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Abstract. This paper concerns the notion of a symmetric algebra
and its generalization to a quasi-symmetric algebra. We study the
structure of these algebras in respect to their hull-kernel regularity
and existence of some ideals, especially the hull-minimal ideals.

§1. Introduction. It is well-known, from J. Ludwig (1998) that every
semisimple symmetric polynomially bounded Fréchet algebra is hull-kernel
regular and has a hull-minimal ideal generated by some elements of the alge-
bra. This result gives a way of verifying the existence of hull-minimal ideals
and of computing their basis elements in non-normable algebras of harmonic
analysis, as has been shown for the Schwartz algebras of nilpotent and con-
nected semisimple groups in J. Ludwig (1998) and O. O. Oyadare (2016)
respectively.

In this paper we give a generalization of the notion of a symmetric alge-
bra to that of a quasi-symmetric and establish the importance of this gen-
eralization by showing that every semisimple quasi-symmetric polynomially
bounded Fréchet algebra is hull-kernel regular.

The results contained herein are part of the results of the author’s thesis
O. O. Oyadare (2016) at the University of Ibadan.
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§2. Preliminaries. For the connected semisimple Lie group G with finite
center, we denote its Lie algebra by g whose Cartan decomposition is given
as g = t ⊕ p. We also denote by K the analytic subgroup of G with Lie
algebra t. K is then a maximal compact subgroup of G. Choose a maximal
abelian subspace a of p with algebraic dual a∗ and set A = exp a. For every
λ ∈ a∗ put

gλ = {X ∈ g : [H,X] = λ(H)X, ∀H ∈ a},
and call λ a restricted root of (g, a) whenever gλ ̸= {0}. Denote by a′ the
open subset of a where all restricted roots are ̸= 0, and call its connected
components the Weyl chambers. Let a+ be one of the Weyl chambers, define
the restricted root λ positive whenever it is positive on a+ and denote by △+

the set of all restricted positive roots. We then have the Iwasawa decomposi-
tion G = KAN , where N is the analytic subgroup of G corresponding to n =∑
λ∈△+

gλ, and the polar decomposition G = K · cl(A+) ·K, with A+ = exp a+,

and cl(A+) denoting the closure of A+. If we setM = {k ∈ K : Ad(k)H = H,
H ∈ a} and M ′ = {k ∈ K : Ad(k)a ⊂ a} and call them the centralizer and
normalizer of a in K, respectively, then; (i)M andM ′ are compact and have
the same Lie algebra and (ii) the factor w = M ′/M is a finite group called
the Weyl group. w acts on a∗C as a group of linear transformations by the
requirement (sλ)(H) = λ(s−1H), H ∈ a, s ∈ w, λ ∈ a∗C, the complexification
of a∗. We then have the Bruhat decomposition

G =
⊔
s∈w

BmsB

where B =MAN is a closed subgroup of G and ms ∈M ′ is the representa-
tive of s (i.e., s = msM).

Some of the most important functions on G are the spherical functions
which we now discuss as follows. A non-zero continuous function φ on G shall
be called a (zonal) spherical function whenever φ(e) = 1, φ ∈ C(G//K) :=
{g ∈ C(G): g(k1xk2) = g(x), k1, k2 ∈ K, x ∈ G} and f ∗φ = (f ∗φ)(e) ·φ for
every f ∈ Cc(G//K), where (f ∗g)(x) :=

∫
G
f(y)g(y−1x)dy. This leads to the

existence of a homomorphism λ : Cc(G//K) → C given as λ(f) = (f ∗φ)(e).
This definition is equivalent to the satisfaction of the functional relation∫

K

φ(xky)dk = φ(x)φ(y), x, y ∈ G.

2



It has been shown by Harish-Chandra [8.] that spherical functions on G can
be parametrized by members of a∗C. Indeed every spherical function on G

is of the form φλ(x) =

∫
K

e(iλ−p)H(xk)dk, λ ∈ a∗C, ρ =
1

2

∑
λ∈△+

mλ · λ, where

mλ = dim(gλ), and that φλ = φµ iff λ = sµ for some s ∈ w. Some of the well-
known properties are φ−λ(x

−1) = φλ(x), φ−λ(x) = φ̄λ̄(x), λ ∈ a∗C, x ∈ G,
and if Ω is the Casimir operator on G then Ωφλ = −(⟨λ, λ⟩ + ⟨ρ, ρ⟩)φλ,
where λ ∈ a∗C and ⟨λ, µ⟩ := tr(adHλ adHµ) for elements Hλ, Hµ ∈ a.
The elements Hλ, Hµ ∈ a are uniquely defined by the requirement that
λ(H) = tr(adH adHλ) and µ(H) = tr(adH adHµ) for every H ∈ a. Clearly
Ωφ0 = 0.

Let

φ0(x) =

∫
K

exp(−ρ(H(xk)))dk

be denoted as Ξ(x) and define σ : G → C as σ(x) = ∥X∥ for every x =
k expX ∈ G, k ∈ K, X ∈ a where ∥ · ∥ is a norm on the finite-dimensional
space a. These two functions are spherical functions on G and there exist
numbers c, d such that 1 ≤ Ξ(a)eρ(log a) ≤ c(1 + σ(a))d. Also there exists

r0 > 0 such that c0 =:

∫
G

Ξ(x)2(1 + σ(x))r0dx < ∞. For each 0 ≤ p ≤ 2

define Cp(G) to be the set consisting of functions f in C∞(G) for which

∥f∥g1,g2;m := sup
G

|f(g1;x; g2)|Ξ(x)−2/p(1 + σ(x))m <∞

where g1, g2 ∈ U(gC), the universal enveloping algebra of gC, m ∈ Z+, x ∈ G,

f(x; g2) :=
d

dt

∣∣∣∣
t=0

f(x · (exp tg2)) and f(g1; x) :=
d

dt

∣∣∣∣
t=0

f((exp tg1) · x). We

call Cp(G) the Schwartz space on G for each 0 < p ≤ 2 and note that C2(G)
is the well-known Harish-Chandra space of rapidly decreasing functions on
G. The inclusions C∞

c (G) ⊂ Cp(G) ⊂ Lp(G) hold and with dense images.
It also follows that Cp(G) ⊆ Cq(G) whenever 0 ≤ p ≤ q ≤ 2. Each Cp(G)
is closed under involution and the convolution, ∗. Indeed Cp(G) is a Fréchet
algebra. We endow Cp(G//K) with the relative topology as a subset of Cp(G).

For any measurable function f on G we define the spherical transform f̂

as f̂(λ) =

∫
G

f(x)φ−λ(x)dx, λ ∈ a∗C. It is known that for f, g ∈ L1(G) we

have
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(i) (f ∗ g)∧ = f̂ · ĝ on F1 whenever f (or g) is right - (or left-) K-invariant;

(ii) (f ∗)∧(φ) = f̂(φ∗), φ ∈ F1; hence (f ∗)∧ = f̂ on P : and, if we define

f#(g) :=

∫
K×K

f(k1xk2)dk1dk2, x ∈ G, then

(iii) (f#)∧ = f̂ on F1.

§3. Main Results. We start with fixing some notions.

3.1 Definition. A Fréchet algebra A is said to be involutive if there is a
map a 7−→ a∗ on A such that a∗∗ = a, (a+b)∗ = a∗+b∗, (λa)∗ = λ̄a∗, λ ∈ C,
and (a · b)∗ = b∗ · a∗, for all a, b ∈ A.

It is clear that, for each 0 < p ≤ 2, the Fréchet algebra A = Cp(G) or
Cp(G//K) is involutive with involution f 7−→ f ∗ given as

f ∗(x) = f(x−1), x ∈ G.

Now since the Fréchet algebra we are ultimately going to consider in this
work is a Schwartz algebra we need to impose a growth condition on the
members of the present abstract Fréchet algebra which fits into the general
behaviour of Schwartz functions. Motivated by the estimates of members of
Cp(G) as known above we give the following definition.

3.2 Definition. Let A = (A, {pk}) be an involutive algebra, where {pk}

is the defining collection of seminorms on A, and set e(a) =
∞∑
k=1

ak

k!
for a ∈ A.

An element b ∈ A is said to be polynomially bounded if for every k ∈ N there
is a constant ck = ck(b) > 0 such that

pk(e(iλb)) ≤ ck(1 + |λ|)ck , for all λ ∈ R.

3.3 Remarks.
(1.) This definition may be compared with the weak inequality of the last

chapter using the fact Ξ(x) ≤ 1, for all x ∈ G.
(2.) Clearly e(a) = exp(a)− 1. See J. Dixmier (1960).
As a guiding example we consider the special (but important) case of

when B is a Banach algebra, (B, ∥ · ∥). In this case, if B(b) is a maximal
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abelian closed subalgebra of B containing b, and χ is a character on B(b)
for which χ(b) = µ ∈ spec(b)(:= spectrum of b), we know that in general
µ ∈ C. i.e., µ = α + iβ where α, β ∈ R. However we also know that,
for every λ ∈ R, |eiλµ| = |eiλ(α+iβ)| = |eiλα||e−λβ| = 1|e−λβ| = e−λβ; so
that e−λβ = |eiλµ| = | exp(iλχ(b)| = |1 + e(iλχ(b))| = |1 + χ(e(iλb))| ≤
1 + ∥e(iλb)∥. i.e., e−λβ ≤ 1 + ∥e(iλb)∥ for all b ∈ B, meaning that ∥e(iλb)∥
grows exponentially in λ, with β a real constant.

Thus in order to have an element b ∈ B = (B, ∥ · ∥) to be polynomially
bounded it must be such that β in the above inequality must be zero. i.e.,
the element b must have real spectrum. Thus, since every Banach algebra is
a Fréchet algebra we consider the requirement of having a real spectrum for
a polynomially bounded element of the Fréchet algebra, (A, {pk}). We how-
ever recall that an involutive Banach algebra in which the spectrum of every
self-adjoint element is a subset of R is called symmetric and then introduce
the following notion of symmetricity.

3.4 Definition. A Fréchet algebra A is said to be symmetric if it ad-
mits a continuous involution and there exists a continuous *-homomorphism,
σ, of A into a C∗−algebra, C, such that specA(a) = specC(σ(a)), for every
a ∈ A (Here specA(a) represents the spectrum of an element a in A defined
as {λ ∈ C : a− λ · 1 is not invertible}).

3.5 Remarks.
(1.) By a continuous *-homomorphism σ : A → C we mean a continu-

ous homomorphism σ in which σ(a∗) = σ(a)# where A and C are ∗− and
#−involutive algebras respectively.

(2.) The requirement on the spectrum in (3.4) above is equivalent to
saying that the continuous *-homomorphism, σ, is spectrum invariant.

(3.) If in (3.4) above, we require only that specA(a) ⊆ specC(σ(a)), then
we shall refer to A a quasi-symmetric Fréchet algebra. Clearly every sym-
metric Fréchet algebra is automatically quasi-symmetric but not conversely.
Thus the notion of quasi-symmetricity of a Fréchet algebra is more general
than that of the symmetricity in (3.4). Indeed we shall in a moment extend
the results of J. Ludwig (1998 : Propositions 1.8 and 1.10) to include all
quasi-symmetric Fréchet algebras.

We now consider the notion of a functional calculus (E. Hille and R. S.
Phillips (1957)) that is needed shortly. We start with a Banach algebra ex-
ample.
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3.6 Definition. Let B be a Banach *-algebra. A function φ is said to
operate on an element f ∈ B if

(i.) the Gelfand transform, f̂ , of f, with respect to the smallest commuta-
tive Banach sub-algebra B(f) containing f, is real, and

(ii.) there exists a g ∈ B(f) such that φ ◦ f̂ = ĝ.

We shall in this case write φ{f} = g. Indeed, if for f ∈ B we write e(f) =
∞∑
k=1

(if)k

k!
and if ∥e(nf)∥B = O(∥n∥N) as ∥n∥ → ∞, then every φ ∈ Ck

c (R)

with k > N+1, and φ(0) = 0 operates on f and φ{f} =
1

2πi

∫
R
φ̂(λ)e(λf)dλ

so that ∥φ{f}∥B ≤ c∥φ∥Ck
c (R).

In a Fréchet algebra A we may also employ the functional calculus of C∞-
functions on polynomially bounded elements of A (cf. J. Dixmier (1960)).
Let us denote by C∞

c,0(R) members φ ∈ C∞
c (R) in which φ(0) = 0, then the

integral
1

2πi

∫
R
φ̂(λ)e(iλa)dλ exists and converges in A, for any polynomially

bounded elements a ∈ A (J. Dixmier, 1960 : p. 18). We then define

φ{a} =
1

2πi

∫
R
φ̂(λ)e(iλa)dλ.

This functional calculus on polynomially bounded elements of A has the
following interesting properties that makes it what we actually need.

Let a be a polynomially bounded element of the Fréchet algebra A, and
let A(a) be a maximal abelian closed subalgebra containing a. If χ is any
character on A(a) then χ(φ{a}) = φ{χ(a)}. We thus have

χ((ψ · φ){a}) = (ψ · φ){χ(a)} = ψ{χ(a)} · φ{χ(a)} = χ(ψ{a}) · χ(φ{a})

for ψ, φ ∈ C∞
c,0(R). If A(a) is now semisimple. That is, if ker(χ) = {0} for

every character χ of A(a), then

χ((ψ · φ){a}) = χ(ψ{a}) · χ(φ{a}) = χ(ψ{a} · φ{a})

implying χ((ψ · φ){a} − ψ{a} · φ{a}) = 0 so that

ψ{a} · φ{a} = (ψ · φ){a} · · · · · · (I).
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The use to which this calculus is put is contained in the following.

3.7 Proposition (J. Ludwig, 1998 : p. 80). Let a be a polynomially
bounded element of A. Then there exist ψ, φ ∈ C∞

c,0(R) such that

ψ{a} · φ{a} = φ{a}.

Proof. Since C∞
c,0(R) is (completely) regular we know that there exist

ψ, φ ∈ C∞
c,0(R) such that ψ ·φ = φ. Using this relation on the right-hand side

of (I) above gives the result. �
We shall soon see how the result of Proposition 3.7 above simplifies mat-

ters in the proof of an important result of this section, thus making it central
to our discussion. In an attempt to generalise this calculus to the alge-
bra Cp(G//K) one may introduce a distributional calculus on members of
Cp(G), 0 < p ≤ 2.

This generalisation is analogous to the generalisation of characters of
finite and compact groups as functions on the groups to global characters
on connected semisimple Lie groups as distributions in which J. G. Arthur
(1974), W. H. Barker (1975, 1976 and 1984) and O. O. Oyadare (2015) may
proved very useful. However due to the well-developed theory of Z(gC)−finite
K−finite functions and of cusp forms on connected semisimple Lie groups no
calculus or special Fourier transforms is needed in the construction of a basis
for j(C) in the Schwartz algebras of focus in the last section of this chapter.

We have seen how to express a primitive Ideal of an associative alge-
bra, A, as the kernel of some algebraically irreducible representation of A
(cf. (4.2.1)). Now that we have the algebra A to be Fréchet, on which we
have a topology induced by its collection of seminorms, we may employ both
algebraic and topological irreducibility of a representation of A and make a
comparison between them. Indeed we have the following generalisation of
(1.8) in J. Ludwig (1998 : p. 18) which is needed in the proof of the major
result of this section.

3.8 Lemma. Every algebraically irreducible representation space of a
quasi-symmetric Fréchet algebra A is equivalent to a submodule of a topo-
logically irreducible representation space of A.

Proof. Since A is quasi-symmetric so also is the adjunction Ã := C1⊕A,
of 1 to A. Thus we may assume, without any loss of generality, that A and
C have identities. Now let σ be as in (3.4) and let (T, V ) be an algebraically
irreducible representation of A. We claim that ker(σ) ⊆ ker(T ).
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Indeed, if x ∈ ker(σ) and y ∈ A, then the spectrum of yx in A is reduced
to {0}. Suppose on the contrary to the claim, that x ∈ ker(σ) does not imply
x ∈ ker(T ), then Tx ̸= 0; so that there exists 0 ̸= v ∈ V such that (Tx)v ̸= 0;
and since T is simple, being algebraically irreducible, then we can find an
element y ∈ A such that T (y)(T (x)v) = v. i.e., (T (yx) − λ · 1)v = 0. This
means that 1 is in the spectrum of yx, a contradiction to the fact that the
spectrum of yx is reduced to {0}. Hence ker(σ) ⊆ ker(T ).

It then follows that there exists a proper maximal left Ideal M of A
in which ker(T ) ⊆ M in which the simple module (T, V ) is equivalent to
the left-regular representation of A on A/M. We note that the sum of C1
and σ(M) is direct in C, since otherwise 1 ∈ M mod (kerσ) which implies
1 ∈ kerσ ⊆ (T ) ⊆ M. i.e., 1 ∈ M, which is impossible (see C. E. Rickart,
1974 : Corollary 2.1.2).

Define M̃ := σ(C1+M) (= C1+σ(M) ⊆ C) and define a linear functional
φ on M̃ by the requirement that φ(λ·1+σ(m)) = λ for every λ ∈ C, m ∈M.
In other words for every x ∈M , which is of the form x = λ · 1+m we define
φ(σ(x)) = λ. Now since x = λ · 1 + m ∈ M we have x − λ · 1 = m ∈ M ;
meaning that (x−λ · 1) is non-invertible in A. i.e., λ ∈ specA(x), and by the
hypothesis of quasi-symmetricity on A, we conclude that λ ∈ SpecC(σ(x)).
Thus |φ(σ(x))| = |λ| ≤ sup{|µ| : µ ∈ specC(σ(x))} = ∥σ(x)∥C (cf. Theorem
8 of F. F. Bonsall and J. Duncan, 1973 : p. 23). Therefore

∥φ∥op = sup
x ∈M
x ̸= 0

|φ(σ(x))|
∥σ(x)∥C

≤ 1.

Hence by the Hahn-Banach theorem there exists a continuous extension, say
φ̃, of φ to the whole of C of norm ≤ 1. Since φ(1) = 1 and ∥φ̃∥op ≤ 1, then φ̃
is a positive linear functional for which φ̃(σ(C1 +M)) = φ̃(M̃) = {0}. Since
M is maximal, we then have that φ(σ(M)) = {0} and we can deduce that
M = {y ∈ A : φ̃(σ(y∗y)) = 0} which, in particular, shows that M is closed.
(Indeed, every proper maximal Ideal is closed).

We therefore put a pre-Hilbert structure, ⟨·, ·⟩ on A/M by setting ⟨x +
M, y +M⟩ := φ̃(σ(y∗x)). Let H be the completion of A/M = (A/M, ⟨·, ·⟩),
then the above left-regular representation of A on A/M extends to a unitary
representation π of A on H (cf. J. Dixmier, 1964 : (2.4.4)). Since we may
assume that φ̃ is a pure state (see R. V. Kadison and J. R. Ringrose, 1983 :
p. 213), we also know that π is topologically irreducible (cf. R. V. Kadison
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and J. R. Ringrose, 1983 : (2.5)). �
It follows from the above result that a quasi-symmetric Fréchet algebra

A has sufficiently many algebraically irreducible (unitary) representations.
This allows the use (2.2.9) (i.) of C. E. Rickart (1974) to define members of
Prim(A) which leads to the discussion of the hull-minimal Ideals.

In order to then state the major result of this section we put the notion
of (3.2) in the proper form in which it is needed.

3.9 Definition. An involutive Fréchet algebra A is said to be polynomi-
ally bounded if the set A0 of self-adjoint polynomially bounded elements of
A is dense in the real subspace An of hermitian elements of A.

We note here that an involutive Schwartz algebra is automatically a poly-
nomially bounded Fréchet algebra. In particular the family of algebras given
in (3.4) as Cp(G//K) is a family of polynomially bounded Fréchet algebras.
We now give a generalisation of (1.10) in J. Ludwig (1998 : p. 81), to a
semisimple quasi-symmetric polynomially bounded Fréchet algebra. This re-
sult is the first major result of this section of the work. It assures us that
there is a reasonable framework for the study of the hull-minimal Ideals in a
Fréchet algebra.

3.10 Theorem. Every semisimple quasi-symmetric polynomially bounded
Fréchet algebra is hull-kernel regular.

Proof. Let A be a semisimple quasi-symmetric polynomially bounded
Fréchet algebra, then by (3.8) for every J ∈ Prim(A) (which is of the form
J = kernel of an algebraically irreducible representation of A) there exists
a topologically irreducible unitary representation (πJ ,HJ) of A such that
ker(πJ) = J.

Now let C be any closed subset of Prim(A) and fix J ∈ Prim(A)\C we
need to show that there are aJ , bJ ∈ A in which

(i.) bJ ∈
∩
J ′∈C

J ′(=: ker(C)), aJ /∈ J, and

(ii.) bJ · aJ = aJ .

Since C is closed there exists u ∈ A such that u ∈ ker(C)
(
=

∩
J ′∈C J

′)
and u ̸∈ J. Equivalently, πJ ′(u∗u) = 0 for every J ′ ∈ C and πJ(u

∗u) ̸= 0,
respectively. By unitarity of πJ ′ it is possible, after multiplying v := u∗u with
a positive constant, to have ∥πJ(v)∥op = 1. Clearly v ∈ Ah as v∗ = v. Also
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by the continuity of the *-homomorphism σ (as in (3.4)) we have that there
exist a continuous seminorm p on A such that ∥σ(a)∥C ≤ p(a), for all a ∈ A.
Thus for any unitary representation π of A we have ∥π(a)∥op ≤ ∥σ(a)∥C ≤
p(a), a ∈ A.

As A0 is dense in An we can choose a0 ∈ A0 such that p(a0 − v) <
1/m, m = 2, 3, 4, . . . , and real C∞-functions φ, ψ such that ψ vanishes in a

neighbourhood Nψ of

[
− 2

m
,

2

m

]
, φ = 1 on

[
1− 1

m
, 1 +

1

m

]
and ψ ·φ = φ.

If we now set bJ = ψ{a0} and aJ = φ{a0}, we have, by the functional calculus
on semisimple A, that ψ{a0} ·φ{a0} = φ{a0} (cf. (3.7)). i.e., bJ ·aJ = aJ ,
as required in (ii.) above.

To now verify (i.) we note that

∥πJ ′(a0)∥op = ∥πJ ′(a0 − v)∥op (since πJ ′(v) = πJ ′(u∗u) = 0, for every J ′ ∈ C)

≤ p(a0 − v)

≤ 1

m
,

which shows clearly that πJ ′(a0) ∈ Nψ. Thus

ψ(πJ ′(a0)) = 0. i.e., πJ ′(ψ{a0}) = 0

implying that πJ ′(bJ) = 0. i.e., bJ ∈ ker(πJ ′) = J ′. In short, bJ ∈ J ′ for each

J ′ ∈ C. i.e., bJ ∈
∩
J ′∈C

J ′ = ker(C), as required. Also

|∥πJ(a0)∥op − 1| = |∥πJ(a0)∥op − ∥πJ(v)∥op|
≤ ∥πJ(a0)− πJ(v)∥op (by continuity of ∥ · ∥op)
= ∥πJ(a0 − v)∥op ≤ p(a0 − v) ≤ 1/m, m = 2, 3, 4, . . . ;

implying that 1 − 1

m
≤ ∥πJ(a0)∥op ≤ 1 +

1

m
. i.e., φ(πJ(a0)) ̸= 0. Thus

πJ(aJ) = πJ(φ{a0}) = φ(πJ(a0)) ̸= 0. i.e., aJ /∈ ker(πJ) = J. �

3.11 Corollary. Let A be a semisimple quasi-symmetric polynomially
bounded Fréchet algebra and let C be a closed subset of Prim(A). Then the
hull-minimal Ideal, j(C), exists and is generated by the elements aJ , J /∈ C.

Proof. The proof follows if we combine Lemma 3.11 with Theorem 4.2.20
contained in O. O. Oyadare (2016). �
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The last result is an improvement on (1.10) of J. Ludwig (1998) as af-
forded by the general notion of quasi-symmetricity introduced in (4.3.5)(3.)
above. We refer to O. O. Oyadare (2016) for the explicit structure of the
basis elements, aJ , of (type-I) hull-minimal ideals in some quasi-symmetric
polynomially bounded Fréchet algebras.
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References.

[1.] Arthur, J. G., Some tempered distributions on semisimple groups of real
rank one. Ann. of Math. 100 (1974): 553-584.

[2.] Barker, W. H., The spherical Bochner theorem on semisimple Lie groups.
J. Funct. Anal. 20 (1975): 179-207.

[3.] Barker, W. H., Positive definite distributions on unimodular Lie groups.
Duke Math. J. 43. 1 (1976): 71-79,

[4.] Barker, W. H., Tempered, invariant, positive-definite distributions on
SU(1, 1)/{±1}. Illinois J. Math. 28. 1 (1984): 83-102.

[5.] Bonsall, F. F. and Duncan, J., Complete normed algebras. Berlin:
Springer-Verlag, 1973.
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