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Abstract
In this paper we apply two optimization frameworks to determine the optimal whole-

sale funding mix of a bank given uncertainty in both credit and liquidity risk. A

stochastic linear programming method is used to find the optimal strategy to be

maintained across all scenarios. A recursive learning method is developed to pro-

vide the bank with a trading signal to dynamically adjust the wholesale funding mix

as the macroeconomic environment changes. The performance of the two method-

ologies is compared in the final section.
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Chapter 1

Introduction

Banks provide loans to both retail and corporate counterparties. These loans are

assets on the balance sheet that yield a certain interest rate. The bank requires

funding (a liability on the balance sheet) to support this lending activity. The main

types of funding available to a bank are:

• Deposits from both retail and wholesale customers.

• Debt instruments of varying term issued directly to the market (wholesale

funding).

This exposes the bank to the risk of counterparties failing to repay the loans, which

is termed credit events. The deposit and debt instruments used to fund the loans

are usually short term in nature creating a mismatch compared to the long term

nature of the asset profile (i.e. a 20 year mortgage loan funded via 3 month debt

instruments). This mismatch exposes the bank to interest rate risk (assets and liabil-

ities re-price at different durations) and liquidity risk (the uncertainty of the cost of

funding at future dates). The extreme and novel macroeconomic realities observed

over the last couple of years exposed a number of weaknesses in the risk manage-

ment methodologies used by banks. This includes much higher credit losses than

expected, higher liquidity premiums on wholesale funding during times of distress

and the volatility of the deposit base during a flight to safety. A major weakness in

the current risk management methodology is the understanding of the relationship

of credit, liquidity and interest rate risk.

To ensure profitability the interest earned on the assets should exceed the cost

of funding. The bank needs to continuously fund the balance sheet as the existing

funding mature and the level of the deposits change with the economic environment.

Wholesale funding is an important funding source for South African banks. Bank’s

1
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issue debt at various durations, ranging from overnight to 60 month instruments. In

a positive interest rate environment short dated debt is usually cheaper compared

to longer dated instruments however funding with short dated instruments exposes

the bank to more roll over risk events, where the cost of rolling debt is uncertain

(i.e. liquidity risk). The optimization methodologies attempt to balance the cost of

wholesale funding with the liquidity and interest rate risk.

This paper integrates the sub-components underlying the banks’ balance sheet to

facilitate the projection of the net interest income allowing for both liquidity, inter-

est and credit risk. The sub-components include retail and wholesale loans, retail

and wholesale deposits and bank issued debt instruments. Stochastic linear pro-

gram (”SLP”) and recursive learning (”RRL”) models are developed to determine

the optimal duration mixes for the wholesale funding.

The calibration of the sub-components is a research topic in its own right. Only

a simplified representation was assumed to empirically test the optimization models

developed in this paper.

The SLP method is used to determine the optimal duration of the wholesale or

debt funding given the uncertainty. This provides the funding duration that should

be maintained overtime. The RRL is a dynamic model that provides a trading sig-

nal to dynamically adjust the duration of the wholesale funding portfolio as interest

rates and the credit losses change. A comparison of the returns of the RRL and SLP

is used to test the performance of each method.

1.1 SLP: Literature study

The uncertainty underlying a bank’s assets and liabilities has prompted banks to

seek greater efficiency in the management of their assets and liabilities. This has led

to studies concerned with the structure of the bank’s assets and liabilities to achieve

some optimal trade-off among the various risks. Chambers and Charnes (1961) [8]

wrote one of the first papers based on maximizing profitability within capital and

liquidity constraints. Uncertainty is reflected in the credit, liquidity and interest

rate risk embedded in the performance of both assets and liabilities. Mathematical

programming models that incorporate this uncertainty are known as stochastic pro-

grams.
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Available stochastic program methodologies include: change constraint program-

ming, dynamic programming, sequential decision theory, stochastic decision trees

and linear programming under uncertainty (or stochastic linear programming (SLP)).

The text book by Zenios and Ziemba (2006) [42] set out the practical application of

stochastic programming. Kusy and Ziemba (1984) [24] was one of the first practition-

ers to advocate the used to stochastic linear programming with simple recourse for

an asset liability framework, identifying challenges with available computer power

to solve these large problems. Guven and Persentili (1997) [18] also put forward

the SLP approach to solve the stochastic program presented by the asset liability

problem. The evolution of both computational power and more refined search al-

gorithms have promoted this methodology. The method is widely used to support

financial decision making, see Kouwenberg and Zenios (2001) [23], Carino et al.

(1994) [7], Edirisinghe and Patterson (2007) [14], Hill et al. (2007) [20] and Ying-

jie and Cheng-iin (2000) [41] [4]. This methodology allows for a traceable solution

when the problem statement extend over multiple periods and support the path

dependency of the wholesale funding decisions. The SLP model can be extended to

include multiple objectives, such as liquidity constraints and profit maximization.

A multi objective approach was not considered as part of this paper however the

current methodology can be extended to include this, see Aouni, Colapinto and La

Torre (2014) [1] and Kosmidou and Zopounidis (2008) [22].

The solution to solve the stochastic linear programs, including the various forms

of recourse rest on the pioneering work by Benders (1962) [3], Dantzig (1963) [9]

and Dantzig and Wolfe (1960) [10]. These authors developed various methodologies

to decompose a problem using either an inner or outer linearization to solve a large

and complex problem. Benders decomposition breaks a large problem into a num-

ber of smaller problems that can be solved individually while mining for a global

solution through an iterative process. The Dantzig - Wolfe decomposition focus on

the duel of the linear problem.

The properties of the linear problem and in particular the properties of the re-

course function are key to determine the convergence, feasibility and optimality of

the various search algorithms proposed. Van Slyke and Wets (1969) [37] extended

Benders decomposition into a solution termed the L-Shape method. This will be the

method used to solve the stochastic linear problem in this paper. The text books

by Brige and Louveaux (1997) [5] and Kall (1976) [21] provides a good overview of
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developments in linear programming, including the L-Shape methodology and the

various important theoretical consideration to ensure feasibility, optimality and con-

vergence. Murphy (2013) [30], Wets (2000) [39] and Dempster (1980) [11] provides

a good review on the L-Shaped methodology. There has been a number of enhance-

ment to the original L-Shape method such as more robust feasibility cuts, using

a multi cut approach to speed up convergence and methods such as bunching and

realizations, see Brige and Louveaux (1997) [5] for a discussion on these approaches.

1.2 RRL : Literature study

Dynamic programming, and in particular reinforcement learning is widely recognized

in financial decision models. This is widely used to develop automated trading rules

or portfolio selection models. The setup of the optimization problem, in particular

the path dependency and dynamic nature of the decision process aligns well with a

dynamic programming methodology. The reward function underlying the reinforce-

ment learning methodology can be non linear providing more flexibility as the SLP

method. This flexibility allows for the risk in the form of earnings volatility to be

included in the optimization criteria.

The optimization problem share similarities with a Markov decision process (”MDP”).

Formulating the optimization problem in this way opens up the field of reinforce-

ment learning. As discussed in Marsland (2009) [27], Goldberg (1989) [15], Busoniu

et al. (2009) [6] and Sutton (1992) [36] a MDP is a mathematical formulation parti-

tioned over various statuses or time intervals with a transition function to measure

the movement across the various statuses and a corresponding reward function to

measure the impact of the decision. A MDP has an agent (or multiple agents) that

makes policy decisions affecting the transition function. The aim is to train the

agent or policy function to optimize the reward, usually based on historic data or

real time on-line learning.

An important consideration in specifying the MDP is the path dependency of the

reward function. Optimizing the policy decision at time t is dependent on the out-

put of the reward function from time t = 0 to time t − 1. Dynamic programming

is a method used to find an optimal policy for the MDP. Busoniu et al. (2009)

[6] constructed a Q-function as the cumulative discounted rewards from time 0 to

time t to find the optimal policy. A common methodology used to find the optimal
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solution is based on the Bellman optimal equations based on the Q-function. The

Q-function requires each possible state and action pair to be identified to specify an

iterative policy search across all these pairs to optimize the cumulative returns.

The action space underlying the optimization problem in this paper is multidi-

mensional and continuous, or even if a more simplified discrete option is constructed

consist of a very large number of possible action states. The Q-function optimization

requires the evaluation across all or a large portion of possible states. This together

with curse of dimensionality requires a fairly large training dataset to support the

optimization.

Reinforcement learning differs from supervised learning in that no target outcome

is provided. In supervised learning the MDP is trained to historic or on-line data

by minimizing the difference of the target and model outcome. For reinforcement

learning the system takes actions based on some policy and receives feedback on the

performance based on these actions. The parameters driving the policy are adjusted

to increase the reward function. There is no target return or outcome for the opti-

mization.

A number of reinforcement learning methodologies have been applied in the con-

text of automated trading decisions and active portfolio management. Neuneier

(1996) [31] developed a Q-learning approach to support a portfolio management ap-

proach using on-line reinforcement learning.

A recurrent learning algorithm is a recognized methodology applied to train a MDB

that is path dependent. Examples of these algorithms are backpropogation through

time, see Werbos (1990) [38] and an on-line learning algorithm called real-time re-

current learning (”RTRL”) set out in Rumelhart et al. (1985) [33].

Moody et al. (1998) [29] and Moody and Saffel (2001) [28] developed a recur-

sive learning algorithm called Recursive Reinforcement Learning (”RRL”) based on

the recursive methodologies from Werbos (1990) [38] and Rumelhart et al. (1985)

[33] using the Shape ratio (defined as the average return divided by the standard

deviation of the return) or differential Sharp ratio as the reward function. This

methodology was developed to optimize the return of the portfolio selection frame-

work.

The RRL methodology developed has been used in a number of portfolio selection
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and rule based trading systems. See Dempster and Leemans (2006) [12], Li,Dagli

and Enke (2004) [31], Maringer and Ramtohul (2012) [26], Gorse (2011) [16] and

Bertoluzzo and Corazza (2014) [4] for application in automated trading rules. The

papers extended the RRL to allow for either uncertainty through a stochastic pro-

cess, an alternative iterative process compared to the gradient rule or more granu-

larity such as transaction costs and non-stationary data.



Chapter 2

Model setup

The bank will have a funding gap each month as existing funding matures. The size

of the funding gap to be filled by new wholesale funding will change each month

based on the change in the asset and deposit portfolios and the portion of the ex-

isting wholesale funding that matures. The size of the wholesale funding portfolio

that mature in a particular month is based on the previous funding decisions. The

size of the funding gap and thus exposure to cost of funding volatility is impacted

by historic funding decisions. The aim of this section is to parametrize the funding

gap and wholesale funding decision available to the bank.

A representation of the monthly net interest income margin (”NII”) is shown

below:

NII = X1 ∗ (x1 − CL)−X2 ∗ x2 −X3 ∗ x3 −X4 ∗ x4 −X5 ∗ x5 −X6 ∗ x6 (2.1)

where X1 is an asset portfolio consisting of personal, mortgage and corporate loans.

x1 is the interest rate received on the assets above.

CL is the credit loss on the assets above.

X2 is a portfolio of retail and corporate deposits.

x2 is the interest paid on retail and corporate deposits.

Xi, for i = 3, 4, 5, 6 represents the size of the wholesale funding across different durations.

xi, for i = 3, 4, 5, 6 represents the interest rate paid on each instrument.

For the purposes of this paper we considered Xi, for i = 3, 4, 5, 6 of duration 6,12,18

and 24 months. The interest earned on the asset portfolio (x1) is net of the credit

loss (CL) for the remainder of this paper. A mathematical equation of the bank’s

balance sheet at month t is:

7
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At = Lt + Et (2.2)

where Et is the level of equity, At the assets and Lt the liabilities as at month t.

At the end of each projection period t the asset portfolio reduces due to the monthly

capital repayment, maturing loans and incurred credit losses. New loans makes up

for this natural reduction in the asset portfolio. We assume the asset portfolio stay

constant over the projection period.

The balance sheet extends to the following based on the notation above:

X1
t = X2

t +X3
t +X4

t +X5
t +X6

t + E, t ∈ [1, 60] (2.3)

where E is fixed over the projection period.

A portion of the wholesale funding base will mature each month based on previ-

ous funding decisions. For example the entire portfolio will mature if only funded

via monthly instruments. Let Xmi
t indicate the portion of the portfolio that mature

in month t for each i = 3, 4, 5, 6. Define Xm3
t , Xm

4
t , Xm

5
t and Xm6

t as the wholesale

funding instruments maturing in month t.

Assuming the equity level is constant (Et) the funding gap Gt is a function of

the change in the asset portfolio (X1
t − X1

t−1) a change in the deposit portfolio

(X2
t −X2

t−1) and the sum of all the maturing wholesale instruments (Xmi
t), where

i = 3, 4, 5, 6.

Gt = X1
t −X1

t−1 − (X2
t −X2

t−1) +Xm3
t +Xm4

t +Xm5
t +Xm6

t (2.4)

Each month the bank needs to choose between the various wholesale funding instru-

ments to fill the funding gap. The optimization problem tries to identify the best

funding mix by optimizing the NII function.

Let Ft be a vector of the funding decision, Ft =
〈
F 3
t , F

4
t , F

5
t , F

6
t

〉
such that F 3

t

represent portion of the funding gap (Gt) to be filled by wholesale instruments X3
t .
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2.1 Sub-models

Figure 2.1 highlights the process followed to apply the two optimization methodolo-

gies to optimize the NII as set out in equation 2.1. An economic scenarios generator

(”ESG”) is used to generate a monthly view of prevailing interest rates for a 60

month projection period. A propriety scenario generator using the methodology set

out by Sheldon and Smith (2004) [34] was used. The starting point for this exercise

is December 2014. The ESG outputs a 60 month projection horizon of prevailing

interest rates for each month from December 2014 to December 2019. The ESG

model provided 600 unique scenarios, each projected from December 2014 to De-

cember 2019.

The NII per equation 2.1 is calculated for each of the 600 scenarios, from Decem-

ber 2014 to December 2019. This requires a projection of each of the inputs in

equation 2.1 based on the simulated ESG scenario. Various sub-models are used to

translate the parameters required per equation 2.1 based on the ESG scenarios. A

5 to 10 year history of data till December 2014 was used to calibrate the various

sub-models. The credit loss (CLt), deposit portfolio behavior (X2
t , x

2
t ) and cost of

wholesale funding (x3t , x
4
t , x

5
t , x

6
t ) are projected over the projection period for each

of the 600 ESG scenarios. The allows us to calculate the NII per equation 2.1 from

December 2014 to December 2019 for each ESG scenario. The optimization models

are deployed across the 60 month projection period and scenarios to find the optimal

funding decision.

Specifying the sub-models

The sub-models are used to relate the input parameters required to project the

NII per equation 2.1 to a yield curve scenario produced by the ESG. The detailed

discussion of each sub model is beyond the scope of this paper. The section below

provides a brief overview of the models used. The model framework and optimiza-

tion formulation set out in this paper is agnostic to the sub-model calibrations.

The ESG model per Sheldon and Smith (2004) [34] is arbitrage-free, with cali-

brations based on the observed or quoted market prices of various instruments. The

model satisfies the efficient market hypothesis and for most asset classes assume

some type of Ornstein-Uhlenbeck process that is a mean reverting random walk pro-

cess. See Smith and Speed (1998) [35] for a discussion on the use of deflators in the

ESG model.
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Figure 2.1: Diagram of the model framework to apply the optimization methods

Economic Scenario 
Generator(ESG)

The ESG model is used  to:

t=1 t=2 …. t=60

Dec 2014

Time period of ESG 
simulations

Outcome from the ESG 
model

Dec 2019

• The ESG model output a set of 
yield curve scenarios.

• 600 unique interest rate scenarios 
are produced by the ESG. 

S
u

b
 m

o
d

e
ls

Input:

Output

• 600 unique interest rate scenarios 
are produced by the ESG. 

Portfolio replication model:
• Deposit levels and interest rates.
• Xt

2, xt
2

Credit decomposition and regression 
model:
• Interest on loan portfolio and credit loss.
• xt

1, CLt

Poison jump diffusion process:
• Cost of wholesale funding.
• 20 unique outcomes is calculated for each ESG 

scenario.
• This results in 12000 unique scenarios. 
• xt

3, xt
4 , xt

5 , xt
6

t=1 t=2 …. t=60

Dec 2014 Dec 2019

Scenario 1

Scenario 2

Scenario 3

Scenario 12,000

…..

The Net Interest Income 
(NII) is calculated for 
each scenario and for 
each month

SLP RRL

Optimization:

Determine the optimal funding mix 
from t=1 to t=60 across the 12000 
unique scenarios.

A portfolio replication model was used to calibrate both the size and interest rate on

the deposit portfolio. This is based on deposit data from January 2000 to December

2014. This model is used to project both the size of the deposit portfolio (X2
t ) and

the interest rate (x2t ) at time t per the ESG scenarios. The portfolio replication ap-

proach follows the methodology set out by Paraschiv (2011) [32] where the deposit

portfolio behavior is represented as a portfolio of risk free assets at various duration.

A regression model was used to calibrate the relationship between the historic credit

loss CLt from January 2007 to December 2014 to prevailing interest rates. This

model is used to project the CLt underlying the asset portfolio for each ESG sce-

nario. The methodology is similar to Havrylchyk (2010) [19] who developed a re-

gression type model to empirically test the impact on the credit loss due to a change

in a set of macro-economic variables on the South African banking sector.

A two step projection process is used to project the cost of wholesale funding

(x3t , x
4
t , x

5
t and x6t ). The first is the credit spread paid by the bank over and above

the risk free rate, and the second is a liquidity premium. The Leland and Toft

(1996) [25] model is used to calculate the credit risk component. The portion of the
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observed spread not explained by the credit spread is termed the liquidity spread. A

poison stochastic jump process was calibrated using historic liquidity spreads from

January 2007 to December 2014. This model is used to introduce the large sudden

jumps observed in the cost of wholesale funding and thus liquidity risk as part of

the funding. The methodology per Bates (1996) [2] is used for the poison stochas-

tic jump process. The poison stochastic jump process calculates the liquidity risk

premium and the Leland ad Toft model the credit spread to calculate the cost of

funding underlying each of the ESG scenarios. 20 unique paths are produced for

each of the 600 ESG simulations across the 60 month projection period.

Per figure 2.1 the SLP and RRL optimization is applied to the 600 scenarios times 20

unique liquidity risk paths. The results in 12000 outcomes projected for 60 months

from December 2014 to December 2019. The optimization methodologies are used

to determine the optimal mix of wholesale funding given the uncertainty presented

via the 12000 scenarios.



Chapter 3

Stochastic Linear Programming

3.1 Eventtree

The computing resources required to solve certain algorithms operating in higher

dimensions grow exponentially causing intractable problems (curse of dimensional-

ity). Methods to approximate the continuous nature will attempt to cover only the

realizations of the random process that are truly needed to obtain the near-optimal

decision. In the case of the stochastic linear optimization problem this is achieved

by breaking down the problem to a finite approximation. The event tree is a tool to

express the continuous distribution with a simple discrete approximation via a set

of nodes and branches see Dupacova et al. (2000) [13]. It is important to recognize

that the event tree is an approximation of the process only.

There are a number of methods available to construct an event tree. The approach

discussed in Gulpnar et al. (2004) [17] was used in this paper to calibrate the event

tree. This procedure is based on a simulated and randomized clustering approach.

The event tree consist of decision nodes and branches originating from the same

base. The structure of the event tree supporting this paper is two event branches

originating at each node. The sub set of branches created under this structure is

independent. Thus moving down from node 1 and up from node 2 will not end in

the same position.

The projection horizon supporting this paper is 60 months. This results in 1.152 ∗
1015 unique nodes at t = 60. This dimension exceed the number of scenarios to

calibrate the event tree. To overcome this challenge we partition the 60 month time

period into 12 decision time intervals.

12
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3.2 Methodology

The Stochastic Linear Program (”SLP”) is used to optimize the NII function per

equation 2.1. The optimization decision is focused on the duration mix of funding

issued to fill the monthly funding gap Gkt (see equation 2.4) at time t for scenario

k. The subscript notation for the remainder of this section is t for time period and

k for the scenario.

The objective is to minimize the funding cost to the bank. The cost impact of

the new funding is a function of the current interest rates and the size of the fund-

ing gap, where the previous funding decisions drive the size of the funding gap.

Choosing mostly long term funding will lock in historic interest rates and reduce

the exposure of jumps in funding costs as the funding gap will be smaller. However

longer term funding is generally more expensive.

F kt is the decision vector representing the funding mix < F 3,k
t , F 4,k

t , F 5,k
t , F 6,k

t >

to fill the gap Gkt such that Gkt = F 3,k
t + F 4,k

t + F 5,k
t + F 6,k

t . The setup needs to be

expanded to explicitly allow decisions made in time t − 1 to influence the optimal

decision in time t. To achieve this add F 7,k
t to vector Ft and to the NII function,

where F 7
t is the sum of all the wholesale funding not maturing in month t. Thus

F 7
t is known based on previous funding decisions. F 7,k

t introduce the path depen-

dency of previous decisions. Note F 3,k
t 6= X3,k

t as F 3,k
t is only the portion of the

funding gap filled by the 6 month instruments, where X3,k
t will also include 6 month

instruments issued over the last 5 months. The interest rate paid on an instrument

relates to the rate as at issue date, thus the rate x3,kt will only apply to F 3,k
t . The

NII function for the SLP is as follows:

NII = X1,k
t ∗x

1,k
t −X

2,k
t ∗x

2,k
t −F

3,k
t ∗x

3,k
t −F

4,k
t ∗x

4,k
t −F

5,k
t ∗x

5,k
t −F

6,k
t ∗x

6,k
t −F

7,k
t ∗x

7,k
t .

(3.1)

Let the vector xkt : < x1,kt , x2,kt , x3,kt , x4,kt , x5,kt , x6,kt , x7,kt > represent the interest rate

earned or paid on the various instruments under scenario k.

Let dkt be the outcome at time t for scenario k, where dkt represent the change

in the deposit funding from month t− 1 to month t. Thus dkt = X2,k
t−1 −X

2,k
t . If the

level of the deposit portfolios reduce then dkt > 0 and thus the size of the wholesale
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funding will increase.

Per Chapter 2 Xmi,k
t is the level of the wholesale funding i = 3, 4, 5, 6 to mature in

month t, for scenario k. A 6 month instrument issued in month t− 6 will mature in

month t, thus Xmi,k
t = F i,kt−Mi, where Mi is the term of the instrument i. Based on

the above definition the gap Gt defined in equation 2.4 summarize as follows:

Gkt =
6∑
i=3

Xmi,k
t + dkt (3.2)

Per the model setup the bank needs to fill the funding gap Gt by the funding choice

such that:

Gkt = F 3,k
t + F 4,k

t + F 5,k
t + F 6,k

t (3.3)

From the path dependency discussion above F 7,k
t is defined as follows:

F 7,k
t =

7∑
i=3

F i,kt−1 −
6∑
i=3

Xmi,k
t (3.4)

Let x7,kt be the interest rate paid on the remaining wholesale liabilities prior to

funding the gap in month t. This interest rate is a function of the previous funding

decisions and corresponding interest rates that applied, thus is fully computable us-

ing information from the previous known outcomes at t = 1, 2...t− 1.

x7,kt =

∑6
i=3[F

i,k
t−1x

i,k
t−1]− [

∑6
i=3Xm

i,k
t xi,kt−Mi]

F 7,k
t

(3.5)

Define F 1,k
t = X1,k

t to be the size of the asset portfolio and F 2,k
t = X2,k

t to be the size

of the deposit portfolio. This notation is used to support the linear model formula-

tion in F rather than X. The only change in the size of F 2,k
t is due to the change in

the deposit portfolio, where F 1,k
t is constant over time. Thus the following equality

holds F 2,k
t = F 2,k

t−1 + dkt .

Formulating the linear model

The NII is formulated in F per equation 3.3, this is formulated in terms of the SLP

optimization methodology as:

Max(xt)
TFt. (3.6)

Equation 3.6 is the same as minimizing the cost of funding
∑7

i=3−xitF it . The ex-

panded form of the linear program can be written as per the L-shape method:
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Maximize (xt)
TFt + Eξ[(xt+1)

TFt+1 + Eξ[(xt+2)
TFt+2] + ...]. Where the realiza-

tion of the random event in stage t+ 1, t+ 2, .. is ξ ∈ Ω. Applying the master and

sub problem per the L-shape the problem simplify to Maximize (xt)
TFt + θt, where

θt is iteratively expanded.

The constraints applicable to this linear problem are:

F 1,k
t = F 1,k

t−1 = X1 (3.7)

F 2,k
t = F 2,k

t−1 − d
k
t (3.8)

F 3,k
t + F 4,k

t + F 5,k
t + F 6,k

t =
6∑
i=3

Xmi,k
t + dkt (3.9)

F 7,k
t = F 3,k

t−1 + F 4,k
t−1 + F 5,k

t−1 + F 6,k
t−1 + F 7,k

t−1 −
6∑
i=3

Xmi,k
t (3.10)

(3.11)

The constraints can be written in the form of equation Wxkt = hkt − T kt x
a(k)
t−1 . The

multi period nested L-Shape algorithm was used to determine the optimal strategy,

if feasible.

3.3 Results

Table 3.1 show three trading strategies where F3 represent the 6 month instruments,

F4 the 12 month instruments, F5 the 18 month instruments and F6 the 24 month

instruments. The % represents the portion of the funding gap to be filled by the

various instruments. Trading strategy 1 is more weighted towards longer dated in-

struments (mainly 24 month instruments) where strategy 3 focus on short dated

instruments. Trading strategy 2 is a mix of the above, however still more weighted

towards the longer dated funding.

The SLP optimization methodology is used to select the optimal trading strategy

for the bank. The SLP optimization is designed to maximize return only. Other

performance metric such as the Sharp Ratio (average return divided by the standard

deviation), Value at Risk and Conditional Value at Risk is not considered as part of

the SLP optimization. Equation 3.6 can be extended to target other performance

metric however a more complex optimization methodology will apply due to the
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Table 3.1: Funding strategies

Trading strategy F3 F4 F5 F6

Strategy 1 0 0 12.5% 87.5%

Strategy 2 0 12.5% 25% 62.5%

Strategy 3 87.5% 12.5% 0% 0%

non-linearity of the optimization criteria.

The SLP optimization method selected trading strategy 1 as optimal in terms of

maximizing the return. The performance of strategy 2 and 3 is shown for compar-

ison purposes only. Short dated debt was cheaper compared to longer dated debt

per the model setup. Funding the bank with short dated debt exposes the bank

to funding at a very high cost during periods to distress. The SLP optimization

methodology selected a longer funding approach to cushion the bank from these

liquidity events.

Strategy 1 maximizes the average return over a 60 month projection period and

across the 12000 scenarios. The preference to fund the bank with longer dated in-

struments mitigate the liquidity risk introduced by continuously rolling funding at

shorter durations. Table 3.2 show the return distribution for each of the strategies

split into 4 buckets for simplicity. Strategy 1 has the biggest portion in the high

return bucket, this is the driving force of the superior returns for Strategy 1. This

coincide with periods of higher interest rates where the return on assets reprice

faster than the cost of funding due to the longer funding duration, confirming the

importance of funding at longer durations.

Table 3.2: Strategy 1 has a higher portion in the high return category

Return category Strategy 1 Strategy 2 Strategy 3

Loss 8.1% 7.1% 7.3%

Low return 23.4% 24.4% 24.3%

Medium return 57.9% 66.4% 65.8%

High return 10.6% 2.2% 2.6%

8% of the outcomes under Strategy 1 results in a loss compared to 7% for strategy

2 and 3. The 95% VAR and CVAR is based on the return of assets instead of the

nominal loss. This return should be multiplied with the size of the asset portfolio

to obtain an absolute level. This confirms the slightly worst 95% VAR and CVAR
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for Strategy 1 as shown in table 3.3. The positive skewness in the results distribu-

tion results in a higher standard deviation of the return under Strategy 1 impacting

the Sharp ratio per table 3.3. A summary of the performance of the three trading

strategies across a number of performance metric are shown in the table 3.3.

Table 3.3: Comparison of the performance metric across the three strategies

Trading strategy Average return Sharp Ratio 95% VAR CVAR

Strategy 1 3.1% 5.65 -0.2% -0.64%

Strategy 2 3.0% 6.56 -0.2% -0.61%

Strategy 3 3.0% 6.77 -0.1% -0.52%

The optimal solution is a function of both the scenarios considered and the assump-

tions on the sub-components such as the credit loss, deposit portfolio behavior and

cost of wholesale funding. The impact of choosing a different starting date for the

projection and lower liquidity risk in the cost of funding was tested. This resulted

in a shorter optimal funding compared to Strategy 1 above.

The power of the above methodology is to isolate specific impacts to facilitate the

bank to determine the optimal wholesale funding mix given specific outcomes. We

investigated the impact of reducing the liquidity risk via the liquidity premium

projection using a poison jump process with less jumps. The optimal strategy ap-

proaches the short strategy from table 3.1 as the frequency of the jumps is reduced.

This is intuitive as the bank will seek shorter dated instruments which are cheaper

if liquidity risk diminishes. This confirms the importance of this tool to assist the

bank with scenario planning. A further research topic from this paper is determining

the optimal funding strategy under various scenarios and assumptions, isolating the

key drivers of specific funding strategies.



Chapter 4

Recurrent Reinforcement

Learning

4.1 Methodology

The optimization methodology per section 2 considered 4 durations for wholesale

funding. For the purpose of the RRL methodology we simplify this to two dura-

tions, namely a 6 and 12 month instrument only. The same projection period, ESG

scenarios and sub models to project the NII was used as per the SLP method. As

per the SLP optimization the trading decision is made every 6 months. This setup

simplify the complexity of the trading decision, the return function and the algebra

required to support the RRL optimization methodology. The methodology can be

extended to more instruments and monthly trading rules with an increase in the com-

plexity of the solutions; this will also require more data to train the trading function.

The funding gap each month was defined as Gt. Let F̄t =< F 3
t , F

4
t > represent

the decision vector at time t, where F 3
t represent the portion of the gap Gt to be

filled by issuing 6 month instruments.

The policy is a function with explicit weights to be trained during the reinforcement

learning process. For the purposes of this paper the policy function is a trading

function shown below:

F 3
t = tanh(exp(θ ∗ (x4t − x4t−1 − 0.005))) (4.1)

where θ is the parameter to be solved and controls the speed of change in the trading

rule. See Moody and Saffel (2001) [28] for a discussion on the choice of this trading

18
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signal. The choice of the trading function seems fairly arbitrary, however the prop-

erties of this function have intuitive appeal. The month on month change in the 12

month interest rate is the main driver of credit losses on the asset portfolio, which

in turn drives the probability and the size of the liquidity jumps in the liquidity pre-

mium calibration. Due to this relationship we expect the trading strategy to move

to a longer duration to protect the bank from liquidity risk that increase during an

interest raising cycle. The tanh function ensures that F 3
t is bounded between [0, 1],

where the exp function allows for a fairly steep change in the trading strategy as

∆x4t changes. The θ parameter controls the speed of this change. Per this setup

F 4
t = 1− F 3

t

The NII equation (2.1) present the initial setup of the net interest rate margin,

or return function supporting the RRL system. This equation simplify for the RRL

application as only 2 types of wholesale funding instruments are used in the RRL

method compared to the 4 types in the SLP method:

R∗
t = x1t ∗X1

t − x2t ∗X2
t − x3t ∗X3

t − x4t ∗X4
t (4.2)

Per this construction optimizing R∗
t is the same as minimizing Rt = x3t ∗X3

t +x4t ∗X4
t .

The return in month t is a function of the previous funding decision X4
t−1 and the

current funding decision X4
t and X3

t . This is because X3
t−1 matures by t where X4

t−1

only mature by t+ 1. Based on this Rt follows as:

Rt = F 3
t−1 ∗ [x3t ∗ F 3

t + x4t ∗ (1− F 3
t )] + x4t−1 ∗ (1− F 3

t−1) (4.3)

The Sharpe ratio is used as the optimization function for the purposes of the RRL

optimization. The Sharpe ratio is a well known performance function used in port-

folio management as this use both average returns and the standard deviation of

these returns. The Sharpe ratio as time t is defined below.

St =
Average(Rt)

Std(Rt)
.

St =
At

Kt(Bt −A2
t )

0.5
. (4.4)

Where At = 1/t
∑
Rt, Bt = 1/t

∑
R2
t and Kt = ( t

t−1)0.5.

The differential Sharpe ratio is key if an on-line learning algorithm is required. This

paper use the differential Shape ratio as the reward signal for the RRL problem. For
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the differential Sharpe ratio At and Bt are defined below.

At = At−1 + η(Rt −At−1).

Bt = Bt−1 + η(R2
t −Bt−1). (4.5)

Where η is the adaption rate.

The recurrent reinforcement leaning algorithm aims to maximize St using an on-

line learning approach via the differential Sharpe ratio. This is done by adjusting

the policy function via the θ from F 3
t with each time step across all simulations.

The weight is updated using the gradient method as discussed in detail in Williams

(1992) [40].

∆θ = α
dSt
θ

(4.6)

where α is the learning rate of the RRL process. The equation for ∆θ can be broken

down into dST
dθ = dST

dRT
∗ dRT

dθ . Consider the components in two steps.

First consider dST
dRT

As St is a function of both Bt and At the derivative above can be written as
dST
dRT

= dST
dAT
∗ dAT
dRT

+ dST
dBT
∗ dBT
dRT

. Using equation 4.5 to define Bt and At the derivation

follows from algebra.

dST
dRT

= η ∗ BT−1 −AT−1 ∗RT
(BT−1 −A2

T−1)
3/2

. (4.7)

Next consider dRT
dθ

The real-time recurrent learning (”RTRL”) set out in Rumelhart et al. (1985) [33]

is used for the derivation of the recursive learning algorithm. As per Moody and

Saffel (2001) [28] the RRL algorithm is given as
∑T

t=1[
dRt

dF 3
t
∗ dF

3
t

dθ + dRt

dF 3
t−1
∗ dF

3
t−1

dθ ]. The

second term in this equation is required as the return function Rt is a function of the

incremental decision, thus both F 3
t−1 and F 3

t directly affect the calculation of the Rt.

Note that the quantity
dF 3

t
dθ is a total derivatives that depend upon the entire se-

quence of previous trades from time t=0 to t.

The derivation of the first elements is relative straight forward from equation 4.3,
dRt

dF 3
t

= F 3
t−1 ∗x3t −F 3

t−1 ∗x4t and dRt

dF 3
t−1

= F 3
t ∗x3t +(1−F 3

t )∗x4t −x4t−1. The derivation
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of the second element is obtained using the recurrent learning algorithm RTRL.

dF 3
t

dθ
=
∂F 3

t

∂θ
+
dF 3

t−1

dθ
. (4.8)

Where
dF i

0
dθ = 0 and thus the above equation is solved recursively.

The derivative of
∂F 3

t
∂θ is shown below:

∂F 3
t

∂θ
= sech2(exp(θ∗(x2t−x2t−1−0.005)))∗exp(θ∗(x2t−x2t−1−0.005))∗(x2t−x2t−1−0.005).

(4.9)

Figure 4.1 set out the real-time recurrent learning framework. The optimization

framework is initiated with a predefined θ per the trading rule per equation 4.1 in

step 0. This trading rule is applied across the 12000 unique scenarios to calculate

the return at time t = 1. The recurrent learning algorithm per equation 4.6 is ap-

plied to update θ to obtain the new trading rule updated with the information up to

time t = 1 (Step 2 per figure 4.1). The new trading rule is applied across the 12000

unique scenarios from time t = 0 to obtain the return at time t = 2. The recurrent

learning algorithm per equation 4.6 is applied to update θ to obtain the new trading

rule updated with the information up to time t = 2. This process repeats till time

t = 60. Important to note that the new trading rule will be applied from time t = 0

for every step.

4.2 Results

Figure 4.2 show the trading function, tagged with the ”optimal” data label, cali-

brated per the RRL methodology. Per this trading rule the bank would issue 70%

short dated and 30% long dated instruments when there is no change in ∆x4t . The

bank would increase the portion short dated instruments if ∆x4t is negative, while

increasing the long dated instruments if ∆x4t is positive.

Similar to the SLP methodology we tested the impact on the trading rules if we re-

duce the impact of liquidity risk via the probability and size of the jump parameters

in the cost of wholesale funding. This trading rule is shown as ”Sensitivity 1” in

figure 4.2. The reduced impact of liquidity risk will results in the bank continuing
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Figure 4.1: Steps in the RRL optimization methodology
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Figure 4.2: Portion of funding gap filled with short dated debt as credit losses change
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Chapter 5

Results

The SLP optimization aims to define the trading strategy to follow over the entire

projection period. The trading strategy is chosen to target the optimal return. The

SLP optimization method selected strategy 1 as optimal in terms of maximizing

the return. Strategy 1 utilize mainly longer dated instruments to fund the bank.

This strategy was selected to minimize the liquidity risk. This confirmed that the

introduction of liquidity risk via jumps in the cost of funding of the bank requires

the bank to switch funding to longer term instruments.

The RRL method dynamically adjust the trading strategy over the projection pe-

riod. The credit and liquidity premium paid by banks to issue debt increase as credit

losses increase in the underlying bank portfolios. The RRL methodology attempts

to capture this dynamic by calibrating the trading rule based on changes in interest

rates that drives credit losses. This allows the bank to maintain cheaper funding

via short dated instruments when credit losses are low, switching to longer dated

instruments to protect against liquidity risk as credit losses start to deteriorate. The

RRL methodology provides a higher average return compared to the SLP method.

The trading rule supporting the RRL method was based on a change in interest

rates. The calibration of the trading rule resulted in funding with shorter duration

instruments when the month-on-month change in interest rates are very small. This

switch to longer dated instruments when the interest rates start to increase. The

switch is fairly aggressive once beyond a certain point.

Table 5.1 compares the return distribution for the SLP and RRL methodologies,

split into 4 buckets for simplicity. The RRL method has a higher portion in the

high return bucket with a similar portion in the loss making bucket. Strategy 1

23
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from the SLP method provides superior returns compared to other static funding

strategies when liquidity risk are high due to the longer dated funding. The RRL

also benefit from this as the trading rules drive longer dated funding as liquidity

risk builds up, while focusing on shorted dated instruments during benign periods.

Table 5.1: The RRL method has a higher portion in the high return category

Return category SLP:Strategy 1 RRL

Loss 8.1% 8.3%

Low return 23.4% 18.7%

Medium return 57.9% 31.8%

High return 10.6% 41.2%

Table 5.2 compares the average return, Sharp ratio ,95% value at risk and CVAR

measure for two methods.

Table 5.2: Metric to compare performance of the two methods

Trading strategy Average return Sharp Ratio 95% VAR CVAR

RRL 3.32% 4.33 -0.4% -0.9%

SLP: Strategy 1 3.07% 5.65 -0.2% -0.6%

The average NII improved significantly when using the RRL method with the dy-

namic trading rule. Most notable is the shift in the NII distribution towards higher

profits. The positive skewness of the RRL method results in a higher standard de-

viation and thus lower Sharp ratio. Although the loss distribution has a fatter tail

indicating a higher level of large losses than under the SLP optimization (supported

by the higher 95% VAR and CVAR).

The scenarios and assumptions supporting the optimization does impact the op-

timal strategy under both the RRL and SLP methodologies. Choosing a different

starting position for the projection and a higher liquidity risk assumptions did re-

sults in a different SLP optimal strategy and a dynamic trading rule more weighted

towards short dated funding due to the lower liquidity risk. A further research topic

from this paper is the determining the optimal funding strategy under various sce-
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narios and assumptions, isolating the key drivers of specific funding strategies.
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