
On Complex Vectors in ԧ with Real Valued Scalar Product 

 

Emilija Celakoska1 and Dushan Chakmakov2 

 

Abstract 

We consider a space S of complex vectors in ԧଷ with physically relevant constraints and the 
corresponding representation of the group SO(3,	ԧ) acting on S. The constraints are 
introduced to provide real-valued and hyperbolically calculated vector magnitudes. 
Additionally, in order to acquire the benefits that real numbers provide, we introduce a real-
valued scalar product in S using scalar product definition with relaxed conditions. This, in 
turn, leads to consider a specific SO(3,	ԧ) representation and restricted SO(3,	ԧ) action on S 
in order to keep the scalar product invariant.  

Mathematics Subject Classification: 51F25, 20C35, 22E10, 46C50 

Keywords: orthogonal group; polar decomposition; hyperbolic rotation.  

 

1 Introduction 

It is well known that the restricted Lorentz group SO(1,3)+ is isomorphic to the 
complex special orthogonal group SO(3,	ԧ). So, SO(3,	ԧ), which naturally acts on ԧଷ, offers 
an alternative way to represent elements of physical theories commonly expressed in terms of 
SO(1,3)+. Bringing elements of physical theories in ԧଷ opens some useful prospects. The 
vector product, which is not applicable in the four-dimensional real space, in three-
dimensional complex space becomes an important tool. The increased number of vector 
components can be used to include additional physical quantities. Furthermore, the presence 
of real and imaginary vector parts enables a corresponding separation of distinct physical 
concepts. 

We introduce a space S of complex vectors in ԧଷ with a real-valued scalar product 
and physically relevant constraints that include fixed vector magnitudes and orthogonality 
between real and imaginary vector parts. The orthogonality constraint is already used 
elsewhere (see [1] as a newer example), and the space S and the corresponding SO(3, ԧ) 
representation is analyzed by means of a complex-valued scalar product [2]. Here, we 
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examine the real-valued scalar product in S and the restricted SO(3,	ԧ) action that keeps the 
scalar product invariant. Firstly, we introduce representation G of the group SO(3,	ԧ) 
according to the constraints imposed on the complex vectors in S. The representation G is 
given in details through the polar decomposition of the SO(3,	ԧ) matrices on (real 
orthogonal)/(positive definite Hermitian). However, while G preserves the vector magnitudes, 
in general case it does not preserve the introduced real-valued scalar product. Thus, we 
consider restricted G action that leaves the scalar product invariant. This action corresponds 
to the action of the group SO(1,2), which is known to have applications in various branches 
of physics (see for example [3], Ch. 9).  

 

2 Representation of Vectors in the Space S  

Let ݑ ൌ Ԧݔ  ݅ Ԧܽ be a complex vector in	ԧଷ, where	ݔԦ, Ԧܽ ∈ Թଷ. Our intention is to define 
a space of complex vectors with fixed, real-valued magnitude. Additionally, the magnitude 
calculation should exhibit a hyperbolic property in order to satisfy some physical 
requirements. Indeed, the "usual" conjugate scalar product in ԧଷ	gives real-valued vector 
magnitudes, but they are not hyperbolically calculated, ݑ ∙ തݑ ൌ Ԧଶݔ  Ԧܽଶ. On the other hand, 
the non-conjugate scalar product in its real part gives hyperbolically calculated vector 
magnitudes, but they are complex-valued, ݑ ∙ ݑ ൌ Ԧଶݔ െ Ԧܽଶ  Ԧݔ2݅ Ԧܽ. To achieve our intention, 
it seems less demanding to adjust the non-conjugate scalar product by introducing a 
constraint on complex vectors in the form ݔԦ Ԧܽ ൌ 0 (orthogonality constraint). Taking in mind 
physical applications where the orthogonality between 3-vectors is commonly used, it seems 
it is a good trade-off between obtaining real, hyperbolically calculated vector magnitudes and 
the complications that the orthogonality constraint triggers.  

Throughout the paper we will use ∙ to denote the non-conjugate scalar product in ԧଷ. 

Definition 1. The space ܵ ⊂ ԧଷ defined by ܵ ൌ ሼݑ ൌ Ԧݔ  ݅ Ԧܽ	|		ݑ ∙ ݑ ൌ ߣ			,ଶߣ ∈ Թ, Ԧݔ Ԧܽ ൌ 0ሽ 
is the space of s-vectors in	ԧଷ. 

The scalar product ∙ applied on two vectors in ܵ is, indeed, complex-valued scalar 
product that gives real vector magnitudes. However, some physical applications strongly 
benefit from real-valued scalar product where the differences in vectors directions will be 
real-valued. A natural way to provide a real-valued scalar product in S is to rotate one of the 
s-vectors until the directions of their real parts coincide. 

Definition 2. For given two s-vectors ݑ ൌ Ԧݔ  ݅ Ԧܽ and ݒ ൌ Ԧݕ  ݅ ሬܾԦ in S, the real-valued scalar 
product ∙ ̂is defined by 

ݑ ∙̂ ݒ ൌ ݑ ∙  (1) ,ݒ௬ො→௫ොݐܴ

where ݔො ൌ ௫Ԧ

‖௫Ԧ‖
ොݕ ,  ൌ ௬ሬԦ

‖௬ሬԦ‖
 and ܴݐ௬ො→௫ො is a rotation that carries ݕො to ݔො.  



Since the choice of a rotation axis does not affect the further considerations, we can 
choose it to be orthogonal to both ݔԦ and ݕԦ and so, the rotation will be in ݔԦ 	∧  ,Ԧ plane. Nowݕ	
 ௬ො→௫ො can be easily represented by the Rodrigues' rotation formula, which adapted to thisݐܴ

case, takes the form 

௬ො→௫ොݐܴ ൌ ሺݕොݔොሻܫ  ⨂ෝݔ ොݕ െ ොݕ ⨂ ොݔ  ଵ

ଵା௬ො௫ො
ሺݕො ൈ ොݕොሻ⨂ሺݔ ൈ  ොሻ, (2)ݔ

where I is the identity matrix. 

Observe that the scalar product (1) is in agreement with the already introduced 
magnitude of s-vectors in Definition 1, since ݑ ∙̂ ݑ ൌ ݑ ∙  Actually, the scalar product ∙ ̂can .ݑ
be considered as a restriction of the scalar product ∙ in the sense that it can be seen as a 
specific application of ∙ on s-vectors with different real part directions. Indeed, on s-vectors ݑ 
and ݒ with parallel real parts (ݔԦ ∥  .Ԧ), the scalar products ∙ ̂and ∙ coincideݕ

The standard addition and multiplication by a scalar are not closed operations in S, 

and also, the zero vector 0ሬԦ  ݅0ሬԦ is not in S, so S is not a vector subspace of ԧଷ. This implies 
that the scalar product ∙ ̂ is defined with relaxed conditions and it remains to show the 
symmetry, i.e. commutativity of ∙.̂ 

Proposition 1. The scalar product ∙ ̂is commutative, i.e ݑ ∙̂ ݒ ൌ ݒ ∙̂  .ݑ

Proof. The proof can be obtained by direct calculations. However, since ܴݐ௬ො→௫ො is an 

orthogonal matrix with respect to the scalar product ∙ it follows that 

ݑ ∙̂ ݒ ൌ ݑ ∙ ݒ௬ො→௫ොݐܴ ൌ ௬ො→௫ොݐܴ
ିଵ ݑ ∙ ݒ ൌ ݒ ∙ ௬ො→௫ොݐܴ

ିଵ ݑ ൌ ݒ ∙ ݑ௫ො→௬ොݐܴ ൌ ݒ ∙̂  □  .ݑ

It is easy to show that an arbitrary vector Ԧ (not necessarily orthogonal to Ԧܽ or ሬܾԦ) can 
be also used to calculate the scalar product ݑ ∙̂  .ݒ

Consequence 1. The following equality holds, ݑ ∙̂ ݒ ൌ ݑ௫ො→ොݐܴ ∙  .ݒ௬ො→ොݐܴ

Proof. It follows from  

ݑ௫ො→ොݐܴ ∙ ݒ௬ො→ොݐܴ ൌ ݑ௫ො→ොݐܴ ∙ ൯ݒ௬ො→௫ොݐ௫ො→ො൫ܴݐܴ ൌ ݑ ∙  .ݒ௬ො→௫ොݐܴ

The last equality holds since the rotation of ݔො to ̂ preserves the angle between the vectors Ԧܽ 

and ܴݐ௬ො→௫ො ሬܾԦ.    □ 

Consequence 2. The scalar product ∙ ̂is always positive, i.e. ݑ ∙̂ ݒ  0. 

Proof. From the definition of s-vectors, it follows that ݔԦଶ  Ԧܽଶ and ݕԦଶ  ሬܾԦଶ. Since the 
rotations preserve the magnitudes of the real and the imaginary parts of s-vectors, we have 

ݑ ∙̂ ݒ ൌ ሺݔԦ  ݅ Ԧܽሻܴݐ௬ො→௫ො൫ݕԦ  ݅ ሬܾԦ൯ ൌ ‖Ԧݕ‖‖Ԧݔ‖ െ cos∢൫ Ԧܽ, ௬ො→௫ොݐܴ ሬܾԦ൯ ‖ Ԧܽ‖ฮሬܾԦฮ 

																																 ‖ Ԧܽ‖ฮሬܾԦฮൣ1 െ cos∢൫ Ԧܽ, ௬ො→௫ොݐܴ ሬܾԦ൯൧  0.     □ 



Although the space S does not possess a suitable vector addition to become a vector 
space, we can introduce the vector addition inherited from ԧଷ with the requirement the real 
part of the second vector to be parallel to the real part of the first one. Thus, analogously to 
the scalar product ∙ ̂we can define s-vector addition ෝ  by 

ݑ ෝ ݒ ൌ ݑ   (3) ,ݒ௬ො→௫ොݐܴ

which obviously is not a closed operation in S. The addition ෝ  is not commutative, since 

ݒ	ෝ	ݑ ൌ ݑ  ݒ௬ො→௫ොݐܴ ൌ ݑ௫ො→௬ොݐ௬ො→௫ො൫ܴݐܴ  ൯ݒ ൌ  ,ሻݑ	ෝ	ݒ௬ො→௫ොሺݐܴ

which is similar to the gyrocommutative law [4]. However, unlike the gyroassociative law, ෝ  
is an associative operation. Namely, for ݓ ൌ Ԧݖ  ݅ Ԧܿ we have 

ሻݓ	ෝ	ݒሺ	ෝ	ݑ ൌ ݒ൫	ෝ	ݑ  ൯ݓ௭̂→௬ොݐܴ ൌ ݑ  ݒ௬ො→௫ො൫ݐܴ   ൯ݓ௭̂→௬ොݐܴ

ൌ ൫ݑ  ൯ݒ௬ො→௫ොݐܴ  ݓ௭̂→௬ොݐ௬ො→௫ොܴݐܴ ൌ ሺݑ	ෝ	ݒሻ  ݓ௭̂→௫ොݐܴ ൌ ሺݑ	ෝ	ݒሻ	ෝ	ݓ. 

Corollary. The scalar product ∙ ̂is distributive with respect to ෝ . 

Proof. We have  

								ሺݑ	ෝ	ݒሻ 	 ∙̂  																					ݓ	

ൌ ൫ݑ  ൯ݒ௬ො→௫ොݐܴ ∙ ݓ௭̂→௫ොݐܴ ൌ ݑ ∙ ݓ௭̂→௫ොݐܴ  ݒ௬ො→௫ොݐܴ ∙ ݓ௭̂→௫ොݐܴ ൌ ݑ ∙̂ ݓ	  ݒ ∙̂   □  .ݓ	

The real dimension of the space S is four, since one dimension is lost by the 
ortogonality constraint ݔԦ Ԧܽ ൌ 0 and another dimension is lost by the constraint of fixed vector 
magnitude ݑଶ ൌ  .ଶߣ

 

3 Action of SO(3,	ԧሻ on S 

Let us consider the spaces ሺܵ, ∙	ሻ and ሺܵ, ∙	̂ሻ. Recall that S is not a vector space and 
the scalar products ∙ and ∙ ̂ are with relaxed conditions. Both of them are commutative with 
strictly positive magnitudes, while the linearity condition can be inherited from ԧଷ. Actually, 
∙	 is linear with respect to the ordinary +, while ∙ ̂ is linear with respect to ෝ  in ԧଷ. Since the 
calculations of vector magnitudes give the same results in both spaces, we can consider the 
complex orthogonal group SO(3,	ԧ) acting on each of them and preserving vector 
magnitudes. So, for any ݃ ∈ SO(3,	ԧ), 

ݑ݃ ∙ ݑ݃ ൌ ݑ ∙ ݑ ൌ ݑ ∙̂ ݑ ൌ ݑ݃ ∙̂  ,ݑ݃

for all ݑ ∈ ܵ. In fact, we are interested in representation G of SO(3,	ԧ) acting on S. 

According to the polar decomposition of complex orthogonal matrices, a matrix ܯ ∈ 

SO(3,	ԧ) can be represented as ܯ ൌ ܴ݁, where R is a real orthogonal matrix (a rotation 



matrix) and A is a real antisymmetric matrix. The latter implies that ݁ is a positive definite 
Hermitian coninvolutory matrix [5] (p.487). So, every G-matrix is a product of an SO(3) 
matrix representing a rotation and a positive definite Hermitian matrix, which by analogy of 
SO(1,3)+, can be called hyperbolic rotation (h-rotation). The h-rotations deserve special 
attention, since unlike the rotations, they change magnitudes of the real and the imaginary 
parts of s-vectors. 

Definition 3. The matrix ܪ௨, parameterized by the s-vector ݑ ൌ Ԧݔ  ݅ Ԧܽ and given by 

௨ܪ ൌ ܫ  ିଵ

ఒమమ
Ԧݔ	⨂	Ԧݔ  ଵ

ఒమሺଵାሻ
Ԧܽ	⨂ Ԧܽ  ݅ ଵ

ఒమ
ሺ Ԧܽ ⨂ Ԧݔ െ Ԧݔ ⨂ Ԧܽሻ, where ݇ ൌ ට1  ሬԦమ

ఒమ
 (4) 

is an h-rotation acting on S. 

Now, we will show that the matrix ܪ௨ is in agreement with the polar decomposition 
of complex orthogonal matrices. 

Proposition 2. The matrix ܪ௨ given by (4) is an orthogonal coninvolutory and positive 
definite Hermitian matrix. 

Proof. The straightforward calculation gives 

࣬݁ሺܪ௨ሻࣣ݉ሺܪ௨ሻ ൌ ࣣ݉ሺܪ௨ሻ࣬݁ሺܪ௨ሻ 

and then, 

ഥ௨ܪ௨ܪ ൌ ௨ഥܪ௨ܪ ൌ ቂܫ 
ିଵ

ఒమమ
Ԧݔ	⨂	Ԧݔ  ଵ

ఒమሺଵାሻ
Ԧܽ	⨂	 Ԧܽቃ

ଶ
 ቂ

ଵ

ఒమ
ሺ Ԧܽ	⨂	ݔԦ െ 	⨂	Ԧݔ Ԧܽሻቃ

ଶ
ൌ ܫ ൌ  .	௨ܪഥ௨ܪ

Thus, ܪഥ௨ ൌ ௨ܪ
ିଵ and since ܪഥ௨ ൌ ௨ܪ

, it follows that ܪ௨ is orthogonal. Obviously, it follows 

then that ܪഥ௨

ൌ ഥ௨ܪ௨ܪ ௨ and withܪ ൌ  ௨ is a Hermitian coninvolutoryܪ it means that ܫ

matrix.  

From 

ݒ௨ܪ ൌ ቂݕԦ  ቀିଵ
ఒమమ

ԦݕԦݔ  ଵ
ఒమ

Ԧܽ ሬܾԦቁ Ԧݔ  ቀ ଵ
ఒమሺଵାሻ

Ԧݕ Ԧܽ െ ଵ
ఒమ

ሬܾԦݔԦቁ Ԧܽቃ 

 

݅ ቂݒԦ  ቀ
ିଵ

ఒమమ
ሬܾԦݔԦ െ

ଵ

ఒమ
Ԧݕ Ԧܽቁ Ԧݔ  ቀ

ଵ

ఒమሺଵାሻ
Ԧܽ ሬܾԦ െ

ଵ

ఒమ
ԦቁݕԦݔ Ԧܽቃ, (5) 

by using simple algebraic operations, one obtains ̅ݒ ∙ ሺܪ௨ݒሻ  0. Observe that in case of ∙ ̂ , 
we also have ̅ݒ ∙̂ ሺܪ௨ݒሻ  0, as it follows from the Consequence 2 of Proposition 1.  □ 

Notice that the matrix ܪ௨ applied to the corresponding "zero" vector ݔߣො in S gives	ݑ, 
i.e. ܪ௨ݔߣො ൌ  One can easily check that, in general, two h-rotations do not commute, even .ݑ
when they are generated from s-vectors with a common real part. It means that, generally, a 



product of two h-rotations is not a Hermitian matrix and so the resulting transformation is not 
an h-rotation. 

Although both scalar products give the same vector magnitudes in S, it is important to 
underline that ∙ is complex-valued, while ∙ ̂is real-valued. Definition 3 and Proposition 2 show 
that h-rotation ܪ௨ is defined with respect to the scalar product ∙. Thus, as one can expect, the 
scalar product ∙ ̂is not in accordance with h-rotations, i.e. in general, ܪ௪ݑ ∙̂ ݒ௪ܪ ് ݑ ∙̂  One .ݒ
can directly verify that 

ݑ௪ܪ ∙̂ ݒ௪ܪ ൌ ݑ௪ܪ ∙ ݒ௪ܪො→ොݐܴ ് ݑ ∙ ݒ௬ො→௫ොݐܴ ൌ ݑ ∙̂  ,ݒ

where Ԧ ൌ ࣬еሺܪ௪ݑሻ, ݍԦ ൌ ࣬еሺܪ௪ݒሻ and for ܪ௪ݑ and ܪ௪ݒ see (5). Thus, the convenience to 
have a real-valued scalar product ∙ ̂ is paid by breaking the scalar product invariance. 
However, ܪ௪ݑ ∙̂ ݒ௪ܪ ൌ ݑ ∙̂ Ԧݔ when ݒ ∥  Ԧ, since then, the involved rotation in (1) vanishesݕ
and the scalar product ∙ ̂coincides with ∙ . This situation is a motivation for the next section. 

 

4 Restricted Action of SO(3,	ԧሻ on S 

As one can see from (5), applying an h-rotation ܪ௨ on a given s-vector ݒ results in an 
s-vector whose real part is a linear combination of ݔԦ,  Ԧ and Ԧܽ, which is indeed, different fromݕ
the real parts of both, ݑ and ݒ. We introduce a restricted h-rotation action which does not 
change the real parts of s-vectors, in order to obtain invariance of the scalar product ∙	̂. The 
change of the real parts of s-vectors is left to the rotations. 

Definition 4. A restricted action ܪ௨ of the h-rotation ܪ௨ on vectors in S is given by 

௨ܪ ൌ ො→௫ො⋆ݐܴ
ିଵ ො→௫ො⋆ݐ௨ܴܪ , (6) 

where ⋆ሬԦ is the real part of the s-vector on which the h-rotation ܪ௨ is applied. 

The matrix ܪ௨ obviously remains orthogonal and positive definite on S (see 
Consequence 2, of Proposition 1). It is also Hermitian, since ܪ௨ is Hermitian and ܴݐ⋆ො→௫ො	 and 

its inverse are unitary matrices. Thus, ܪ௨ is also an h-rotation which obviously keeps the real 

parts of s-vectors in place. Actually, ܪ௨ should be considered as a "locally implemented" h-

rotation in G with respect to the scalar product ∙	̂. Notice that ܪ௨ and ܪ௨ coincide when they 
are applied to an s-vector with real part ⋆ሬԦ parallel to ݔԦ (the labels are as in (6)), as was the 
case for the scalar products ∙ and ∙ ̂. 

Let us write (6) in the form  ܪ௨ܴݐ௫ො→⋆ො ൌ  ௨. This equality represents left andܪ௫ො→⋆ොݐܴ
right polar decomposition of an orthogonal matrix in G. The unitary matrices in the left and 
the right polar decomposition, represented by rotation ܴݐ௫ො→⋆ො are indeed equal. The h-
rotation matrices are connected by the equality  

௨ܪ ൌ  ோ௧ෝೣ→⋆ො௨ܪ



since this restricted h-rotation ܪ௨	relates to the corresponding action in the group SO(1,2) ⊂ 

SO(3,	ԧ). To explain how ܴݐ⋆ො→௫ො
ିଵ  ோ௧ෝೣ→⋆ො௨ work, let us apply them on a givenܤ  and	ො→௫ො⋆ݐ௨ܴܪ

s-vector, say ݒ ൌ Ԧݕ  ݅ ሬܾԦ. In the case of ܪ௨ݒ ൌ ௬ො→௫ොݐܴ
ିଵ  is (Ԧݕ .i.e) ݒ , the real part of	௬ො→௫ොݐ௨ܴܪ

rotated toward the real part of the s-vector which parameterizes the h-rotation (i.e. ݔԦ) and 
after the h-rotating, the direction of the real part of the resulting s-vector is returned to the 

direction of ݕԦ. In the case ܪ௨ݒ ൌ  the real part of the s-vector which parameterizes ,ݒோ௧ෝೣ→ෝ௨ܪ

the h-rotation (i.e. ݔԦ) is rotated toward direction of ݕԦ. A resembling equality appears in action 
of SO(1,3)+ on upper-half hyperboloid in Թସ (see [6] (p.140)). 

Proposition 4. The restricted h-rotation preserves the scalar product ∙ ̂in S, i.e. 

ݑ௪ܪ ∙̂ ݒ௪ܪ ൌ ݑ ∙̂  ݒ

for any s-vectors ݑ ൌ Ԧݔ  ݅ Ԧܽ, ݒ ൌ Ԧݕ  ݅ ሬܾԦ and ݓ ൌ Ԧݖ  ݅ Ԧܿ. 

Proof. Using (6) one can directly obtain 

ݑ௪ܪ ∙̂ ݒ௪ܪ ൌ  ݒ௬ො→௫ො൯ݐ௫ො→௬ොܴݐோ௧ො→ෝ௪൫ܴܪ௬ො→௫ොݐܴ	ݑோ௧ො→ෝೣ௪ܪ

ൌ 	ݑோ௧ො→ෝೣ௪ܪ ቀܴݐ௬ො→௫ොܪோ௧ො→ෝ௪ܴݐ௫ො→௬ොቁ  ݒ௬ො→௫ොݐܴ

ൌ ோ௧ෝ→ෝೣ൫ோ௧ො→ෝ௪൯ܪ	ݑோ௧ො→ෝೣ௪ܪ
 	ݒ௬ො→௫ොݐܴ

ൌ  ݒ௬ො→௫ොݐܴ	ோ௧ො→ෝೣ௪ܪ	ݑோ௧ො→ෝೣ௪ܪ

ൌ ݒ௬ො→௫ොݐܴݑ ൌ ݑ ∙̂  .ݒ

The second from last equality holds since it is an equality of preserving the scalar product ∙ 
by an h-rotation in G.  □ 

The restriction of h-rotations actually makes the action of the group G on S to be 
partial, since the function Gൈ ܵ → ܵ becomes a partial function. The concept of restriction of 
h-rotations corresponds to the concept of partial action of groups [7], or even more, to the 
slightly broader concept of local transformation groups [8] (p.20) usually related to local 
actions of Lie groups in geometry. 

 

5 Disscusion 

Vectors in the space S have two constraints, fixed magnitude and orthogonal real and 
imaginary parts. Both of the constraints have important mathematical and physical 
implications. 

From geometrical point of view, it is important the group G acting on S to be 
orthogonal in order to preserve vector lengths and angles. Additionally, it is desirable the 



action of G to be transitive, that is, for any two elements ݑ, ݒ ∈ S, there should be an element 
݃ ∈ G such that ݃ݑ ൌ  Then, the fixed vector magnitudes are required to obtain transitive .ݒ
action of G, i.e. to make the space S homogeneous. Actually, in the case of (S, ∙	) one can 
directly show that the representation G of SO(3,	ԧ) acts transitively. Taking in mind that for 
,ݑ ݒ ∈ S, we have ሺݑ  ሻݒ ∙ ݑ ൌ ଶߣ  ݑ ∙ ݑand ሺ ݒ  ሻଶݒ ൌ 2ሺߣଶ  ݑ ∙  ሻ, one can write theݒ
transformation ܪ௨→௩ that carry ݑ to ݒ in the following way 

௨→௩ܪ ൌ ܫ െ ଶ

ሺ௨ା௩ሻమ
ሺݑ  ݑሻ⨂ሺݒ  ሻݒ  ଶ

௩మ
ݑሺ   	,ݑ⨂ݒ  ሻଶݒ ് 0. 

In the case of (S, ∙	̂), we have ሺݑෝݒሻଶ ൌ 2ሺߣଶ  ݑ ∙̂ ሻݒ ൌ 2ሺݑෝݒሻ ⋅  and the corresponding ݑ
transformation is  

௨ܶ→௩ ൌ  ௨→ோ௧ෝ→ෝೣ௩ , whereܪ௫ො→௬ොݐܴ

௨→ோ௧ෝ→ෝೣ௩ܪ ൌ ܫ െ
2

ሺݑෝݒሻଶ
ሺݑෝݒሻ⨂ሺݑෝݒሻ 

ݑ⨂ݒ௬ො→௫ොݐ2ܴ
ଶݒ

	. 

The orthogonality of ܪ௨→௩,ܪ௨→ோ௧ෝ→ෝೣ௩ and the equalities ܪ௨→௩ݑ ൌ ,ݒ ௨ܶ→௩ݑ ൌ  can be ݒ

straightforwardly checked. Observe that ܪ௨→ோ௧ෝ→ෝೣ௩ is not given in form (6), as the vector 

parameterizing ܪ௨→ோ௧ෝ→ෝೣ௩ is rather complicated. However, ܪ௨→ோ௧ෝ→ෝೣ௩ is a restricted h-

rotation action adapted to the vector ݑ, since it keeps the real part of ݑ in place. 

From physical point of view, the fixed vector magnitudes indicate that the real and 
imaginary parts of vectors describe dependent physical quantities with magnitudes that 
hyperbolically complement each other.  

The orthogonality condition ݔԦ Ԧܽ ൌ 0 on ݑ ൌ Ԧݔ  ݅ Ԧܽ seems more interesting constraint. 
Mathematically, it is necessary condition to achieve both, real vector magnitudes and their 
hyperbolic calculations. From physical point of view, as we already mentioned in the 
introduction, separation of complex vectors on real and imaginary parts enables a 
corresponding separation of distinct physical concepts. However, the complex vector as a 
whole should be related to some physical system, and the relationship between real and 
imaginary part is necessary to reflect an important characteristic of the system. Beside fixed 
vector magnitudes, the orthogonality constraint provides an additional relation between the 
real and imaginary vector parts, i.e. between 3-vectors, which is useful concept in physical 
applications.  

 

6 Conclusions 

We considered a space S of complex vectors in ԧଷ	with	constraints	, called s-vectors. 
Taking in mind the physical applications, we introduced the real-valued scalar product ∙ ̂
which is always calculated from the point of view of a fixed direction of the s-vector real 
parts. So, the latter can be naturally associated to a physical coordinate system, where the 



fixed 3-vector can be related to an observer. Then, we introduced a representation G of the 
group SO(3,	ԧ) acting on S through the polar decomposition of the SO(3,	ԧ) matrices on (real 
orthogonal) / (positive definite Hermitian), i.e. rotation / h-rotation matrices. We found that 
the scalar product ∙ ̂ is not in agreement with the action of G since the h-rotations break the 
scalar product invariance. So, we introduced a restricted action of G that locally preserves the 
scalar product ∙	̂ and corresponds to the action of the group SO(1,2), which is known to have 
applications in various branches of physics, including classical, relativistic and particle 
mechanics. 
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