α1sh) + λ3(dv + α2ih)]

with the final conditions
λ1(T ) = λ2(T ) = λ3(T ) = 0

We differentiate the Hamiltonian with respect to u1 in the interior of U to obtain the
optimality condition as follows:we find the optimal control u∗1 such that

u∗1 = min{max(0, q − λ1(q + 1)sh, 1}

Proof.
We form the Hamiltonian H given by

H = Aih +
u21
2

+ λ1((bh + α1iv + qu1 + u1)sh + (qu1 − ρ)ih − bh − qu1) + λ2(bhih − ρi2h −
α1shiv + γih + ρih) + λ3(ivdv − α2ih + α2ivih)
By Pontryagin’s Maximum Principle we derive

λ́1 = −∂H
∂S

= −[λ1(bh + α1iv + qu1 + u1) + λ2(−α1iv)]

λ́2 = −∂H
∂I

= −[A+ λ1(qu1 − ρ) + λ2(bh − ρih + γ + ρ) + λ3(−α2 − α2iv)]

λ́3 = −∂H
∂N

= −[λ1(α1sh) + λ2(−α1sh) + λ3(dv + α2ih)]
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and the transversality conditions

λ1(T ) = λ2(T ) = λ3(T ) = 0

We differentiate the Hamiltonian with respect to u1 in the interior of U we obtain the
optimality condition that follows

∂H

∂u1
= u1 + λ1(q + 1)sh − q = 0

From this equation, we get the optimal control (u∗1 as stated below

u∗1 = min{max(0, q − λ1(q + 1)sh, 1} (9)

We impose some bounds on the control: 0 ≤ u1 ≤ 1 to yield (5) as needed.

3.4 Optimality System

Therefore, our resulting optimality system is given by:
State equations:

dsh
dt

= (bh + α1iv + qu1 + u1)sh + (qu1 − ρ)ih − bh − qu1
dih
dt

= bhih − ρi2h − α1shiv + γih + ρih
div
dt

= ivdv − α2ih + α2ivih.

(10)

and sh(0) ≥ 0, ih(0) ≥ 0, iv(0) ≥ 0, Nh(0) = 0, sh + ih(0) ≥ 1, 0 ≤ iv(0) ≥ 1
Adjoint equations:

λ́1 = −[λ1(bh + α1iv + qu1 + u1) + λ2(−α1iv)]

λ́2 = −[A+ λ1(qu1 − ρ) + λ2(bh − ρih + γ + ρ) + λ3(−α2 − α2iv)]

λ́3 = −[λ1(α1sh) + λ2(−α1sh) + λ3(dv + α2ih)]

Transversality equations:
λ1(T ) = λ2(T ) = λ3(T ) = 0. (11)

Characterization of the optimal control u∗1:
∂H
∂u1

= 0 at u1 = u∗1, on the set {t ∈ [0, T ] : 0 ≤ u1 ≤ 1}. That is:

u∗1 =



0 if η∗1 ≤ 0,

η∗1 if 0 < η∗1 < 1,

1 if η∗1 ≥ 1

(12)
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4 Numerical Simulations Results and Discussions

Here, we study the numerical approximation of optimal transmission parameter control
for the malaria control model. We obtained the optimal control by calculating the op-
timality system which consist of the state system, the adjoint, transversality equations
and characterization of optimal control.We use the iterative scheme to calculate the op-
timality system. We investigate a deterministic model with logistic function and study
the impact of chemoprophylaxis on the Malaria transmission.The numerical algorithm
presented below is a forward-backward sweep method. We want to solve the problem
numerically, that is devise an algorithm that generates an approximation to an optimal
piecewise continuous control u∗. We break the time interval by discretizing the interval
[t0, t1] into pieces with specific points of interest t0 = b1, b2, ..., bN , bN+1 = t1, those points
are usually equally spaced.The approximation will be a vector −→u = (u1, u2, ..., uN+1),
where ui ≈ u(bi). There are many numerical methods which can be used to solve initial
value problems, we have Runge-Kutta or adaptive schemes, and boundary value problems
such as shooting method. We could use any of these methods to solve the optimality sys-
tem and the optimal control problem (if we establish the right existence and uniqueness
result). We gave a step by step outline of the algorithm below: where −→x = {sh, ih, iv}
and
−→
λ = {λ1, λ2, λ3} are the vector approximations for the state and adjoint functions.

1. We make an initial guess for −→u over the interval.

2. We use the initial value e.g sh = sh(0) = a and the values for −→u1, solve −→x =
{sh, ih, iv}, forward in time according to their differential equation in the optimiza-
tion.

3. We use the transversality condition λM+1 = λ(t1) = 0 and we have the values

for −→u = {u1} and −→x = {sh, ih, iv}, solving
−→
λ = {λ1, λ2, λ3} backward in time

according to their differential equation in the optimality system.

4. We update u1 by entering the new −→x = {sh, ih, iv} and
−→
λ = {λ1, λ2, λ3} values into

the characterization of the optimal control.

5. We check convergence. If values of the variables in the iteration and the last iteration
are close negligibly, we output the recent values as solutions but if values are not
close, return to step 2.

The simulation which we carried out were carried out by using the following values:
q = 0.2, ρ = 0.05, α1 = 0.006, α2 = 0.027, bh = 0.00011,d2 = 0.04, γ = 0.00137,
sh(0) = 0.3, ih(0) = 0.2, sv(0) = 0.4, A = 0.9. u∗1 = q − λ1(q + 1)sh Considering
0 ≤ u1 ≤ 1, u∗1 is given by

u∗1 = min{max(0, q − λ1(q + 1)sh), 1}

.
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Parameter Symbol Value Source

disease induced death rate ρ 0.05 [34]
transmission rate of human α1 0.006 [15,16,35]
transmission rate of human α2 0.027 [13,33]
per capita birth rate of mosquitoes bv 0.071 [2,13]
Natural death rate of mosquitoes d2 0.04 [9]
efficacy of chemoprophylaxis q 0.2 [assumed]
the carrying capacity of human M 500000 [assumed]
rate of loss of immunity from humans γ 0.00137 [2,13,32]
intrinsic growth rate of humans bh 0.00011 [41]

Table 1: Table showing numerical values of parameters used in the simulations.

4.1 Control with Chemoprophylaxis

With this strategy, only the control(u1) on chemoprophylaxis is used to optimize the
objective function J . In fig. 1,fig. 2, and fig. 3 the result shows that applying chemopro-
phylaxis control does not appreciably bring down the number of infected individuals.We
observe that applying the chemoprophylaxis as a control strategy reduce the susceptible
to below certain threshold.Hence, the control u1 reduces to a lower bound after 90days.In
fig.8, fig.9 and fig.10,we observe that applying the chemoprophylaxis appreciably brings
down the number of susceptible and does not appreciably bring down the number of
infected individuals.

(a) fig. 1 (b) fig. 2 (c) fig. 3

(d) fig. 4

Figure 1: Simulation showing the Optimal states and control
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(a) fig. 5 (b) fig. 6 (c) fig. 7

Figure 2: Simulation showing the Marginal susceptible and infected human and Marginal
infected Mosquitoes

(a) fig. 8 (b) fig. 9 (c) fig. 10

Figure 3: Simulations showing the efficacy of chemoprophylaxis only on susceptible and
infected human

5 Conclusion

In this paper, we formulate and analyze a compartmental deterministic model for the
transmission of malaria disease that with logistic function and chemoprophylaxis mea-
sures. We calculated the basic reproduction number and performed optimal control analy-
sis of the model.In the course of applying the optimal control, we derived and analyzed the
conditions for optimal control of the disease with preventive measures(chemoprophylaxis).
From our numerical results, we found that prevention has a strong impact on the disease
control. We therefore conclude that sufficient control measures which adhered to this
control strategy (preventive) would be a very effective way for fighting the disease.
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