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Abstract 

This paper considers the effect of constant thermal conductivity on MHD free convective 

heat transfer fluid flow over a vertical plate. The steady two-dimensional laminar viscous 

nonlinear partial differential governing equations is transformed into a nonlinear ordinary 

differential equation using similarity transforms. The resulting problem is solved numerically 

using Runge-Kutta fourth order technique with shooting method. The effect of constant 

thermal conductivity on the governing parameter is analysed and the results obtained is 

displayed graphically and the rate of heat transfer and skin friction is shown in tables. 

Keywords: Reacting flow; vertical plate; constant thermal conductivity; MHD; shooting 

method. 

 

1. Introduction 

The problem of free convection has attracted many researchers in view of its 

application in geophysics, astrophysics, geological formations, and thermal recovery of oil, 

and in assessment of aquifers, geothermal reservoirs and underground nuclear waste storage 

site, etc. Also, the growing needs in industries and engineering sectors, requires the study of 

heat and mass transfer in the presence of different conditions and parameters with reaction 

flow effects. Basant (1998) considered the effects of applied magnetic field on transient free 

convective flow in a vertical channel. Acharya et al. (2000) studied magnetic field effects on 

the free convection and mass transfer flow through porous medium with constant suction and 

constant heat flux. Mansuor et al. (2008), considered a steady two dimensional nonlinear 

MHD boundary layer flow of an incompressible, viscous and electrically conducting fluid in 

the presence of a uniform magnetic field with heat, mass transfer and chemical reaction in a 

porous medium. Kishore et al. (2010) investigated the unsteady free convection flow of an 
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incompressible viscous fluid past an exponentially accelerated vertical plate, by taking into 

account the heat due to viscous dissipation under the influence of a uniform transverse 

magnetic field. Kabir et al. (2013) investigated the influences of viscous dissipation on MHD 

natural convection flow along a uniformly heated vertical wavy surface. 

Magneto convection plays an important role in various industrial applications such as 

magnetic control of molten iron flow in the steel industry, liquid metal cooling in nuclear 

reactors, salt water, collision less plasmas and magnetic suppression of molten semi-

conducting materials. Hayat et al. (2014) studied the flow of variable thermal conductivity 

fluid due to inclined stretching cylinder with viscous dissipation and thermal radiation. 

Kaprawi (2015) studied analysis of transient natural convection flow past an accelerated 

infinite vertical plate and the result showed that the temperature and velocity profiles are 

significantly influenced by Prandtl number and Grashof number. This study extends the work 

of Oyem et al. (2015) to consider a steady two-dimensional laminar MHD free convective 

heat transfer reacting flow over a vertical plate assuming that the flow is subject to constant 

thermal conductivity and there is heat generated by viscous dissipation. 

 

2. Problem Formulation 

Consider a steady two-dimensional laminar free convective heat transfer flow of a 

viscous, incompressible fluid over a vertical plate in the presence of magnetic field effect and 

viscous dissipation. The �-axis is taken along the vertical plate in the upward direction and 

the �-axis is normal to the plate. The fluid is reacting with a uniform magnetic field (��) 

applied normal to the flow field and thermal conductivity (�) of the flow is assumed to be 

constant. Under Boussinesq’s boundary layer approximation, the steady flow is governed by 

the nonlinear partial differential mass, momentum and energy equations given as (Oyem et 

al., 2015): 
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where �, � are the velocity components in �, � directions respectively, � is density of the 

fluid, �� is the specific heat capacity at constant pressure, � is the kinematic viscosity, � is 

the acceleration due to gravity, � is electrical conductivity, � is temperature of the fluid, � 
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and �� are coefficient of volumetric expansion and magnetic field intensity, � is the pre-

exponential (frequency) factor, � is heat release, � is the activation energy, � is the universal 

gas constant and � is the fluid viscosity coefficient. The boundary conditions for the velocity 

and temperature fields is 

� = 0       � = 0      � = ��      ��       � = 0

� → 0       � → ��              ��       � → ∞      
                                                      (4) 

where �� is the wall dimensional temperature and �� is free stream dimensional temperature. 

Expanding equation (3) and introducing the stream function �(�, �) where 

� =
��

��
    and    � = − 

��

��
                                                                   (5) 

From (5), equation (1) is satisfied and equations (2) and (3) with boundary conditions (4) are 

transformed. Introducing the following similarity and dimensionless variables 

� = ��
��
2��

       �(�)=
� − ��
�� − ��

       � = �2���� �(�)       � = ���
�(�)            (6) 

one obtains the coupled nonlinear differential equation subject to the boundary conditions 

given as; 
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� = 0, �� = 0, � = 1        ��          � = 0 

�� = 0,    � = 0                                    ��     � → ∞ 
�                      (9) 

where � is the dimensionless velocity of the fluid, �� =
����(�����)

��
�   is the local Grashof 

number and � =
�����

�

���
 is the local magnetic field parameter of the flow, � is the 

dimensionless temperature, �� =
�

�
 is the Prandtl number, � =

���

�
 is activation energy 

parameter, � =
�
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 is modified Frank-Kamenetskii parameter and �� =
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is the Eckert number. The principal physical quantities are the wall shear stress �� in terms of 

skin-friction coefficient �� and rate of heat transfer in terms of the Nusselt number �� 

defined by; 
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3. Numerical Computation 

In order to solve the steady, nonlinear coupled ordinary differential equations (7) and 

(8) with the initial and boundary conditions (9), shooting method with Runge-Kutta fourth 

order technique is employed. First of all, higher order nonlinear differential equations (7) and 

(8) are converted into simultaneous linear differential equations of first order and they are 

further transformed into initial value problem by applying the shooting method. The resultant 

initial value problem is solved by employing Runge-Kutta fourth order technique with step-

size ∆� = 0.001 to obtain the numerical solution with four decimal place accuracy as the 

criterion of convergence. From the process of numerical computation the skin friction 

coefficient and the Nusselt number are also obtained and presented in a tabular form. 

 

4. Results and Discussions 

In order to develop the physical insight of the governing boundary layer problem, 

parameters of the flow ��, �, ��, �, � and �� are taken from Omowaye and Koriko (2014) 

and at constant thermal conductivity, the effects of the local Grashof number ��, local 

magnetic field parameter �, Prandtl number ��, modified Frank-Kamenetskii parameter �, 

activation energy � and Eckert number �� on velocity and temperature profiles are displayed 

in figures 1 – 12. The effect of Prandtl number �� on velocity is illustrated in figure 1. It is 

observed that the velocity decreases as the Prandtl number increases (figure 1). From the 

figure, velocity boundary layer decreases slightly along the vertical plate towards the free 

stream thereby characterizing the ratio of thickness of the viscous and thermal boundary 

layers. The effect of local magnetic field parameter � on velocity profiles with �� = 0.071, 

�� = 2, �� = 1, � = 0.1 and � = 0.01 is illustrated in figure 2. It is observed that velocity 

decreases as the local magnetic field parameter increases. It is because that the application of 

transverse magnetic field will result in a resistive type force, known as Lorentz force, which 

tend to resist the fluid flow field and thus reduces velocity. 
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Figure 1: Velocity profiles for different values of Prandtl number �� 

 
Figure 2: Velocity profiles for different values of local magnetic field 

The effect of local Grashof number (��) and Eckert number (��) for heat and mass transfer 

on the velocity of the flow filed is presented in figures 3 and 4. In figure 3, the velocity of the 

flow field is observed to increase with increasing values of local Grashof number. This is due 

to enhancement of buoyancy force. Similarly, it is observed from figure 4 that increasing 

values of �� leads to increase in the velocity distribution in the flow region. This is due to the 

heat energy stores in the fluid because of frictional heating. Effect of modified Frank-

Kamenetskii � parameter on velocity with � = 0.1, � = 0.1, �� = 2, �� = 1 and �� =

0.071 is presented in figure 5. It is clear that velocity near to the vertical plate increases as � 

increases. But the reverse is the case with the effect of activation energy parameter on 

velocity as shown in figure 6. It is observed that velocity decreases slightly away from the 

plate towards the free stream. 
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Figure 3: Velocity profiles for different values of �� 

 
Figure 4: Velocity profiles for different values of Ecker number �� 

 
Figure 5: Velocity profiles for different values of � 
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Figure 6: Velocity profiles for different values of activation energy � 

 

The effects of Prandtl number ��, local magnetic field parameter �, local Grashof number 

��, Eckert number ��, activation energy parameter � and modified Frank-Kamenetskii 

parameter � on temperature are shown in figures 7 – 12. The effect of �� on temperature 

profile is presented in figure 7. It is observed that the temperature decreases sharply with 

increasing values of �� in the vicinity of the plate. The effect of temperature for different 

values of � with prescribed values is presented in figure 8. It is observed that temperature 

decreases with increasing values of � initially within the vicinity of the plate and then 

increases in the remaining flow region. The effect of different values of local Grashof number 

on temperature distribution is illustrated in figure 9 and temperature profiles for different 

values of �� is shown in figure 10. 

 
Figure 7: Temperature profiles for different values of Prandtl number 
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Figure 8: Temperature profiles for different values of � 

 
Figure 9: Temperature profiles for different values of �� 

 

It is observed from figure 9 that temperature near the vertical plate increases as �� increases 

but, an opposite effect is noticed at a certain distance from the plate (�� ≅ 2.5), thereby 

decreasing away from the plate towards the free stream velocity. It is also observed from 

figure 10 that temperature increases with increase in Eckert number. As �� increases in 

value, temperature increases sharply from the plate and gradually towards the free stream in 

the flow region. This is due to the fact that heat energy is stored in liquid due to frictional 

heating. Thus, the effect of increasing Eckert number is to enhance the temperature at any 

point as well as the velocity. The effect of activation energy parameter on temperature 

profiles is presented in figure 11. It is clear that temperature profiles decreases slightly with 

increasing values of activation energy parameter � away from the plate. 
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Figure 10: Temperature profiles for different values of �� 

 
Figure 11: Temperature profiles for various values of � 

 
Figure 12: Temperature profiles for various values of � 
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The effect of temperature on different values of modified Frank-Kamenetskii parameter � in 

presented in figure 12. It is observed that as � increases, temperature increases also. 

Numerical values of skin friction coefficient and rate of heat transfer are presented in table 1. 

It is observed that an increase in ��, � and �, leads to a decrease in  skin friction coefficient 

and decrease in heat transfer rate with increasing values of � and �. Meanwhile, increase in 

��, �� �� and � leads to increase in Nusselt number while increase in skin friction 

coefficient results in the increase of ��, �� and �. 

Table 1: Numerical values of skin friction coefficient and Nusselt number 

�� � �� �� � � �� �� 

0.071 0.1 2 1 0.1 0.01 2.6767 0.0942 

0.53 0.1 2 1 0.1 0.01 2.0816 0.3383 

1 0.1 2 1 0.1 0.01 1.9049 0.5142 

0.071 0.45 2 1 0.1 0.01 2.2760 0.0403 

0.071 0.8 2 1 0.1 0.01 1.9675 0.0076 

0.071 0.1 3 1 0.1 0.01 3.7759 0.2450 

0.071 0.1 4 1 0.1 0.01 4.8691 0.4425 

0.071 0.1 2 2 0.1 0.01 2.8634 0.3812 

0.071 0.1 2 3 0.1 0.01 3.1069 0.7751 

0.071 0.1 2 1 0.3 0.01 2.6656 0.0860 

0.071 0.1 2 1 0.5 0.01 2.6576 0.0803 

0.071 0.1 2 1 0.1 0.03 3.1899 0.3957 

0.071 0.1 2 1 0.1 0.04 3.5175 0.6086 

 

5. Conclusion 

An analysis is carried out for free convective flow and heat transfer of a reacting flow 

over a vertical plate in the presence of constant thermal conductivity effects. The present 

study indicates that due to increase in viscous dissipation in terms of Eckert number (��), 

velocity and temperature increases. While increase in magnetic field parameter (�) results in 

a decrease in both velocity and temperature of the fluid flow as it helps in controlling the 

flow. The skin friction coefficient decreases with increasing values of Prandtl number (��) 

and magnetic field parameter (�) but increases when viscous dissipation (��), activation 

energy parameter (�), Grashof number (��) and modified Frank-Kamenetskii parameter (�) 
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increase. Similarly, decrease in Nusselt number results in Prandtl number and increase in 

magnetic field parameter.  
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