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Abstract

This paper studies the short-time behavior of the optimal conversion boundary

of convertible bonds using singular perturbation technique. The fundamental result

is the analytic prediction of the optimal conversion price close to maturity. Even

though the asymptotic expansion is valid for a short time interval, it complements

the conventional approaches to evaluate this financial instrument at times that are

not close to expiry. The analysis presented here is applicable to a wide range of

nonlinear derivatives pricing problems.
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1 Introduction

Convertible bonds (CBs) are hybrid financial instruments that can be converted into the

bond issuing firm’s common stocks with a preset conversion ratio, or hold the bond till

maturity to receive coupons and the face value prescribed in the contract agreement. The

investors may decide to convert the CBs into equity based on the price path followed

by the underlying stock. A higher dividend per bond if converted often lead to a higher

possibility to trigger conversion that dilutes existing equity holder’s value [7]. There were

also theoretical and empirical arguments for early conversion when investors faced short-

sale costs, transaction costs, or funding costs [3, 11]. CBs have a financial structure that

combines the characteristics of stocks and bonds. The dominant determinant of value

depends on the prevailing market conditions. From the perspective of a borrower, CBs

have the benefit of lower interest rate cost than the straight bond, and it offers a relatively

cheap way for many companies to raise capital. However, there is a drawback that the

issuer faces capital structure uncertainty. On the other hand, in return for a declined yield

faced by investors, there is an upside participation in the performance of the equities of

the issuing firm [3].

The pricing of CBs has long been acknowledged as a very challenging problem in quan-

titative finance because of the associated moving boundary, along with singular behaviour

at expiry date. It is numerically challenging for most conventional pricing methods to ef-

fectively track the dynamic of CBs in the surrounding neighborhood of maturity date. For

instance, when using the finite difference method [10, 17] and finite element method [8, 12],

a fine discretization of the time domain is needed near expiry to obtain a reasonably ac-

curate result [13]. This practice is not only computationally expensive but has limited

accuracy. Financially, the exact location of critical conversion prices is crucial to the

investors for financial decisions and hedging [1]. Therefore, it is desirable to further study

the dynamics of this financial security near maturity date to complement the traditional
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pricing approaches.

The literature analyzing singular behavior of early exercise price of financial deriva-

tives are limited. Among the works trying to study this phenomenon is Chen & Zhu [6].

Their work focused on American put options with no dividend payment modeled on the

Black-Scholes framework. While this appears a source of inspiration, it is never optimal

to convert CBs without dividend yield on the underlying before expiry. Financially, when

both dividend and coupons payment are zero, the investors have no incentive to give up

their conversion right early, then an American-style CB resembles its European counter-

part. In a related study, Alobaidi & Mallier [2] analyzed zero-coupon American converts

based on Vasicek and Cox-Ingersoll-Ross models. A matched asymptotic solution is ob-

tained within the transitional region between the two co-existing states.

This paper aims to match solutions that are asymptotically valid on different regimes

to derive a solution that is uniformly valid close to maturity. We consider standard CBs

under the Black-Scholes model with zero coupons, which can be exchanged for one unit

of stock at any time at or before the maturity date. The bonds pay an amount K, the

face value, at maturity if the option to redeem is not exercised. The choice of our model

allows the evaluation of our results within a framework that permits objective comparison

with the existing works.

The remainder of this paper proceeds as follows. Section 2 states the underlying as-

sumptions of the Black-Scholes model, and present the free boundary problem of CBs

with the embedded early conversion right. In Section 3, we derive the asymptotic behav-

ior of CBs near the expiration time. Section 4 discusses our explicit analytical results and

concludes the paper.
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2 Free boundary problem of CBs

Following the Grundy and Verwijmeren [9] empirical results that CBs pricing models

assumed a perfect market, like Brennan and Schwartz [4], we adopt this perfect market

setting. Under this setting, there is no transaction cost, both equity and bond holders have

equal access to market information and trade continuously without arbitrage opportuni-

ties. We assume further that there is no senior or junior debt issued, only block conversion

is allowed, possession of all convertibles is diffused, and default risk is neglected [1].

Let V (S, t) denotes the value of a CB, which is a measurable function of the under-

lying stock price, S and time, t. Under the risk neutral measure, the stock price follows

lognormal diffusion process

dS

S
= µdt+ σdZ, (2.1)

where the drift µ volatility σ are constants, and dZ denotes the increment of a standard

Brownian motion process. In light of no-arbitrage arguments, the following free boundary

problem modelled the pricing dynamics of the standard CBs

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − δ)S∂V

∂S
− rV = 0, 0 < S < Sf , t > 0

V (S, T ) = max(nS, Z)

V (Sf , t) = nSf

∂V

∂S
(Sf , t) = n

lim
S→0

V (S, t) = Ze−r(T−t),

(2.2)

where r is the risk-free interest rate, K is the strike price, and δ is the continuous dividend

payment. For simplicity, we assume r− δ > 0. Problem (2.2) is defined on S ∈ [0, Sf (t)],

t ∈ [0, T ]. For each t ∈ [0, T ], there exists a stock price S for which conversion before
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the final time T is optimal. This value defines a continuous curve Sf ; a moving interface

separating the region where it is advantageous to hold the bond from where exercise

is optimal. The location of Sf (t) at final time,T is given as Sf (T ) = K
n

. Intuitively,

problem (2.2) is defined in a domain part of whose boundary is moving as time passes,

and its behavior is similar to the so called Stefan problem [15, 14].

3 Matched asymptotic expansion of the optimal con-

version boundary

In this section, we derive the matched asymptotic expansion of Sf (t) from differential

system (2.2) using the singular perturbation technique [5]. First, we transform (2.2) into

an equivalent dimensionless form by introducing new variables:

x = ln

(
S

K

)
, xf (τ) = ln

(
Sf (t)

K

)
, Kv(x, τ) = (V (S, t)− S)ek1τ , and τ =

σ2(T − t)
2

With the new variable and conversion ratio n = 1, one can easily check that the free

boundary problem (2.2) is transformed into the following problem:

∂v

∂τ
=
∂2v

∂x2
+ (k1 − k2 − 1)

∂v

∂x
− k2exek1τ

p(x, 0) = max(1− ex, 0)

lim
x→−∞

v(x, τ) = 1− exek1τ

p(xf (τ), τ) = 0

∂v

∂x
(xf , τ) = 0,

(3.1)

where k1 and k1 are defined as k1 = 2r
σ2 , k2 = 2δ

σ2 respectively. Since Sf (T ) = K, xf (0) = 0.

It should be remarked that the continuity of state variables, V (S, t) and its first derivative

5



with respect to S on Sf (t) corresponds to the continuity of v(x, τ) and its first derivative

on xf (τ).

According to the essence of the so-called singular perturbation approach, we set τ =

εT ′, where T ′ = O(1) and ε is a small positive artificial parameter 0 < ε � 1. Then,we

obtain

∂v

∂T ′
= ε

∂2v

∂x2
+ ε(k1 − k2 − 1)

∂p

∂x
− εk2ex+k1εT

′

v(x, 0) = max(1− ex, 0)

lim
x→−∞

v(x, T ′) = 1− exeεk1T ′

v(xf , T
′) = 0

∂v

∂x
(xf , T

′) = 0.

(3.2)

To construct the matched asymptotic solution, we naively treat Equation (3.2) as a regular

perturbation problem. Then, we produce the outer approximation by assuming that the

solution v(x, T ′) of PDE system (3.2) can be expanded in powers of ε. Thus, we obtain

an outer expansion which valid for x < 0:

v(x, T ′) = 1− ex(1 + k1εT
′) +O(ε2) (3.3)

As it is shown, the outer expansion breaks down as x → 0+, i.e, the outer solution is

discontinuous in this regime. Because we cannot impose boundary conditions on the

leading-order outer solution, we require inner boundary layer to satisfy these boundary

conditions. To achieve this, we represent v(x, T ′) by inner expansion with corner layer

x− xf1 = O(εp) and introduce a stretched or interior layer variable

y =
x− xf
εp

,
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where y = O(1). Substituting y into the governing PDE contained in Equation (3.2)

and balance the leading-order terms, we obtain p = 1. The problem v(x, T ′) = v(y, T ′)

becomes

ε
∂v

∂T ′
− dxf

dτ

∂v

∂y
=
∂2v

∂y2
+ ε(k1 − k2 − 1)

∂v

∂y
− k2ε2[1 + yε+ xf + k1εT

′]

v(0, T ′) = 0,
∂v

∂y
(y = 0, T ′) = 0

(3.4)

The technical justification for the inner expansion require the scaling x = εpX where

X = O(1). Adopting x into Equation (3.1) and equate the higher terms produces p = 1/2.

The scaling x = ε1/2X bridges between the outer region and the inner region near the

moving boundary xf .// To continue with the asymptotic analysis, we explore the

solution of (3.4) in a series form:

v(x, T ′) = ε1/2v0 + εv1 +O(ε3/2), (3.5)

where v(x, T ′) = O(ε3/2). Substituting v(X,T ′) in Equation (3.4), with x = ε1/2X and

x = yε+ xf , we obtain sequence of leading-order PDE systems

∂v0
∂T ′

=
∂2v0
∂X2

v0(X, 0) = max(−X, 0)

lim
X→−∞

v0(X,T ) = −X

lim
X→∞

∂v0(X,T )

∂T ′
= 0

(3.6)
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∂v1
∂T ′

=
∂2v1
∂X2

+ (k1 − k2 − 1)
∂v0
∂X
− k2

v1(X, 0) = max(
−X2

2!
, 0)

lim
X→−∞

v1(X,T
′) =

−X2

2!
− k1T ′

lim
X→∞

∂v1(X,T
′)

∂X
(X,T ′) = 0

(3.7)

For mathematical justification, the boundary conditions as X → −∞ are obtained by

matching with the outer expansion, whereas the ones as X →∞ are needed to complete

the PDE systems.

In order to obtain analytical solutions of the PDE systems (3.6) and (3.7, we adopt

the similarity solution techniques [16]. Following this method, we consider a solution

structure v0(X,T
′) = T ′1/2g0(γ) and v1(X,T

′) = Tg1(γ) for (3.6) and (3.7) respectively,

where γ = X

2
√
T ′ . Thus, it is not difficult to show that the above systems transformed

respectively to ordinary differential systems

g′′0(γ) + 2γg′0(γ)− 2g0(γ) = 0

lim
γ→−∞

g0(γ) = −2γ, lim
γ→∞

g′0(γ) = 0
(3.8)

and

g′′1(γ) + 2γg′1(γ)− 4g0(γ) = 2(k1 − k2 − 1)erfc(γ) + 4k2

lim
γ→−∞

g1(γ) = −2γ2 + k1(α− 1), lim
γ→∞

g′1(γ) = 0.
(3.9)

The general solution of g0(γ) is obtained as

g0(γ) = C0γC1[e
−γ2 + γ

√
πerfc(γ)] (3.10)
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After imposing the limit condition γ → −∞ and the boundary conditions g0(γ) = g′0(γ) =

0 as γ →∞, it is straightforward to obtain the analytical solution as

g0(γ) =
e−γ

2

√
π
− γerfc(γ), (3.11)

where

erfc(γ) = 1− 2√
π

∞∑
n=0

(
(−1)nγ2n+1

n!(2n+ 1)

)
.

Following the same procedures for system (3.9), we assume for the moment the general

solution

g1(γ) = g1a(γ)e−γ
2

+ g1b(γ)erfc(γ) + g1c(γ), (3.12)

which, after performing some mathematical manipulations results in

g1(γ) =

(
k2 − k1 + 1 +

γe−γ
2

2
√
π
− (1 + 2γ2)erfc(γ)

4

)
erfc(γ)− k2. (3.13)

By exploring the asymptotic expansion of erfc(γ), the solutions g0(γ) and g1(γ) as γ →∞,

can be written respectively as

g0(γ) =
e−γ

2

2γ2
√
π

+O

(
e−γ

2

γ2

)
(3.14)

g1(γ) = −k2. (3.15)

Finally, the transformed unknown boundary xf (τ) is determined by matching the solution

v(x, τ) in the two different regions. We require that the expansions agree asymptotically

in these regimes, where X →∞ and γ →∞ as ε→ 0. Hence, by taking the limit values
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as γ → ∞ corresponding to x → xf , and using the leading-order terms, we obtain the

transcendental equation:

e−x
2
f/4τ

2
√
πτ
− k2 = 0, (3.16)

with the solution

xf (τ) = 2
√
τ

(
− ln(2k2

√
πτ)

)1/2

(3.17)

Reverting to the state variables with xf (τ) = ln

(
Sf (t)

K

)
, we obtain

Sf (t) = Kexp

[
σ
√

2(T − t)
(
− ln

2δ
√

2π(T − t)
σ

)1/2]
(3.18)

The matched asymptotic expansion for the optimal conversion boundary of CBs is now

complete. The new-found Equation (3.18) is important in CBs trading. Specifically,

once Sf (t) is known, the nonlinear pricing problem (3.2) becomes a linear one, and it

is straightforward to predict the CBs dynamics. It should be remarked that as δ → 0,

Sf (t)→∞. This implies that the conversion option should never be exercised when the

bond pays no dividend and investors are better off holding the bond to maturity. Higher

dividend per bond when converted results in a higher possibility to trigger conversion that

dilutes existing share holder’s value [7].

4 Discussion and conclusion

The specific result of this paper is Equation (3.17), the optimal conversion price of CBs

valid close to maturity. This result can be used to validate numerical solutions designed

for more complicated cases where no analytical solutions exist.It worth mentioning that
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provided the dividend yield on underlying stock is non negative, xf is of the form
√
τ
(
−

ln
√
τ
)
. This result follows the existing works where related issues were addressed [2].

To investigate the singular behaviour of optimal conversion boundary close to expiry,

we estimate the limiting of Sf (t) and its first derivative as t→ T :

lim
t→T

Sf (t)) = K, and lim
t→T

dSf
dt

=∞

The limiting value of Sf (t), K as t → T aligns with both theoretical and empirical

reasonings that if a zero-coupons CBs held to due date, it could be traded for a cash

amount of the ratio of principal and the conversion ratio (here conversion ratio, n=1).

Furthermore, the infinite slope at t = T should be expected because the optimal asset

price changes drastically in the surrounding neighborhood of maturity time. The future

work would extend the singular perturbation technique to multiple stopping problems,

including convertible bonds with embedded call and put options.
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