# On a New Differential Operator 

By
Deborah Olufunmilayo Makinde
Department of Mathematics,

Obafemi Awolowo University, Ile-Ife, 220005, Nigeria.<br>funmideb@yahoo.com, dmakinde@oauife.edu.ng


#### Abstract

In this paper, we give a new differential operator for the class of analytic functions of the form: $$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$ and we obtained a univalent condition for the harmonic function defined by the said


 differential operator as well as its coefficient bounds.Keyword: New differential operator, harmonic function, univalent, coefficient bound.
2000 Mathematics Subject Classification: 30C45.

## 1. Introduction and Preliminaries

Let $A$ denote the class of all analytic functions $f(z)$ defined in the open unit disk $U=$ $\{z \in C:|z|<1\}$ and of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

A continuors complex valued function $f=u+i v$ defined in a simply connected complex domain $D \subset C$ is said to be harmonic in $D$ if both $u$ and $v$ are real harmonic in $D$. In any simply connected domain, we write $f=h+\bar{g}$, where $h$ and $g$ are analytic in $D$. We call $h$ the analytic part and $g$ the co-analytic part of $f$. A necessary and sufficient condition for $f$ to be locally univalent and sense preserving in $D$ is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in $D$. Let $H$ denote the family of functions $f=h+\bar{g}$ that are harmonic univalent and sense preserving in the unit disk $U=\{z \in C:|z|<1\}$ for which $f(0)=f_{z}(0)-1=0$. The
harmonic function $f=h+\bar{g}$ reduces to an analytic function $f=h$ when $g \equiv 0$.
Many Authors $[1,3,4,5]$ and several others have studied the family of harmonic univalent functions. In 2012, Makinde and Afolabi [2], introduced and studied the subclass $T_{H}(\alpha, \beta, t)$ of harmonic univalent functions.

In this paper, for $f(z) \in A$, we introduce the differential operator $F^{k} f(z)$ denoted by

$$
\begin{equation*}
F^{k} f(z)=z+\sum_{n=2}^{\infty} c_{n k} a_{n} z^{n} \tag{2}
\end{equation*}
$$

where $c_{n k}=\frac{n!}{\mid(n-k)!}$ and

$$
F^{k} f(z)=z^{k}\left[z^{-(k-1)}+\sum_{n=2}^{\infty} c_{n k} a_{n} z^{n-k}\right], k \geq 0
$$

and

$$
\begin{gathered}
F^{0} f(z)=f(z) \\
F^{1} f(z)=z+\sum_{n=2}^{\infty} c_{n 1} a_{n} z^{n}=z+\sum_{n=2}^{\infty} n a_{n} z^{n}
\end{gathered}
$$

Thus, it impies that $F^{k} f(z)$ is identically the same as $f(z)$ when $k=0$ and when $k=1$, we obtain the first differential coefficient of the Salagean differential operator. For $f=h+\bar{g} \in H$, we express the analytic functions $h$ and $g$ as;

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} c_{n k} a_{n} z^{n}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
g(z)=\sum_{n=1}^{\infty} c_{n k} b_{n} z^{n}, \quad\left|b_{1}\right|<1 \tag{4}
\end{equation*}
$$

We present and prove the main results of this paper in what follows.

## 2. Main Results

## Theorem 1

Let the function $f=h+\bar{g}$ be such that $h$ and $g$ are as given in (3) and (4) respectively and for $z_{1} \neq z_{2}$. If

$$
\frac{\sum_{n=1}^{\infty} c_{n k}\left|b_{n}\right|}{1-\sum_{n=2}^{\infty} c_{n k}\left|a_{n}\right|}<1, \quad k \geq 0, \quad a_{n}, b_{n} \text { are complex numbers }
$$

Then $f$ is univalent in $U$.

## Proof

If $z_{1}, z_{2} \in D$, then

$$
\begin{array}{r}
\left|\frac{f\left(z_{1}\right)-f\left(z_{2}\right)}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \geq 1-\left|\frac{g\left(z_{1}-g\left(z_{2}\right)\right.}{h\left(z_{1}\right)-h\left(z_{2}\right)}\right| \\
=1-\left|\frac{\sum_{n=1}^{\infty} c_{n k} b_{n}\left(z_{1}^{n}-z_{2}^{n}\right)}{\left(z_{1}-z_{2}\right)+\sum_{n=2}^{\infty} c_{n k} a_{n}\left(z_{1}^{n}-z_{2}^{n}\right)}\right| \\
>1-\frac{\sum_{n=1}^{\infty} c_{n k}\left|b_{n}\right|}{1-\sum_{n=2}^{\infty} c_{n k}\left|a_{n}\right|}>0, \text { by hypothesis. }
\end{array}
$$

Hence $f$ is univalent in $U$

## Corollary 1

Let the function $f=h+\bar{g}$ be univalent in $U$ such that $h$ and $g$ are as given in in (3) and (4) respectively . Then,

$$
\left|b_{n}\right|<\frac{1}{c_{n k}}-\sum_{n=2}^{\infty}\left|a_{n}\right|
$$

## Corollary 2

Let the function $f=h+\bar{g}$ be univalent in $U$ such that $h$ and $g$ are as given in in (3) and (4) respectively . Then,

$$
\left|a_{n}\right|<\frac{1}{c_{n k}}-\sum_{n=1}^{\infty}\left|b_{n}\right|
$$

## Theorem 2

Let the function $f=h+\bar{g}$ be univalent in $U$ such that $h$ and $g$ are as given in in (3) and
(4) respectively. If

$$
1-\sum_{n=2}^{\infty} n c_{n k}\left|a_{n}\right|>\sum_{n=1}^{\infty} n c_{n k}\left|b_{n}\right|
$$

Then $f$ is sense preserving and locally univalent in $U$.

## Proof

Let

$$
h(z)=z+\sum_{n=2}^{\infty} c_{n k} a_{n} z^{n}
$$

Then

$$
\begin{array}{r}
\left|h^{\prime}(z)\right|=\left|1+\sum_{n=2}^{\infty} n c_{n k} a_{n} z^{n-1}\right| \\
\geq 1-\sum_{n=2}^{\infty} n c_{n k}\left|a_{n}\right| \\
\geq \sum_{n=1}^{\infty} n c_{n k}\left|b_{n}\right|=\left|g^{\prime}(z)\right|
\end{array}
$$

Hence $f$ is sense preserving and locally univalent in $U$.

## References

1. J.Clunie and T.Sheil-Small, Harmonic Univalent Function, Ann. Acad. Sc. Fenn. Math 9, 3-255, 1984.
2. D.O. Makinde and A.O. Afolabi, On a Subclass of Harmonic Univalent Functions,Transnational Journal of Science and Technology, 2(2),1-11, 2012
3. K.K. Dixit, A.L. Pathak, S. Porwal, On a Subclass of Harmonic Univalent Functions

Defined by Convolution, International Journal of Pure and Applied Mathematics, 69(3), 255-264, 2011.
4. B.A. Frasin, On the Analytic part of Harmonic Univalent functions, Korean Math. Soc. 42(3), 563-569, 2005
5. H. Silverman, Harmonic Univalent Function with Negative Coefficients, J. Math Anal. Appl. 220,233-289, 1998.

