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Abstract 
The problem of some thermo-physical properties on free convective heat and mass transfer of reacting 
flow over a vertical plate in the presence of viscous dissipation is investigated. The governing partial 
differential equation is transformed to a coupled nonlinear ordinary differential equation with the help 
of similarity variables. Two special cases are analysed under some assumptions and the resulting 
coupled nonlinear ordinary differential equations for both cases is solved numerically by shooting 
method along with Runge-Kutta fourth order technique. The effects of thermo-physical parameters on 
velocity and temperature are shown graphically while numerical data for the local skin friction 
coefficient and Nusselt number have been tabulated for various values of certain parameters. 
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1 Introduction 
Free convective flow driven by temperature differences is of great interest in a number of industrial 
applications. There has been increasing need for the continuous study of the behaviour of free 
convective flow under several phenomena due to its wide range of applications in the field of Science 
and Technology. This is a flow which plays an important role in agriculture, engineering and 
petroleum industries. The problem of free convection under the influence of magnetic field has 
attracted many researchers in view of its application in geophysics, astrophysics, geological 
formations, and thermal recovery of oil, and in assessment of aquifers, geothermal reservoirs and 
underground nuclear waste storage site, etc. Researchers are motivated by the fact that free convection 
appears to be increasingly important due to its various applications in applied sciences, engineering, 
industries and technology as nuclear reactors, heat exchangers, solar powers, oceanography, cooling 
applications, fossil fuel combustion energy processes, astrophysical flows, satellites, solar power 
technology, space vehicle re-entry, etc. In most of the existing works in literature, many investigations 
dealing with heat flow and mass transfer have been reported by a considerable number of researchers. 
Heat and mass transfer characteristics and flow behaviour on magneto-hydrodynamics (MHD) flow 
near the lower stagnation point of a porous isothermal horizontal circular cylinder was studied by Ziya 
and Manoj [1]. Their result showed that velocity increases with viscosity parameter, while temperature 
decreases with the same parameter. Also, both velocity and temperature decreases with increase in 
radiation and increases with increase in thermal conductivity. Basant [2], considered the effects of 
applied magnetic field on transient free-convective flow in a vertical channel. His result showed that 
as magnetic parameter increases, velocity decreases, while it increases with increase in time (�). 
Mansuor et al. [3] considered a steady two dimensional nonlinear MHD boundary layer flow of an 
incompressible, viscous and electrically conducting fluid in the presence of a uniform magnetic field 
with heat, mass transfer and chemical reaction in a porous medium. The fluid properties were assumed 
to be constant. The results showed that the flow field was influenced appreciably by the presence of 
chemical reaction, viscous dissipation and suction or injection flow. Kishore et al. [4] investigated the 
unsteady free convection flow of an incompressible viscous fluid past an exponentially accelerated 
vertical plate, by taking into account the heat due to viscous dissipation under the influence of a 
uniform transverse magnetic field. Their investigation showed that velocity increases with increase in 
thermal Grashof number, accelerated parameter, Eckert number and time. While temperature increases 



 
 

with increasing values of Eckert number and time. Gideon and Eletta [5] discussed viscous dissipation 
effect on the flow through a horizontal porous channel with temperature dependent viscosity. It was 
observed that high Darcy number leads to a higher velocity and that velocity is parabolic while 
reversal flow takes place at low Darcy number. The use of Arrhenius equation in kinetics for many 
fluids, have been reported for countless industrial and engineering processes like geological materials, 
liquid foams, polymeric fluids, slurries, hydrocarbon oils and grease. Also, its applications in a 
number of technological processes include the production of polymer films or thin sheets, wire 
drawing, fiberglass and paper production. Steady Arrhenius laminar free convective MHD flow and 
heat transfer past a vertical stretching sheet with viscous dissipation was studied by Omowaye and 
Koriko [6] and their results indicated that velocity and temperature profile increases with increase in 
local Grashof number and Eckert number. Omowaye and Ayeni [7], studied unsteady MHD free 
convection flow and heat transfer along an infinite vertical porous plate under Arrhenius kinetics. 
Their studied showed that velocity of the fluid decreases with the increase in Prandtl number and 
Hartmann number but increases with increase in Grashof number. While, temperature decreases with 
increase in Prandtl number. Thermal criticality for a reactive gravity driven thin film flow of a third-
grade fluid with adiabatic free surface down an inclined plane was studied by Makinde [8]. His 
investigation revealed that an increase in the material parameter enhances the thermal stability of the 
liquid and his series summation procedure can be used as an effective tool to investigate several other 
parameter-dependent nonlinear boundary-value problems in science and engineering. Galwey and 
Brown [9] studied the application of the Arrhenius equation to the kinetics of solid state reactions. 
Galwey [10] further looked into a general and critical analysis of theories used to interpret those 
thermochemical rate measurements that are directed towards investigations of the mechanism of 
chemical changes that result from the heating of initially solid reactants. Analytical solutions for the 
problem of heat and mass transfer by steady flow of an electrically conducting and heat 
generating/absorbing fluid on a uniformly moving vertical permeable surface in the presence of a 
magnetic field of first order chemical reaction was studied by Chamkha [11]. His result showed that 
fluid velocity decreased as Prandtl number, the Schmidt number and the strength of the magnetic field 
was increased but increased as thermal and concentration buoyancy effects were increased. 

Takhar et al. [12] studied the effect of thermophysical quantities on the natural convection 
flow of gases over a vertical cone and effects of some thermo-physical properties on force convective 
stagnation point on a stretching sheet with convective boundary conditions in the presence of thermal 
radiation and magnetic field. Khaleque and Samad [13] studied the effects of radiation, heat generation 
and viscous dissipation on MHD free convection flow along a stretching sheet. Mohyud-Din et al. [14] 
investigated modified Variational Iteration Method (MVIM) for free-convective boundary-layer 
equation using Padé approximation. In the literature, the problem of variable thermal conductivity, 
magnetic field effect and the reacting fluid flow with laminar free convection flow over a vertical plate 
has not been adequately dealt with to our best of knowledge. Hence, the need to study the effects of 
the physical features for the free convective flow problem and give the numerical solution of the 
problem, which allows us to critically analyse the physical features of our problem to providing better 
and efficient results in the model. 
 
2.0 Governing Equation 
Consider a steady two-dimensional laminar free convective flow of a viscous, incompressible fluid 
over a vertical plate with variable thermal conductivity and magnetic field effects. The �-axis is taken 
along the vertical plate in the upward direction and the �-axis is normal to the plate. The schematic 
representation of the problem under consideration is shown in figure 1. The fluid is reacting and a 
uniform magnetic field is applied normal to the flow field. 

Under the Boussinesq’s approximation [14], the modified partial differential governing mass, 
momentum and energy equation is given as follows: 
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where �,� are the velocity components in �,� directions respectively, � is density of the fluid, �� is 

the specific heat capacity at constant pressure, � is the kinematic viscosity, � is the acceleration due to 
gravity, � is electrical conductivity, � is the temperature of the fluid, � and �� are coefficient of 
volumetric expansion and magnetic field intensity, �(�) is variable thermal conductivity of the fluid, 
� is the pre-exponential (frequency) factor, �  is heat release, � is the activation energy, �  is the 
universal gas constant and � is the fluid viscosity coefficient. The boundary conditions for the velocity 
and temperature fields are: 

� = 0    � = 0     � = ��    ��   � = 0                                                                             (4) 
� → 0       � → ��       ��       � → ∞                                                                                 (5) 

where �� is the wall dimensional temperature and �� is free stream dimensional temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Schematic representation of the problem 
 
Introducing the stream function � (�,�), equation (1) is satisfied. Equations (2) and (3) with boundary 
conditions (4) and (5) reduces to 
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In this research, the fluid thermal conductivity � is assumed to vary as a linear function of temperature 
is assumed. Variation of the normalized thermal conductivity is written in the form (Elbashbeshy and 
Ibrahim [15], Seddeek and Abdelmeguid [16]) as: 

�(�) = �∗[1 + ��]                                                                                  (9) 
where �∗ is the ambient fluid thermal conductivity and � is a constant depending on the nature of the 
fluid. In order to resolve the governing partial differential equations (6) and (7) along with the 
boundary conditions (8), the following dimensionless quantities are introduced 
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using (10), equations (6) and (7) subject to the boundary conditions (8) reduces to 

x 

v 

g 

u 

y 

 �� 

�� 



 
 

�

�
 �2����  ��(�) �− 

��

2�
�

2���

�
 ���(�)� − �−

1

2
 �

2���

�
 (��� − �)� �

��

��
 �2����  ���(�)�

= � �
��

��
 �2����  ����(�)� + ��(�� − ��)�(�)

−
���

�

�
�

�

�
 �2�����  ��(�)                                                                                       (11) 

 

−
��

2�
 �

2���

�
  ��(�) ��(�) − �−

��

2�
 �

2���

�
  ��(�) ��(�) +

�

2�
 �

2���

�
  �(�) ��(�)� 

=  
��∗

���
�

��

��
���(�)� +  

�∗[1 + ��]

���
�

��

��
 ���(�)� + 

�� ���
�  �

���

���(�� − ��)
���

�
�

����
�
  

         + 
�

���
 �

��
�

2��(�� − ��)
� ����(�)�

�
                                                                    (12) 

on simplification of equations (11) and (12), the dimensionless governing equations for momentum, 
energy and their boundary conditions are obtained. Hence, the coupled nonlinear ordinary differential 
equations: 
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The corresponding boundary conditions are 
� = 0, �� = 0, � = 1        ��          � = 0 

�� = 0,    � = 0                                    ��     � → ∞  
�                                                   (15) 

where prime denotes the differentiation with respect to �, � is the dimensionless velocity and � the 
dimensionless temperature, � = �(�� − ��) is the thermal conductivity variation parameter of the 
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the physical quantities of principal interest are the skin friction coefficient �� and Nusselt number �� 

given as: 
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3 Special Forms of the Governing Equation 
Special forms of some of the governing equations are investigated when dealing with certain types of 
fluid flow. 
 
3.1 Case I 
In this case, the following assumptions are introduced into the dimensionless governing equations (13) 
and (14): 

(i) � ≠ 0  (ii) �� = 0 
The governing equations become 

���� + ���� + ��� − ��� = 0                                                                                        (16) 
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the corresponding boundary conditions (15). 
 
3.1.1 Numerical Computation 
In this section, the set of equations (16) and (17) under the boundary conditions (15) are solved 
numerically by applying the Runge-Kutta fourth order scheme along with shooting method. 
Let � = ��,  �� = ��, ��� = ��, � = ��, �� = ��. Hence, equations (16) and (17) are transformed 
into a system of first order differential equations as follows: 
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subject to the following initial conditions: 
��(0) = 0,��(0) = 0,��(0) = ��,��(0) = 1,��(0) = ��                                     (19) 

The unspecified initial conditions �� and �� are guessed. Numerical computation on the behaviour of 
the physical parameters ��,��,�,� and � are calculated including the skin-friction ���(0) and the 
Nusselt number −��(0). 
 
3.1.2 Discussion of Results 
The problem of magnetic field and variable thermal conductivity on laminar free convective heat flow 
and mass transfer over a reacting vertical plate is considered. The governing parameters are the local 
Grashof number ��, Prandtl number ��, activation energy �, magnetic field parameter �, modified 
Frank-Kamenetskii parameter � and thermal conductivity variation parameter �. To illustrate the 
behaviour of these physical quantities on the velocity and temperature profile, numerical values were 
computed with respect to the variations in the governing parameters and the analysis are presented 
graphically. 
 

Table 1: Numerical values of ���(0) and ��(0) for various values of the governing parameters 

� �� �� � � � ���(0) −�′(0) 

0.5 
2.0 
0.5 
0.5 
0.5 
0.5 
0.5 

0.72 
0.72 

4 
0.72 
0.72 
0.72 
0.72 

1 
1 
1 
7 
1 
1 
1 

1.5 
1.5 
1.5 
1.5 
2.5 
1.5 
1.5 

0.1 
0.1 
0.1 
0.1 
0.1 
1.5 
0.1 

0.01 
0.01 
0.01 
0.01 
0.01 
0.01 
0.08 

0.6700 
0.7078 
0.5740 
3.6731 
0.5588 
0.6682 
0.7709 

0.2149 
0.1547 
0.3649 
0.4502 
0.1807 
0.2201 
0.0147 

From table 1 above, the numerical values of �′′(0) and �′(0) for different values of dimensionless 
parameters ��, ��, �, �, � and � indicates that skin friction coefficient �′′(0) increases with 
increasing values in �, �� and � but decreases with increasing values in ��, � and �. More so, the 
Nusselt number coefficient −�′(0) decreases as ��, � and �� increases but increases with increasing 
values in �, � and �. The parameters of the flow �, ��, � and �� can be taken as follows 
(Loganathan et al. [17], Elbashbeshy [18], Reddy and Reddy [19], Kishore et al. [4]): 0.7 ≤ �� < 7.0, 
0.5 ≤ � < 6, 0.5 < � ≤ 2.5, 1 ≤ �� ≤ 7. 

The effect of magnetic field parameter � on the velocity �′ and temperature � of the flow 
with variable magnetic field parameter �(1,1.5,2,2.5), �� = 1, �� = 0.72, � = 0.1, � = 0.5 and 
� = 0.01 is illustrated in figures 2 – 3. From figure 2, it is observed that velocity decreases as the 



 
 

magnetic parameter increases, but in figure 3, temperature � increases as � increases in the vicinity of 
the plate. 

 
Figure 2: Velocity profile for different values of � 
 

 
Figure 3: Temperature profile for various values of � against � 

 
The effect of variable Grashof number �� for heat transfer on the velocity of the flow with 
��(1,3,5,7), � = 1.5, �� = 0.72, � = 0.1, � = 0.5 and � = 0.01 is presented in figure 4. It is 
observed that velocity initially increases along � away from the plate with increasing values of �� and 
later decreases towards the plate but gradually increases afterwards towards the free stream. Figure 5 
show the effect of �� for heat transfer on the temperature profile. It shows that � decreases towards 
the plate with increasing values of Grashof number. 



 
 

 
Figure 4: �� profile against � for various values of �� 
 

 
Figure 5: Temperature profile for different values of �� 

 
The effect of Prandtl is important in velocity and temperature profile. Figures 6 and 7 depict the effect 
of Prandtl number �� on velocity and temperature profiles respectively. It is observed that velocity 
and temperature decreases with increasing values in �� for �� (0.72,2,4), � = 1.5, �� = 1, � = 0.1, 
� = 0.5 and � = 0.01. 



 
 

 
Figure 6: Velocity profile for different values of �� 
 

 
Figure 7: Temperature profile for various values of �� 

 
Figure 8 shows the velocity distribution for different values of activation energy �. It is observed that 
velocity and temperature decreases with increasing values of activation energy � as shown in figure 9. 



 
 

 
Figure 8: Velocity profile for different values of � 
 

 
Figure 9: Temperature profile for different values of � 

 
The effect of velocity and temperature profile for different values of modified Frank Kamenetskii 
parameter is shown in figures 10 and 11. It is observed that velocity and temperature profiles increases 
with increasing values of modified Frank Kamenetskii parameter �. From the diagram, the rate of 
increase is spontaneous as it provides a convenient comparative measure of reactivity an of the 
temperature coefficient of reaction rate. 



 
 

 
Figure 10: Velocity profile for various values of � 
 

 
Figure 11: Temperature profile for various values of � 

 
The velocity and rate of heat transfer of temperature for thermal conductivity variation parameter over 
the vertical plate is displayed in figures 12 and 13 respectively. From figure 12, it is observed that with 
increasing values in � parameter, the velocity profile increases away from the plate towards the free 
stream values. Likewise, as the variable thermal conductivity increases, temperature also increases 
with a decreasing boundary layer towards the free stream values as shown in figure 13. 



 
 

 
Figure 12: Velocity profile for variable thermal conductivity against � 

 

 
Figure 13: Temperature profile for variable thermal conductivity against � 

 
3.2 Case II 
For this case, we define some parameters in the dimensionless equations (13) and (14) by the 
following expressions 

(i) � = 0  (ii) �� ≠ 0 
The governing equations become 

���� + ���� + ��� − ��� = 0                                                                                        (20) 
[1 + ��]��� + ���� + ����� + ��������  = 0                                                          (21) 

subject to the boundary conditions (15). 
 
3.2.4 Numerical Computation 
Here, the same numerical approach in Case I is applied to equations (20) and (21) under the boundary 
conditions (15). 



 
 

Let � = ��,  �� = ��, ��� = ��, � = ��, �� = ��. The governing equations are transformed into a 
system of first order differential equations as follows: 
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subject to the following initial conditions: 
��(0) = 0,��(0) = 0,��(0) = ��,��(0) = 1,��(0) = ��                                     (23) 

 
3.2.2 Discussion of Result 
For the purpose of discussing the effects of various parameters on the flow profiles and the 
temperature distribution within the boundary layer, analysis has been carried out for various values of 
��, ��, �,  � and ��. The values for the parameters are taken from Loganathan et al. [17], 
Elbashbeshy [18], Reddy and Reddy [19], Kishore et al. [4] respectively. The numerical results for the 
prescribed parameters �,��,�,�� and �� is presented in figures 14 – 23. 
 

Table 2: Numerical values for heat transfer rate ��(�) 
� �� �� � �� �′(�) 

0.5 
2.0 
0.5 
0.5 
0.5 
0.5 

0.72 
0.72 
7.0 
0.72 
0.72 
0.72 

1 
1 
1 
3 
1 
1 

1.5 
1.5 
1.5 
1.5 
2.5 
1.5 

1 
1 
1 
1 
1 
3 

- 0.1806 
- 0.1328 
- 0.3083 
  0.0774 
- 0.1735 
 - 0.0450 

Numerical values for heat transfer rate and skin friction are presented in tables 2 and 3.It is observed 
that increase in ��, �, �� and � increases the rate of heat transfer but decreases with increasing values 

of �� as shown in table 2. For table 3, the numerical values for skin friction ���� coefficient is 

presented. 
 

Table 3: The rate of shear stress in terms of skin friction (��) 

� �� �� � �� �� 

0.5 
2.0 
0.5 
0.5 
0.5 
0.5 

0.72 
0.72 

7 
0.72 
0.72 
0.72 

1 
1 
1 
3 
1 
1 

1.5 
1.5 
1.5 
1.5 
2.5 
1.5 

1 
1 
1 
1 
1 
3 

0.6662 
0.7058 
0.5152 
1.9140 
0.5529 
0.6881 

The effects of the prescribed parameter on the skin friction ���� coefficient shows that increase in �� 

and � lead to a decrease in skin friction but increases with increasing values in ��, � and ��. The 
velocity profile for various values of Prandtl number is shown in figure 14. Also, as the velocity 
increases, it increases to a peak and begins to decrease exponentially to zero thereby satisfying 
boundary conditions. The result shows that velocity decreases with increase in ��. While increase in 
�� leads to an increase in velocity indicating that buoyancy force assists the flow (Omowaye and 
Koriko [6], Chamkha [11]) as presented in figure 15. In figure 16, velocity decreases with increase in 
magnetic parameter thereby acting against the flow in the normal direction if applied and also, 



 
 

stabilizes the magnetic field. From figure 17, the result shows that as velocity increases, Eckert 
number increases also. 

 
Fig. 14: Velocity profile for various values of  �� 

 

 
Fig 15: Velocity profile for different values of  �� 

 



 
 

 
Fig 16: Velocity distribution against � for various  � 

 

 
Fig 17: ��(�) against  � for different values of  �� 

 



 
 

 
Fig 18: Temperature profile for various values of �� 

 

 
Fig 19: Temperature against � for different values of  �� 

 



 
 

 
Fig 20: Temperature � against � for various values of  � 

 

 
Fig 21: Variation at different values of �� for temperature profile 

 
Temperature profiles for local Grashof number, Prandtl number, magnetic field parameter and Eckert 
number are presented in figures 18 – 21. It is reported in figure 18 and 19, that temperature (�) 
decreases with increase in �� and ��. Figure 20 and 21, shows that increase in the magnetic parameter 
and Ecker number lead to increase in temperature (�) profile and it shows that �� has significant 
effect on the boundary layer growth and plays an important factor for heat transfer. Hence, from 
figures 14 – 21, temperature profile increases with increase in � and ��, while it decreases with 
increase in �� and ��. Similarly, velocity decreases with increase in �� while ��(�) increases with 
��, � and �� increasing also. 



 
 

 
Figure 22: Velocity profile for thermal conductivity variation 

 
Figure 23: Temperature profile for thermal conductivity variation 

 
Velocity and temperature profiles for variable thermal conductivity against � are shown in figures 22 
and 23. It is observed that as � increases in value, both velocity and temperature increases also away 
from the plate towards the free stream values. 
 
4 Conclusion 
The problem on effects of some thermo-physical properties on free convective heat and mass transfer 
of a reacting fluid flow vertical plate is considered. The governing partial differential equations of the 
problem, using similarity transformations, were reduced to a couple nonlinear differential equations 
and solved numerically using Runge-Kutta fourth order method with shooting technique. The main 
objective is to obtain a modified model for free convective flow over a vertical plate and numerical 
solution for the problem as well as establish and discuss the thermo-physical properties of the 
problem. To this end, the resulting coupled nonlinear ordinary differential equations (13) and (14) 
subject to the boundary conditions (15) was investigated under two cases and the following 
conclusions were drawn: 
i). Skin-friction increases with increase in local Grashof number, variable thermal conductivity 

and modified Frank-Kamenetskii parameter but, decreases with increasing values in Prandtl 



 
 

number, magnetic parameter and activation energy in Case I. Similarly, increase in Prandtl 
number, activation energy and Grashof number, leads to a decrease in the value of Nusselt 
number but increases with increase in magnetic, variable thermal conductivity and modified 
Frank-Kamenetskii parameters respectively in Case I. 

ii). In case II, increasing values in Eckert number, thermal conductivity variation, local Grashof 
number and magnetic field parameters, also increases the rate of heat transfer but decreases 
with increasing values in Prandtl number. Also, from case II, the skin friction coefficient 
increases with increasing values in ��, � and �� but decreases with increase in values of �� 
and � 
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