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Abstract  

Known as one of the key risk measures, volatility has attracted the interest of many 

researchers. These aim, in particular, to estimate and explain its evolution over time. Several 

results reveal that volatility is characterized, among other things, by its asymmetric variations 

(Chordia and Goyal 2006, Mele 2007, Shamila et al 2009, etc.). In this article, we seek to 

analyze and predict the volatility of the BRVM through these two indices. The data used are 

daily and start from the period from 04 January 2010 to 25 May 2016. We use three models of 

the GARCH family with asymmetric volatilities with different density functions. The results 

show a presence of asymmetry in the market yields. Also testifying to the presence of 

leverage in this market. The EGARCH model presents the best results in the analysis of the 

dynamics of market volatility behavior.  
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1. INTRODUCTION 

Charreaux (2001) argues that any financial phenomenon can be understood as a temporal 

transfer of wealth, which is fundamentally risky. He thus comes to the conclusion that there 

are two basic dimensions of financial reasoning. Which are on the one hand, time and on the 

other hand, the risk.  

Traditionally, therefore, financial uncertainty is associated with statistical uncertainty about 

the change in the price of assets, and its canonical measure is volatility. That's when volatility 

sparked the interest of many researchers. The latter aim, in particular, to estimate and explain 

its evolution over time, Bezat and Nikeghbali (2000). For these authors, stock market 

volatility plays a central role in modern finance because it evokes the typical observed (or 

expected) magnitude of stock price movements over a given period of time. In addition, 

modern financial theory shows that the volatility of financial assets must be measured to build 

efficient portfolios.  

In the area of emerging markets
2
, the issues of market volatility are much greater than 

elsewhere. It should also be noted that reducing the uncertainty associated with the knowledge 

of the future, improves the quality of the information and the resulting decisions remain the 

main objectives of the forecast. Bezat and Nikeghbali (2000). The prediction of the volatility 

of financial time series has been widely examined over the last three decades. The theory 

predicts that an estimate and especially an accurate forecast of the volatility of asset prices 

would have important implications for investment, valuation security, risk management and 

monetary policy decision-making, N'dri (2015).  

Market volatility therefore becomes a measure of risk that has a significant contribution to 

investment decisions and efficient
3
 portfolio selection. Finally, policymakers rely on the 

results of estimates and forecasts of market volatility as a barometer for containing the 

vulnerability of financial markets and the economy in the treatment of monetary policy, N'dri 

(2015).  

                                                           
2
 These markets are known to have much higher volatility than developed markets, according to the International 

Finance Corporation (IFC). Thus the high volatility to which is added the absence of a compromise between the 

risk and the future profitability makes necessary the studies dealing with this phenomenon.  

3
 For a good forecast of the volatility of asset prices over the holding period of the investment is the starting 

point for assessing investment risk.  
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However, it should be noted that volatility has long been and continues to be of concern to 

researchers in economics, primarily in the financial sector. One of the main issues that 

volatility raises is the estimation method used.  

Indeed, the Brownian movement that conditions the normality of stock prices and the 

hypothesis of efficiency supported by Fama (1965, 1970) are hypotheses very often accepted 

in financial theory, but which struggle to respond to the actual dynamics of time series. 

Mandelbrot (2000). First, the assumption of normality is almost rejected in most studies 

conducted on financial assets (exchange rates, stock market indices, macroeconomic 

aggregates, etc.). Some researchers, such as Walter and Véhel (2002), have empirically 

argued that the introduction of normal Brownian motion generates an underestimation of 

risk
4
. For these authors, this is due to the shape of the normal law (which characterizes the 

Brownian motion), extremely flattened at the ends and whose tails are very thin, largely 

ignoring the extreme values. Thus the use of Gaussian processes in the estimates of financial 

series proves to be incapable in the prevention of the occurrence of crises and the advent of 

extreme risks. 

Another hypothesis that is empirically refuted is that of homoscedasticity. Which states that 

volatility is a constant variable over time. However, the fluctuations and upheavals that the 

financial landscape is incessantly experiencing point to the existence of a conditional 

volatility autoregressive effect (ARCH effect) present in the stochastic component of financial 

series. Indeed, Alberg et al. (2008), think that it is the observation of certain phenomena such 

as Mandelbrot's excess of kurtosis (1963) and the leverage effect by Black (1976), which 

occurs when stock prices are negatively correlated fluctuations in volatility in financial time 

series, which has led to the use of a wide range of different variance models to estimate and 

predict volatility.  

In his seminal paper, Engle (1982) proposed a conditional variance model that varies over 

time and uses delayed perturbations (ARCH). This is due to the inability of ARMA models to 

estimate financial series due to the consistency of their conditional variance. The ARCH 

model in turn has two major drawbacks: the first, raised by Bollerslev (1986), which results 

from the large number of necessary parameters used in modeling. This may lead to the 

violation of the positivity constraint of the conditional variance. For this purpose he proposes 

                                                           
4
 Several stock market shocks have occurred since the beginning of the 20th century to the present day knowing 

that their probability of occurrence was practically zero 
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to generalize the ARCH model to obtain the GARCH. The second problem is the inability of 

the ARCH model to account for the asymmetry of volatility (Nelson 1991, Glosten 

Jagannathan and Runkle 1993, Zakoian 1994, etc.).  

To try to solve these imperfections, an increasing volume of extensions of the ARCH model 

has been developed. We distinguish two main families: ARCH type models with symmetric 

volatility; these are linear models where the magnitude and not the sign of shocks influences 

the conditional variance. Thus, positive and negative shocks of the same magnitude have the 

same effect on volatility. The most innovative: (GARCH, IGARCH and GARCH-M). Then, 

ARCH models have asymmetric volatility. In these models, the authors introduce an explicit 

modeling of the conditional variance that responds asymmetrically to shock according to its 

sign. Thus, a negative shock will be followed by a more pronounced increase in the 

conditional variance than that caused by a positive shock of the same magnitude. The most 

innovative ones are the exponential GARCH (EGARCH), the APARCH model and the 

GARCH dual speed model (GJR-GARCH).  

It should also be noted that the estimation of volatility by the classical GARCH model, i.e. 

under the assumption of the normality of the errors, gives a positive excess of the flattening 

coefficient (kurtosis) of the non-linear conditional distribution. The major disadvantage of this 

model is that, in general, it fails to fully account for the leptokurtosis character of the modeled 

series, especially for the high frequency series according to Giot and Laurent (2003 and 

2004). To overcome these problems, several authors have introduced the concept of 

conditional density to obtain thicker tails. [Bollerslev (1987), Baillie and Bollerslev (1989), 

and Beine et al. (2002)] who used the Student's distribution in the use of GARCH models. In 

the same way to capture the skewness (asymmetry coefficient), Liu and Brorsen (1995) use a 

stable asymmetric density. Fernandez and Steel (1998) use the asymmetric Student 

distribution to model both the asymmetry coefficient (skewness) and the flattening coefficient 

(kurtosis). Then the asymmetric Student distribution was extended to the GARCH framework 

by Lambert and Laurent (2000 and 2001).  

Empirical studies have been conducted on developed and emerging stock markets by 

[Sandoval (2006); Chuang et al. (2007); Komain (2007); Kovacic (2008); Curto et al. (2009); 

Lee (2009); Shamiri and Isa (2009); Liu and Hung (2010); Su (2010); etc.]. The few studies 

that have attempted to analyze African stock markets, however, are limited to [Appiah and 
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Menyah (2003), Ogun et al. (2005), Eskandar (2005), Alagidede and Panagiotidis (2009) and 

especially, N'dri (2015), Coffie (2015)].  

This article aims to complement and contribute to the existing empirical literature by 

analyzing the BRVM volatility forecast using the different asymmetric GARCH models by 

applying three density functions.  

The rest of the study is organized as follows: Section 2 deals with the description of the 

market with the presentation of the data. Section 3 presents the econometric methodology 

used. In section 4, the empirical results are highlighted and discussed. Finally Section 5 

concludes this study.  

 

2. DESCRIPTION OF THE MARKET AND PRESENTATION OF DATA.  

This study focuses on the BRVM, an integrated market common to the 8 UEMOA countries 

(Benin, Burkina Faso, Côte d'Ivoire, Guinea-Bissau, Mali, Niger, Senegal and Togo.). Created 

on September 16, 1998, the capital of the BRVM is subscribed by regional economic actors of 

West Africa. The two stock market indexes (BRVM) represent the activity of stock market 

securities. The BRVM Composite which consists of all listed securities. The BRVM 10 is 

composed of the ten most active companies on the market. The formulation and selection 

criteria of the BRVM COMPOSITE and the BRVM 10 are based on the main stock market 

indices of the world, especially the FCG index of the International Financial Corporation, a 

World Bank affiliate. 

The index formula takes into account market capitalization, trading volume per trading 

session and trading frequency. We use daily data from the BRVM 10 and BRVM Composite 

indices during the period from 04 January 2010 to 25 May 2016, i.e. 1667 observations for the 

BRVM 10 and from 04 January 2010 to 31 March 2016, i.e. 1583 observations for the BRVM 

composite. They are extracted from the Official Bulletin of the Cote (BOC) which 

summarizes at the end of each trading session, statistics relating to BRVM 10, BRVM 

Composite, sectorial indices, and transaction volumes among others. 

Playing the role of barometers of economic activity in a market economy, the financial market 

indices reflect the evolution of the values that are quoted as shown in the following graphs: 
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Source: Author from the data of the official bulletin of the BRVM rating. 

For the calculation of yields, it should be noted that we use the first differences of the 

logarithms of the raw series. 
1_Brvm ln(P ) ln( )x100,t t tR P   Where 

tP  being 

the price of the BRVM index at the date t 

 

 

 

 

 

 

 

 

The descriptive statistics of our data are presented in Table 1 below. This table clearly 

indicates the nature and type of data we have available for our analysis. 
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Graphique 3a: Daily evolution of the 

BRVM10 index from January 2010 to 

October 2016  

 

 

 

 

 

 

 

 

 

Graphique 3b: Daily evolution of the 

composite BRVM from January 2010 to 

March 2016 

 

Graphique 4a: Daily evolution of the 

performance of composite BRVM index 

from January 2010 to October 2016. 

 

Graphique 4b: Daily evolution of the 

performance of the BRVM10 index from 

January 2010 to October 2016. 
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Table 1: Descriptive statistics for logarithm differences 1100 [ln (P ) ln ( ) ]t tP  of BRVM 10 

and BRVMC 

 Obs. Average Max Min SD Skewness Kurtosis Jarque-

Bera Stat.  

tr _brvm10 1667 0.0324 21.697 -20.237 1.370 -0.0615 86.67 486213.4                                    

(0.000) 

 

 Obs. Average Max Min SD Skewness Kurtosis Jarque-Bera                 

Stat. 

tr _brvmC  1583 0.0537 10.354 -9.3017 0.911 0.255 33.804 62606.40                              

(0.000) 

 

Table 1, above, gives kurtosis coefficients of 86.67 and 33.804 which are well above 3 for a 

normal distribution. This indicates a high probability of extreme points that is to say that the 

tails of the distribution are therefore thicker than those of the normal distribution which is 

consistent with one of the characteristics (leptokurtic distribution) of the financial series. 

There is also a skewness (asymmetry coefficient) of -0.061 for the BRVM10 and 0.255 for the 

composite BRVM compared to zero (0) for the normal distribution, this shows that the 

distribution of the series is asymmetric and bent respectively towards the left and right 

according to the index. This asymmetry may be a sign of the presence of non-linearity in the 

process of evolution of returns. This possible non-linearity can testify to the presence of an 

ARCH effect (autoregressive conditionally heteroscedastic), frequently encountered in the 

financial series. Finally, the Jarque-Bera statistic confirms the non-normality of the studied 

series through the probability associated with this statistic. We will test the ARCH effect 

which could be the cause of the non-linearity in the process of evolution of the profitability 

through 2 different methods. The one proposed by Engle (1982) which consists of estimating 

t  par t̂  (les residues). That is, regression of the model  
2 2 2

0 1 1
ˆ ˆ ˆ...t t p t p t           

  

and calculate 
2TR   with T, with T, the sample size and  2T R m . McLeod and Li 

(1983), which is a test similar to the Ljung-Box test, but here it is the squared residuals that 

are evaluated. That is to say 
2

1

ˆ
( ) ( 2)

m j

j

e
Q m T T

T j
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The results obtained with the McLeod test for the two indices shows that with an optimal 

delay of 1 day for the BRVM10 and 5 days for the composite BRVM, we have statistical 

values of 244.63 for the BRVM10 and 212.77 for the BRVM composite with p-value less 

than 5%. This allows us to reject the null hypothesis of the absence of heteroscedasticity. The 

Engle test confirms in turn a strong presence of the ARCH effect through its F-statistics of 

21.18 for the BRVM10 and 15.75 for the composite index with p-values lower than 5% 

(Table 2). Following). 

Table 2: Test of the ARCH effect according to the McLeod test and that of the Engle 

Lagrange Multiplier 

ARCH 

effect test  

   Ljung-Box test according to Macleod    Engle Lagrange Multiplier Test 

 

Rbrvm10 Q
2
(m)=244.63, m=1, p-value=0.000       F-stat=21.18, m=1,p-value=0.000  

RbrvmC Q
2
(m)=212.77, m=5,p-value=0.000       F-stat=15.75, m=5,p-value=0.000  

H0: 0 1 ... 0      presence of unit root (non-stationarity). 

Before beginning the econometric estimations, we proceeded to several tests of stationarity, to 

reassure us or to eliminate any presence of unit root in the series studied. The t-statistic values 

are compared to the different critical values in brackets. The statistical values of all 4 tests are 

lower than the different critical values. Hence the rejection of the null hypothesis of non-

stationarity (presence of unit root). The 4 tests carried out all confirm the stationarity of the 

yield level of our two indices, namely the BRVM10 and the BRVM composite. (See table 3 

next). 

Table 3: Unit Root Tests 

Indices         Stat.ERS Stat.ADF Stat.pp                         Stat.KPSS 

BRVM10      -22.616 **(-1.94) -26.125**(-2.56)                        -28,100**(-2.56)           0.063**(0.463) 

BRVMC     -8.320**(-1.94)     -13.524**(-2.56)    -27,134*(-2.56)          0.137(0.463) 

Notes: Stat. ADF is the value of the Augmented Dickey-Fuller statistic to be compared with the critical value of 

-2.56 at the 5% threshold. Asterisks indicate significant values. Stat.pp is the value of the Philips and Perron 

statistic. Stat. ERS is the value of the Elliott-Rothenberg-Stock statistic to compare with the critical value of -

1.94 at the 5% threshold. 
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3. ECONOMETRIC METHODOLOGY  

 

We draw inspiration from the work of Alberg et al. (2008). Who presented a model for 

estimating volatility by its ability to predict and capture stylized facts received on conditional 

volatility. Such as the persistence of volatility and the impact of shocks according to their 

different signs, by studying the prediction performance of models GARCH, EGARCH, GJR 

and APARCH through their different density functions.  

To do this, we start from the fact that Engle (1982) proposes the first ARCH model in two 

equations. The first describes the relationship that exists, at a given date t, between the Y yield 

and the vector of the variables that explain X.  

(1)t t tY X     

With t t tz  , such as 2

1 (0, )t tI N   . Where   represents the vector of the real,  is 

the shock,  the conditional variance, Z , is i.i.d. random variable with mean zero and 

variance one. 1tI   is the information available at time  t-1. 

The second equation links, through an autoregressive process, the conditional variance 2 , 

shock ε to the squares of the past values of this shock, that is:   

2 2

0

1

(2)
q

t i t i

i

    



 

Where t t tz  , such as (0,1)tZ N  . tz follows a Gaussian distribution law and is 

independently and identically distributed (i.i.d). As restrictions, we have: 

0 0, 0 0i for i   
 

Reducing the high number of parameters required in the modeling will lead us to the use of a 

GARCH (p, q) presented in the following form: 

 (3)t tr   

With t t tz  , such as (0,1)tZ N .
 

2 2 2

1 1

(4)
q p

t i t i j t j

i j

      

 

   

, ,i j and   , are the parameters to estimate. tr ,  and t  are respectively the return on the 

asset at the date t, the average yield and the term of the innovation.  
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Equation (4) also shows that the variance is: 

2 2

1 1

( ) (5)

1
t q p

i j

i j

E


 

 
 

 

  

Like ARCH, some restrictions are needed to ensure that 2

t  is positive for all t. Bollerslev 

(1986) shows that imposing 0, 0, 1... 0, 1...i ji q and j p        is sufficient for 

the conditional variance to be positive. 

To capture the asymmetry observed in the data, a new class of ARCH models was introduced: 

the GJR-GARCH by Glosten and al. (1993), the exponential GARCH (EGARCH) by Nelson 

(1991) and the APARCH model by Ding, and al. (1993). This last model that has the feature 

to generate many ARCH models by varying the parameters is expressed as:  

APARCH (1, 1):  

1 1

1 1

( ) (6)
q p

t i t i t j t j

i j

           

 

      

With 0 0, 0, 0, (j 1,..., p), 0 1 1 (i 1,...,q)j i iand             .  

Where and   are the parameters allow us to capture the asymmetric effects. The presence 

of a leverage effect can be investigated by testing the hypothesis that 0i  . With a number 

of variations of the parameters of the APACH model, we obtain the following models:  

 ARCH of Engle (1982), when  2, 0 (i 1,...,p) 0 1,...,pi jand j        

 GJR-GARCH, Glosten and al. (1993) when 2    

 TGARCH of Zakoian (1994), when  1   

 TS-GARCH of Taylor (1986) and Schwert (1990), for  1, 0 1,...,iand i q      

 N-ARCH of Higgins and Bera, when    0 1,..., 0 1,...,pi ji q and j      Etc. 

Nelson (1991) investigated asymmetric variance trends using the EGARCH models, 

highlighting that rising and falling movements give different effects on volatility dynamics by 

using logarithm of the conditional variance. 
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EGARCH(1,1):

12 2 1
1

1 1

2
ln( ) ln( ) ( ) (7)

t t
t t

t t

 
     

  

 


 

 
     

 
     

Where  is the asymmetry parameter and is supposed to be positive so that a negative shock 

increases future volatility ie has more impact on volatility while the opposite effect is 

observed for a positive shock. This model is all the more interesting for the simple reason that 

it imposes no restriction on the estimated parameters. 

The negative correlation between shocks and returns is a salient feature of the stock market. 

The sign and magnitude of shocks have asymmetrical effects on returns. Therefore, Glosten, 

Jagannathan and Runkle in (1993), introduced a GARCH model with the diverging effects of 

negative and positive shocks taking into account the phenomenon of leverage. Due to 

asymmetric effects, asymmetric distributions are used in the modeling of market returns. This 

model assumes a specific parametric form for conditional heteroscedasticity. Called GJR-

GARCH and is as follows:  

GJR-GARCH (1,1): 

2 2 2

1 1 1

1

1

1

( ) (8)

1 0

0 0

t t t t

t

t t t t

t

I

if
with z and I

if

     


 



  







   


  



 

As restrictions, we have: 
1

1, 0, 0, 0
2

               

3.1. Estimation methods 

If the prediction of volatility using the GARCH model is simple, the one using the 

asymmetric models must take into account the law of innovations. When the distribution is 

Gaussian, the probability of having a negative shock is 50%. When the distribution is of the 

asymmetric Student type, the probability will depend on the asymmetry and flattening 

parameters. 

Since GARCH models are parametric, the maximum likelihood and quasi-maximum 

likelihood methods proposed by Bollerslev and Wooldridge (1992) are usually used for 

estimation. For this, it is necessary to impose a law on innovations. Because in practice, the 
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use of a Gaussian law does not correspond to the behavior of shocks, which favors non-

normal distributions with additional parameters for asymmetry and kurtosis. 

Gaussian Conditional Likelihood is derived from equation (2): 

2 2 2

0 1 1 ... (9)t t m t m         
 

By posing that 2 2

t t t     , we will have: 2 2 2

0 1 1 ...t t m t m t            . So the 

likelihood function will be of the following form: 

 

1 1 1 2 1 1

2

1221

( ,..., ) ( ) ( )... ( ) ( ,..., )

1
exp( ) ( ,..., ) (10)

22

T T T T T m m m

T
t

m
t m

tt

f f F f F f F f

f

        


  



   

 



  

With '

0 1 1( , ,..., ) ( ,..., )m mand f       , being the density function of the joint 

probability of 1,..., m  . This likelihood function can also be written as follows:  

2

1 221

1
( ) L ( , ,..., ) exp( ) (11)

22

T
t

T T T
t

tt

L


   


   

Where the 2

t  are defined recursively, for 1t   by equation (4). For a given value of  , under 

the assumption of second-order stationarity, the unconditional variance (corresponding to this 

value of  ) is a reasonable choice for unknown initial values 2 2 2 2

0 1 0 1...q p         

or 
2 2 2 2 2

0 1 0 1...q p          . Maximizing the conditional likelihood function is like 

maximizing its logarithm, which is easier to manage. The conditional log likelihood function 

is:

2
2

1 1 2
1

1 1 1
( ,..., , ,.., ) ln(2 ) ln( ) (12)

2 2 2 2

T
t

m T m t

t m t

l


      




 

 
    

 


 Since the first term ln (2π) does not involve any parameters, and then the log likelihood 

function transforms and becomes: 
 

2
2

1 1 2
1

1 1
( ,..., , ,..., ) ln( ) (13)

2 2 2

T
t

m T m t

t m t

l


     




 

 
   

 


Where 
2 2 2

0 1 1 ...t t m t m          , can be evaluated recursively. In general, and in some 

applications, it is more appropriate to assume that tZ   follows a thick-tailed distribution such 
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as a standardized Student distribution. Let x , the Student's distribution with  the degree of 

freedom, the density function of Student's asymmetric distribution is as follows: 
 

2
( 1)/2(( 1) / 2)

(z ; ) (1 ) (14)
2( / 2 ( 2)

vt
t

zv
D

vv


 

  
 

 

Where 2  , is the degree of freedom. With 1

0
, ( ) x v

t t tz and e x dx  


      is the 

gamma function and   is the parameter that measures the tail thickness.  

3.2. Normal distribution. 

The normal distribution is by far the most used distribution in the estimation and prediction of 

GARCH models. If we express the equation of the mean, that is equation (1), with t t tz 

, the log-likelihood function of the normal distribution is given by:  

2 2

1

1
ln(2 ) ln( ) , (15)

2

T

T t t

t

L z 


       

With T, the number of observations.  

3.3. Student’s t-distribution. 

For (z ; )tD  , the log-likelihood function of   ty  for the Student’s t-distribution is given 

by:

           
2

2

1

1 1 1
; ln ln ln 2 ln 1 ln 1 16

2 2 2 2 2

T
t

T t t

t

zv v
L y T v v

v
  



      
                       



Where   is the vector of parameters to be estimated for the conditional mean, the conditional 

variance and the density function. When    we have a normal distribution, so that the 

lower  is, the fatter are the tails. 

3.4. skewed Student’s t-distribution. 

Asymmetry and flattening are important phenomena in financial applications in many respects 

(in asset valuation models, portfolio selection, option price theory or Value-at-Risk among 

others). Therefore, a distribution that can model these two moments seems appropriate.  

Recently, Lambert and Laurent (2000, 2001) extended the skewed Student’s t-distribution 

proposed by Fernandez and Steel (1998) to the GARCH framework. Using (Z ; )
t

D  , the log-

likelihood function of  ( )ty   for the skewed Student’s t distribution is given by: 
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2
22

1

1 1 2
( ; ) T(ln ( ) ln( ) ln( ( 2)) ln( ) ln(s))

12 2 2 ( )

( )1
(ln( ) (1 ) ln(1 )) (17)

2 2
t

T t

T
It

t

v v
L y

sz m
v

v

  




  




      




   




Where   is the asymmetry parameter, and v  the degree of freedom of the distribution and:  

2 2

1 1(( )) 2 12 1( ) ( 1)
( )0 2

t

t

m
si z v vs

I with m and s m
vm

si z
s

 
 


    

      
  



Different distributions such as the normal, Student and asymmetric student distribution are 

used in this article for estimating ARCH / GARCH models. Although we use various 

distributions, we will present the results of the best fit only, ignoring the rest. For the 

estimation, we use the software R according to Tsay (2014). 

  

3.5  Prediction 

For forecasting, it should be noted that the predictive ability of GARCH models has been 

widely discussed by Poon and Granger (2003). We evaluate 20 forecasts in one step using a 

1667 window and 1587 observations for the BRVM10 and BRVMC. This is done for both the 

mean equation and the variance equation. The forecasts we will obtain will be evaluated using 

four different measures
5
. 

 

3.6  Measures of the quality of the forecast  

The advantage of using many predictive measures lies in the robustness in choosing an 

optimal predictor model. We consider the following measures:   

 Mean squared error  (MSE) 

2 2 21
ˆ( ) (18)

1

S h

t tt S
MSE

h
 




 




 

 Median squared error  (MedSE) 

2 2ˆ( ( )), ( ) (19)Med t t t tMedSE Inv f e avec e      

 Mean absolute error  (MAE) 

                                                           
5
 Indeed, the daily squared returns may not be the appropriate measure to evaluate the forecast performance of 

the different GARCH models for the conditional variance according to Andersen and Bollerslev (1998).  
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2 21
ˆ ˆ (20)

1

S h

t tt S
MAE

h
 




 


  

 Adjusted mean absolute percentage error  (AMAPE) 

2 2

2 2

ˆ1
(21)

ˆ1

S h t t

t S
t t

AMAPE
h

 

 








 


Where h is the number of step, S is the sample size, 2ˆ
t  is the forecasted variance and 2

t  is 

the actual variance.  

 

MSE and MAE are generally affected by larger errors, as in the case of outliers. But the 

MedSE and AMAPE have the advantage of reducing the effect of outliers. 

 

4. RESULTS AND DISCUSSIONS 

 

We present in Tables 4 and 5 below the results obtained from our estimates. The basic 

estimation model consists of two equations. One for the mean which is a simple 

autoregressive AR model and the other for the variance that is identified by a particular 

ARCH specification.  Such as GARCH (1, 1),  EGARCH (1, 1), GJR (1, 1)  and, APARCH 

(1, 1) for the two indices of the BRVM. The models are estimated using the approximate 

quasi-maximum likelihood estimator assuming Student, Normal, or Student asymmetric 

errors.  

Note that it is obvious that the recursive evaluation of the maximum likelihood depends on the 

unobserved values and that, therefore, the estimate can not be considered perfectly accurate. 

To compare the different models, we apply several standard criteria: The Q (.) And Q2 (.) 

Which are the statistics of Box-Pierce with the delay of the standardized standardized 

residuals and squares, the AIC which is the criterion of Akaike information and the Log-Lik 

value of log-likelihood. 

Tables 4 and 5 present the results of the estimates. Indeed, the Akaike Information Criteria 

(AIC) and log-likelihood values reveal that the EGARCH, APARCH and GJR models 

estimate the series better than the traditional GARCH. 
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When we analyze the densities, we find that the two Student distributions (symmetric and 

asymmetric) far exceed the normal distribution. Indeed, the log likelihood function increases 

when using the asymmetric Student distribution.  

This leads to AIC criteria of  2,413 and  2,909 for  normal density versus 2,007 and 2,487 for 

non-normal densities for BRVMC and BRVM10, respectively. For all models, the dynamics 

of the first two moments of the series are tested with the Box-Pierce statistics for residues and 

square residues that reject no serial correlation at the 5% level. 

In addition, stationarity is satisfied for each model selected and for each density.  

 

With one exception, all results are in the 95% predictive intervals. 

All estimates are significantly different from zero at the 5% level. The model control statistics 

show that these models used are adequate for the BRVM series of returns. The EGARCH and 

APARCH models are selected as the best estimate results. 

It should be noted that for both indices, the beta parameter   is positive and significant in 

most cases. This reflects a strong presence of persistence that can be interpreted as the 

persistence of the price differential with respect to the fundamental value. 

In terms of portfolio management, we can then assume that this persistence could be 

explained by the prolongation of a climate of pessimistic uncertainty fueled by bad news. Or 

by persistent valuation errors on the part of investors.  

 

There is also asymmetry of the impact of negative and positive shocks on volatility since the 

gamma coefficient is significant and since it is negative in the GJR-GARCH model, we can 

deduce that there is a negative relationship between the stock market returns and their 

volatilities and therefore that there is a good and a leverage effect on the BRVM market like 

most financial markets.  Our results corroborate those found by Alberg et al. (2008), Loudon 

and al. (2000), Mele (2007), and Shamila and al. (2009). Etc. 

 

 

See Tables 4 and 5 below for the results of the estimates. 
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Table 4: Results of the BRVM 10 estimates by the different GARCH models with the three density functions. 

BRVM10 

 

 

  

DISTRIBUTION 

Normal Student’s t Asymmetric student’s t (Skewed t) 

GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH 

0.046** 

(0.031) 

0.030** 

(0.029) 

0.022** 

(0.029) 

0.029** 

(0.029) 

0.022** 

(0.019) 

0.014** 

(0.018) 

0.013*** 

(0.001) 

0.011** 

(0.018) 

0.036** 

(0.024) 

0.033** 

(0.025) 

0.063** 

(0.027) 

0.025 

(0.025) 

  0.0008 

(0.000) 

0.074 

(0.029) 

0.652 

(0.094) 

0.485 

(0.090) 

0.002 

(0.001) 

0.089 

(0.088) 

0.478 

(0.158) 

0.388 

(0.113) 

0.423 

(0.149) 

0.086 

(0.087) 

0.005 

(0.001) 

0.381 

(0.112) 

  0.000 

(0.000) 

-0.135 

(0.031) 

0.044 

(0.025) 

0.109 

(0.024) 

0.000 

(0.001) 

-0.071 

(0.057) 

0.295 

(0.137) 

0.423 

(0.117) 

0.507 

(0.175) 

-0.064 

(0.057) 

0.001 

(0.000) 

0.410 

(0.113) 

  0.999
*** 

(0.000) 

0.525* 

(0.085) 

0.294* 

(0.087) 

0.467* 

(0.089) 

0.999*** 

(0.000) 

0.684* 

(0.072) 

0.403* 

(0.095) 

0.478* 

(0.093) 

0.445 

(0.102) 

0.687* 

(0.072) 

0.999*** 

(0.000) 

0.485* 

(0.094) 

  - 0.255** 

(0.046) 

-0.200* 

(0.061) 

1.00*** 

(0.000) 

- 0.542 

(0.101) 

-0.457 

(0.034) 

0.235 

(0.105) 

- 0.536 

(0.101) 

-0.006*** 

(0.000) 

0.225 

(0.107) 

  - - - 1.126 

(0.239) 

- - - 1.302 

(0.366) 

- - - 1.288 

(0.351) 

  - - - - 2.421 

(0.152) 

2.613 

(0.235) 

2.599 

(0.235) 

2.582 

(0.228) 

2.586 

(0.231) 

2.613 

(0.233) 

2.504 

(0.118) 

2.586 

(0.226) 

Log-Lik -1882.8 -1792.78 -1797.049 -1791.102 -1567.522 -1531.064 -1533.212 -1532.064 -1535.855 -1530.589 -1563.39 -1531.726 

AIC 3.053 2.909 2.916 2.919 2.545 2.487 2.490 2.490 2.494 2.488 2.541 2.491 

BIC 3.0697 2.929 2.936 2.904 2.565 2.512 2.515 2.519 2.519 2.517 2.570 2.524 

Q(1) 10.84** 

(0.006) 

1.760 

(0.676) 

1.612 

(0.712) 

1.876 

(0.648) 

20.7*** 

(0.000) 

2.246 

(0.056) 

2.544 

(0.496) 

2.505 

(0.504) 

2.418 

(0.523) 

2.158 

(0.581) 

31.01*** 

(0.000) 

2.444 

(0.517) 

Q
2
(1) 233.6 

(0.000) 

0.274 

(0.999) 

0.390 

(0.999) 

2.857 

(0.782) 

260.8 

(0.000) 

0.478 

(0.999) 

0.386 

(0.999) 

0.409 

(0.999) 

0.304 

(0.999) 

0.477 

(0.999) 

164.1 

(0.000) 

0.000 

(0.999) 
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Table 5: Results of the BRVM Composite Index estimates by the different GARCH models with the three density functions. 

BRVMC 

 

 

  

DISTRIBUTION 

Normal  Student’t Asymmetric student’t (Skewed t) 

GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH GARCH EGARCH GJR APARCH 

0.036
** 

(0.022) 

0.049** 

(0.017) 

0.039** 

(0.024) 

0.039** 

(0.022) 

0.029** 

(0.014) 

0.026** 

(0.014) 

0.026** 

(0.014) 

0.026** 

(0.014) 

0.044** 

(0.019) 

0.039** 

(0.020) 

0.038** 

(0.020) 

0.038** 

(0.020) 

  0.287** 

(0.041) 

-0.129** 

(0.040) 

0.280** 

(0.041) 

0.188** 

(0.044) 

0.018** 

(0.071) 

-0.035** 

(0.078) 

0.218** 

(0.085) 

0.212** 

(0.077) 

0.176 

(0.069) 

-0.039* 

(0.074) 

0.207* 

(0.083) 

0.205* 

(0.079) 

  0.171** 

(0.033) 

0.012** 

(0.030) 

0.187** 

(0.043) 

0.109** 

(0.037) 

0.415** 

(0.149) 

-0.058** 

(0.054) 

0.323 

(0.132) 

0.424 

(0.141) 

0.398 

(0.143) 

-0.048  

(0.053) 

0.319 

(0.130) 

0.416 

(0.144) 

  0.432* 

(0.068) 

0.542* 

(0.076) 

0.444* 

(0.068) 

0.412* 

(0.072) 

0.583* 

(0.086) 

0.740* 

(0.075) 

0.538* 

(0.095) 

0.550 

(0.102) 

0.599* 

(0.088) 

0.750* 

(0.074) 

0.553* 

(0.098) 

0.567 

(0.103) 

  - 0.370** 

(0.043) 

-0.039** 

(0.052) 

-0.073** 

(0.059) 

- 0.598 

(0.113) 

-0.263 

(0.093) 

0.149* 

(0.092) 

- 0.585 

(0.109) 

-0.229 

(0.085) 

0.137 

(0.103) 

  - - - 3.500 

(0.777) 

- - - 1.847 

(0.536) 

- - - 1.029** 

(0.035) 

  - - - - 2.546 

(0.217) 

2.560 

(0.218) 

2.537 

(0.217) 

2.554 

(0.212) 

2.549 

(0.215) 

2.571 

(0.218) 

2.543 

(0.216) 

2.542 

(0.215) 

Log-Lik -1491.47 -1493.608 -1490.982 -1485.565 -1238.995 -1234.712 -1237.598 -1237.558 -1238.354 -1234.177 -1237.241 -1237.19 

AIC 2.419 2.424 2.423 2.413 2.012 2.007 2.012 2.013 2.013 2.0084 2.013 2.014 

BIC 2.436 2.445 2.452 2.438 2.033 2.032 2.037 2.042 2.038 2.0374 2.042 2.048 

Q(5) 3.000 

(0.407) 

3.447 

(0.331) 

2.582 

(0.733) 

2.449 

(0.516) 

2.869 

(0.431) 

3.492 

(0.324) 

3.177 

(0.375) 

3.258 

(0.361) 

2.888 

(0.427) 

3.435 

(0.333) 

3.146 

(0.381) 

3.243 

(0.364) 

Q
2
(5) 1.300 

(0.970) 

1.024 

(0.985) 

0.945 

(0.871) 

0.602 

(0.997) 

0.709 

(0.995) 

0.885 

(0.999) 

0.921 

(0.989) 

0.965 

(0.987) 

0.731 

(0.994) 

0.863 

(0.999) 

0.923 

(0.989) 

0.978 

(0.987) 
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4.2. Discussions of the results of the forecasts 

 

The predictive ability is indicated by ranking the different models against the five measures 

used in the analysis. This is done in Tables 6 and 7 below which compare the distributions for 

the BRVM10 and BRVMC indices. For the BRVM10 index, the results confirm that the use 

of the EGARCH model with asymmetric student distribution is adequate to obtain the best 

forecast results. For most measures of the variance equation, the EGARCH model 

outperforms the APARCH model. The GARCH model provides much less satisfactory results 

and the GJR model provides the poorest forecasts.  

For the BRVMC index, the EGARCH model gives better forecasts than the GARCH model 

while the APARCH and GJR models give the poorest forecasts. The asymmetric Student 

distribution is the most successful in predicting the conditional variance of the BRVM10, 

unlike the BRVMC which shows better results with the Student distribution. 

Indeed, our results are in line with those of Lambert and Laurent (2001). Which have shown 

that the asymmetric Student distribution functions are the most appropriate for modeling the 

NASDAQ index with respect to symmetrical densities. Those of J.J. Peter (2001), Chordia 

and Goyal 2006; Mele 2007; Shamila et al. 2009; etc. who found results revealing that 

volatility is characterized, among other things, by its asymmetric variations. The EGARCH 

and APARCH models had the best estimation and forecasting results. 

 

See Tables 6 and 7 below for the results of the quality of the forecast. 
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Table 6: BRVM10 forecast results with the 4 GARCH models according to the best decision 

criteria. 

BRVM10         GARCH EGARCH GJR       APARCH 

Dist-std Dist-sstd Dist-sstd Dist-sstd Dist-std Dist-sstd 

MSE 0.657 0.588 0.3045 0.909 0487 0.4034 

RMSE 0.708 0.702 0.508 0.807 0.606 0.543 

MAE 0.455 0.364 0.345 0.878 0.466 0.274 

MedSE 0.304 0.252 0.245 0.955 0.354 0.300 

AMAPE 0.984 0.983 0.568 0.974 0.906 0.349 

Note: Dist-std, is the student distribution and Dist-sstd is the asymmetric student distribution. 

 

 

Table 7: Summary of the BRVMC forecast results with the 4 GARCH models according to 

the best decision criteria. 

BRVMC GARCH-std EGARCH-std GJR-std APARCH-std 

MSE 0.376 0.116 0.404 0.400 

RMSE 0.605 0.5509 0.630 0.641 

MAE 0.562 0.502 0.666 0.704 

MedSE 0.306 0.2001 0.664 0.656 

AMAPE 0.649 0.621 0.666 0.679 
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7. CONCLUSION 

 

We have shown through our results that the BRVM is a volatile market. This trend volatility 

has varied and persisted while taking into account the asymmetric nature of new information 

(shocks). Asymmetric returns and the presence of leverage clearly indicate that market 

volatility is negatively correlated with BRVM index returns. This would mean that bad news 

would tend to have more impact on volatility or generate greater volatility than good news. 

We compared the prediction performance of several GARCH models using different 

distribution functions. This for the returns of the two stock indexes of the BRVM. We found 

that the exponential GARCH model (EGARCH) proposed by Nelson in 1991 used with the 

asymmetric Student distribution is the most promising for characterizing the dynamic 

behavior of these returns.  

Because it reflects their underlying process in terms of serial correlation, clustering of 

asymmetric volatility (clustering) and leptokurtic innovation. 

The results also show that asymmetric GARCHs improve prediction performance. Among the 

predictions tested, the EGARCH model with the asymmetric Student distribution 

outperformed the GARGH, GJR and APARCH models. This result implies that the EGARCH 

model could be more useful than the other three models when implementing risk management 

strategies for the returns of the two BRVM indices. 
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