On Chromaticity of Ladder-Type Graphs

Abdul Rauf Nizami, Mobeen Munir and Amjad Shahbaz

Abstract. We give general formulas of the chromatic polynomial of some interesting families of ladder-type graphs, and conclude that, except two, neither two of them are chromatically equivalent. Moreover, some of them are not chromatically unique.

Mathematics Subject Classification (2010). Primary 05C31; Secondary 57M27.

Keywords. Chromatic polynomial, Chromatic equivalence, Chromatic uniqueness, λ -coloring, Ladder-type graph.

1. Introduction

The chromatic polynomial was introduced by G. D. Birkhoff in 1912 as a function that counts the number of graph colorings for planar graphs to solve the four color problem [1]. In 1932 H. Whitney generalized it from the planar graphs to arbitrary graphs [7]. The chromatic polynomial, because of its theoretical and applied importance, has generated a large body of work. Chia [4] provides an extensive bibliography on the chromatic polynomial, and Dong, Koh, and Teo [6] give a comprehensive treatment.

The following two operations are essential to understand the chromatic polynomial definition for a graph G. These are: *edge deletion* denoted by G' = G - e, and *edge contraction* G'' = G/e.

The deletion/contraction operations

Definition 1.1. The *chromatic polynomial* is a function P from the set of all graphs to the set $\mathbb{Z}[\lambda]$, a ring of polynomials, such that

$$P(G) = \begin{cases} 0 & \text{if there is a loop in } G \\ \lambda^n & \text{if } G \text{ consists of only } n \text{ isolated vertices} \\ P(G-e) - P(G/e) & \text{otherwise} \end{cases}$$

Two graphs are chromatically equivalent if they have the same chromatic polynomial; a graph G is chromatically unique if P(G) = P(G') implies $G \cong G'$.

For a positive integer λ , a λ -coloring of a graph G is a mapping of V(G)into the set $\{1, 2, 3, \ldots, \lambda\}$ of λ colors. Thus, there are exactly λ^n colorings for a graph on n vertices. If φ is a λ -coloring such that $\varphi(u) \neq \varphi(v)$ for all $uv \in E$, then φ is called a *proper* (or *admissible*) coloring. The *chromatic number* of a graph G, denoted by $\gamma(G)$, is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Remark 1.2. Every evaluation of chromatic polynomial at some number λ actually gives the λ -coloring of the graph.

Since we are interested mainly in ladder-type graphs, we define them here. First, the two closely related definitions:

Definition 1.3. A ladder graph L_n is the Cartesian product of path graphs p_n and p_2 :

$$L_n = p_n \times p_2$$

We define a *ladder-type graph* a ladder graph with addition of some edges and vertices, in some pattern, keeping the main structure of L_n intact.

The ladder-type graphs we are concerned with are:

The subscripts $n, n_1, n_2, n_3, n_4, n_5, n_6, n_7$, and n_8 in these graphs respectively represent number of 'unit' boxes of types

The following is the chromatic polynomial of the ladder graph L_n , which already exists in the literature.

Proposition 1.4. The chromatic polynomial of the graph L_n is $P(L_n) = \lambda(\lambda - 1)(\lambda^2 - 3\lambda + 3)^n.$

First we give the chromatic polynomials of four 'basic' ladder-type graphs:

Theorem 1.5. The chromatic polynomials of $L_{n_1}, L_{n_2}, L_{n_3}$, and L_{n_4} are

a. $P(L_{n_1}) = \lambda(\lambda - 1)(\lambda - 2)^{2n_1}$, **b.** $P(L_{n_2}) = \lambda(\lambda - 1)(\lambda - 2)^{4n_2}$, c. $P(L_{n_3}) = \lambda(\lambda - 1)(\lambda^3 - 5\lambda^2 + 10\lambda - 7)^{n_3}$, and **d.** $P(L_{n_4}) = \lambda(\lambda - 1)(\lambda - 2)^{n_4}(\lambda - 3)^{n_4}$.

Then we have the proposition:

Proposition 1.6. The chromatic polynomials of $L_{n_5}, L_{n_6}, L_{n_7}$, and L_{n_8} are

- **a.** $P(L_{n_5}) = \lambda(\lambda 1)(\lambda 2)^{2n_5}(\lambda^2 3\lambda + 3)^{n_5},$
- **b.** $P(L_{n_6}) = \lambda(\lambda 1)(\lambda 2)^{2n_6}(\lambda^2 3\lambda + 3)^{n_6}$, **c.** $P(L_{n_7}) = \lambda(\lambda 1)(\lambda^2 3\lambda + 3)^{n_7}(\lambda^3 5\lambda^2 + 10\lambda 7)^{n_7}$, and **d.** $P(L_{n_8}) = \lambda(\lambda 1)(\lambda 2)^{n_8}(\lambda 3)^{n_8}(\lambda^2 3\lambda + 3)^{n_8}$.

Besides the above graphs, the following are special types of ladder-types graphs. These are actually obtained by appending the ladder graph L_n to the graphs $L_{n_1}, L_{n_2}, L_{n_3}$, and L_{n_4} .

We shall give the chromatic polynomials of these graphs as a corollary of the general result:

Theorem 1.7. If a graph G is obtained by appending L_n to a graph G_1 such that they share nothing except just one edge, then

$$P(G) = (\lambda^2 - 3\lambda + 3)^n P(G_1).$$

Corollary 1.8. a. $P(L_{n_1,n}) = \lambda(\lambda - 1)(\lambda - 2)^{2n_1} [\lambda^2 - 3\lambda + 3]^n$. b. $P(L_{n_2,n}) = \lambda(\lambda - 1)(\lambda - 2)^{4n_2} [\lambda^2 - 3\lambda + 3]^n$. c. $P(L_{n_3,n}) = \lambda(\lambda - 1)(\lambda^3 - 5\lambda^2 + 10\lambda - 7)^{n_3} [\lambda^2 - 3\lambda + 3]^n$. **d.** $P(L_{n_4,n}) = \lambda(\lambda - 1)(\lambda - 2)^{n_4}(\lambda - 3)^{n_4} [\lambda^2 - 3\lambda + 3]^n$.

If L_n is sandwiched between a ladder-type graph L_{n_i} , $1 \le i \le 4$, then then we shall denote the resultant ladder-type graph by L_{n_i,n,n_i} . The chromatic polynomials of the following graphs are given in a lemma:

Lemma 1.9. a. $P(L_{n_1,n,n_1}) = (\lambda - 2)^{2n_1} P(L_{n_1,n}).$ b. $P(L_{n_2,n,n_2}) = (\lambda - 2)^{4n_2} P(L_{n_2,n}).$ c. $P(L_{n_3,n,n_3}) = (\lambda^2 - 5\lambda + 10\lambda - 7)^{n_3} P(L_{n_3,n}).$ d. $P(L_{n_4,n,n_4}) = (\lambda - 2)^{n_4} (\lambda - 3)^{n_4} P(L_{n_4,n}).$

The more general ladder-type graphs appear when L_n is sandwiched k times in L_{n_i} , $1 \le i \le 4$. We denote these graphs by $L_{n_1,n,n_1,\dots,n_1,n,n_1}$, $L_{n_2,n,n_2,\dots,n_2,n,n_2}$, $L_{n_3,n,n_3,\dots,n_3,n,n_3}$, and $L_{n_4,n,n_4,\dots,n_4,n,n_4}$, and present their chromatic polynomials in the theorem:

Theorem 1.10. a. $P(L_{n_1,n,n_1,\cdots,n_1,n,n_1}) = \lambda(\lambda-1)(\lambda-2)^{2(k+1)n_1}(\lambda^2-3\lambda+3)^{kn}$.

- **b.** $P(L_{n_2,n,n_2,\cdots,n_2,n,n_2}) = \lambda(\lambda-1)(\lambda-2)^{4(k+1)n_2}(\lambda^2-3\lambda+3)^{kn}$.
- c. $P(L_{n_3,n,n_3,\cdots,n_3,n,n_3}) = \lambda(\lambda-1)(\lambda^2 5\lambda + 10\lambda 7)^{(k+1)n_3}(\lambda^2 3\lambda + 3)^{kn_3}$
- **d.** $P(L_{n_4,n,n_4,\cdots,n_4,n,n_4}) = \lambda(\lambda-1)(\lambda-2)^{(k+1)n_4}(\lambda-3)^{(k+1)n_4}(\lambda^2-3\lambda+3)^{kn}$.

The chromatic equivalence and chromatic uniqueness of these graphs are reflected in the theorem:

Theorem 1.11. a. Neither two of L_n, L_{n_1}, L_{n_3} , and L_{n_4} are chromatically equivalent.

- **b.** L_{n_1} and L_{n_2} are chromatically equivalent if $n_1 = 2n_2$, but are not chromatically unique.
- **c.** $L_{n_1,n}, L_{n_3,n}$, and $L_{n_4,n}$ are not chromatically unique.

2. Proofs

This section contains the proofs of the results we got.

Proof of Theorem 1.5(c). We proceed by induction on n_3 . For $n_3 = 1$, we get $P(\square) = P(\square) - P(\square) = P(\square) - P(\square) + P(\square) = P(\square) = P(\square) + P(\square) = P(\square$

$$\begin{split} (\lambda - 2)P(\overrightarrow{V}) + P(\overrightarrow{O}) - P(\overrightarrow{V}) &= (\lambda - 2)(P(\overrightarrow{V}) - P(\overrightarrow{V})) + \\ P(\overrightarrow{O}) - P(\overrightarrow{O}) &= (\lambda - 2)(P(\overrightarrow{V}) - P(\overrightarrow{V}) - P(\overrightarrow{V})) + P(\overrightarrow{D})) + (\lambda - 1)(P(\overrightarrow{O})) \\ + (\lambda - 2)P(\overrightarrow{V}) + P(\overrightarrow{V}) - P(\overrightarrow{V}) + P(\overrightarrow{V})) + (\lambda - 1)(P(\overrightarrow{O})) - \\ P(\overrightarrow{O})) &= (\lambda - 2)((\lambda - 2)P(\overrightarrow{V}) + P(\overrightarrow{V}) - P(\overrightarrow{O})) + (\lambda - 1)(P(\overrightarrow{O}) - P(\overrightarrow{O})) \\ + (\lambda - 2)((\lambda - 2)(\lambda - 1)P(\overrightarrow{V}) + P(\overrightarrow{O})) + (\lambda - 1)(\lambda^2 - \lambda)) = (\lambda - 2)((\lambda - 2)(\lambda - 1)P(\overrightarrow{V}) + P(\overrightarrow{V}))) + (\lambda - 1)P(\overrightarrow{O}) = (\lambda - 2)((\lambda - 2)(\lambda - 1)P(\overrightarrow{V}) + P(\overrightarrow{V}))) \\ + (\lambda - 1)P(\overrightarrow{O}) = (\lambda - 2)((\lambda - 2)(\lambda - 1)P(\overrightarrow{V}) + P(\overrightarrow{V}))) + (\lambda - 1)P(\overrightarrow{O}) = (\lambda - 2)((\lambda - 2)P(\overrightarrow{V}) + P(\overrightarrow{V})) + (\lambda - 1)(P(\overrightarrow{O}) - P(\overrightarrow{V}))) \\ = (\lambda - 2)((\lambda - 2)(\lambda - 1)(2(\lambda - 1)(P(\overrightarrow{O}) - P(\overrightarrow{V})))) \\ + (\lambda - 1)(P(\overrightarrow{V}) - P(\overrightarrow{V})) + (\lambda - 1)(P(\overrightarrow{O}) - P(\overrightarrow{V}))) \\ = (\lambda - 2)((\lambda - 2)(\lambda - 1)(\lambda^2 - \lambda)) \\ + (\lambda - 1)(\lambda^2 - \lambda)) \\ + (\lambda - 1)(\lambda^2 - \lambda) = (\lambda - 2)((\lambda - 2)(\lambda - 1)(\lambda^2 - \lambda)) + \lambda(\lambda - 1)^2 \\ = \lambda(\lambda - 1)(\lambda^3 - 5\lambda^2 + 10\lambda - 7). \end{split}$$

Now with the assumption that the result holds for an arbitrary n_3 , we have

$$\begin{split} P(L_{n_{3}+1}) &= P(A - A - A) = P(A - A) =$$

$$\begin{pmatrix} (\lambda-2)(\lambda^2-3\lambda+3)+(\lambda-1) \end{pmatrix} P(\overbrace{-} \overbrace{-} \overbrace{-}) = (\lambda^3-3\lambda^2+3\lambda-2\lambda^2+6\lambda-6+\lambda-1)P(L_{n_3}) = (\lambda^3-5\lambda^2+10\lambda-7)\left(\lambda(\lambda-1)(\lambda^3-5\lambda^2+10\lambda-7)^{n_3}\right) = \lambda(\lambda-1)(\lambda^3-5\lambda^2+10\lambda-7)^{n_3+1},$$
as was required.

Proofs of the parts (a), (b), and (d) are similar.

Proof of Proposition 1.6. Here we give only the proof of part (d); other parts cab be proved similarly.

We again prove it by induction on
$$n_8$$
. For $n_8 = 1$ we have
 $P(\checkmark) = P(\checkmark) - P(\checkmark) = P(\checkmark) - P(\checkmark) - P(\land) - P(\land) - P(\land) + P(\land) = (\lambda - 2)P(\land) + P(\land) - P(\land) - P(\land) = (\lambda - 2)P(\land) - P(\land) + P(\land) = (\lambda - 2)P(\land) - P(\land) + P(\land) = (\lambda - 2)P(\land) =$

Now with the assumption that the result holds for an arbitrary n_8 , we have

$$-P(\square \square \square \square) - P(\square \square \square) + P(\square \square \square))$$

$$= (\lambda^{2} - 3\lambda + 3) \left(P(\square \square \square) - P(\square \square \square) \right)$$

$$-P(\square \square \square) + P(\square \square \square)$$

$$-P(\square \square \square) + P(\square \square \square)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3) P(\square \square \square)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3) \left(P(\square \square \square) - P(\square \square) \right)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3) \left(P(\square \square \square) - P(\square \square) \right)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3) \left(P(\square \square \square) - P(\square \square) \right)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3) \left(P(\square \square \square) - P(\square \square) \right)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3) \left(P(\square \square \square) \right)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3) \left(P(\square \square \square) \right)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3)(\lambda - 2) P(\square \square \square) \right)$$

$$= (\lambda^{2} - 3\lambda + 3)(\lambda - 3)(\lambda - 2) P(\square \square \square) = (\lambda^{2} - 3\lambda + 3)(\lambda - 3)(\lambda - 2) \left(\lambda(\lambda - 1)(\lambda - 2)^{n_{s}}(\lambda - 3)^{n_{s}}(\lambda^{2} - 3\lambda + 3)^{n_{s}} \right) = \lambda(\lambda - 1)(\lambda - 2)^{n_{s}+1}(\lambda - 3)^{n_{s}+1}.$$

Proof of Theorem 1.7. We proceed by induction on n: For n = 1, we get

$$P(\begin{array}{c} G_{1} \\ G_{1} \\ \end{array}) = P(\begin{array}{c} G_{1} \\ \bullet \end{array}) - P(\begin{array}{c} G_{1} \\ \bullet \end{array}) = P(\begin{array}{c} G_{1} \\ \bullet \end{array}) = P(\begin{array}{c} G_{1} \\ \bullet \end{array}) - P(\begin{array}{c} G_{1} \\ \bullet \end{array}) - P(\begin{array}{c} G_{1} \\ \bullet \end{array}) = P(\begin{array}{c} G_{1} \\ \bullet \end{array}) - P(\begin{array}{c} G_{1} \\ \bullet \end{array}) = P(\begin{array}{c} G_{1} \\ \bullet \end{array}) - P(\begin{array}{c} G_{1} \\ \bullet \end{array}) = P(\begin{array}{c} G_{1} \\$$

Suppose the result holds for n = k, that is

$$P(\overset{\mathbf{G}_1}{\frown}) = (\lambda^2 - 3\lambda + 1)^k P(G_1).$$

Now for n = k + 1, we have

as was required.

Proof of Lemma 1.9. We give only proof of part (b), which is the most difficult; other parts have similar proofs.

Instead of the long ladder

we shall use a short form as

$$= (\lambda - 2)^{3} P(\underbrace{n_{2} \quad n}) = (\lambda - 2)^{3} \left[P(\underbrace{n_{2} \quad n}) - P(\underbrace{n_{2} \quad n}) \right]$$
$$= (\lambda - 2)^{3} \left[P(\underbrace{n_{2} \quad n}) - P(\underbrace{n_{2} \quad n}) - P(\underbrace{n_{2} \quad n}) + P(\underbrace{n_{2} \quad n}) \right]$$
$$= (\lambda - 2)^{4} P(\underbrace{n_{2} \quad n}).$$

Now suppose the result holds when the appended ladder (L_{n_2}) has k units, that is

$$P(L_{n_2,n,k}) = P(\underbrace{\begin{array}{c} \mathbf{n}_2 & \mathbf{n} \\ \mathbf{n}_2 & \mathbf{n} \end{array}}) = (\lambda - 2)^{4k} P(\underbrace{\begin{array}{c} \mathbf{n}_2 & \mathbf{n} \\ \mathbf{n}_2 & \mathbf{n} \end{array}).$$

If the appended ladder has k + 1 units, then we receive

which is the desired result.

Proof of Theorem 1.10. In each case, apply recursively Lemma 1.9 and Theorem 1.5 k times and then use $P(L_{n_i})$.

Proof of Theorem 1.11. 1. Obvious; just see Theorem 1.5.

- 2. Simply observe that if $n_1 = 2n_2$, then $P(L_{n_1}) = P(L_{n_2})$. These are not chromatically unique because $L_{n_1} \ncong L_{n_2}$; just observe that there are vertices of degree 5 in L_{n_2} but are not in L_{n_1} .
- 3. It is obvious; simply observe that $P(L_{n_1,n}) = P(L_{n_5}), P(L_{n_2,n}) =$ $P(L_{n_6}), P(L_{n_3,n}) = P(L_{n_7}), \text{ and } P(L_{n_4,n}) = P(L_{n_8}) \text{ while } L_{n_1,n} \ncong$ $L_{n_5}, L_{n_2,n} \ncong L_{n_6}, L_{n_3,n} \ncong L_{n_7}, \text{ and } L_{n_4,n} \ncong L_{n_8}.$

References

- [1] G. D. Birkhoff, A determinant formula for the number of ways of coloring a map. Annals of Mathematics, 14(1912), 42-46.
- [2] B. Bollobás, Modern Graph Theory. Gratudate Texts in Mathematics, Springer, New York, 1998.
- [3] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs. CRC Press, Chapman and Hall Book, Boca Raton, 2011.
- [4] G. L. Chia, A Bibliography on Chromatic Polynomials. Discrete Math. **172** (1997), 175-191.

- [5] R. Diestel, Graph Theory. Springer (1997).
- [6] F. M. Dong, K. M. Koh, K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs. World Scientific, New jersey, 2005.
- [7] H. Whitney, A Logical Expansion in Mathematics. Bull. Amer. Math. Soc., 38 (1932), 572-579.

Abdul Rauf Nizami

Division of Science and Technology, University of Education, Lahore-Pakistan e-mail: arnizami@ue.edu.pk

Mobeen Munir

Division of Science and Technology, University of Education, Lahore-Pakistan e-mail: mobeenmunir@gmail.com

Amjad Shahbaz

Division of Science and Technology, University of Education, Lahore-Pakistan e-mail: amjadshahbaz7t0gmail.com