On Chromaticity of Ladder-Type Graphs

Abdul Rauf Nizami, Mobeen Munir and Amjad Shahbaz

Abstract

We give general formulas of the chromatic polynomial of some interesting families of ladder-type graphs, and conclude that, except two, neither two of them are chromatically equivalent. Moreover, some of them are not chromatically unique.

Mathematics Subject Classification (2010). Primary 05C31; Secondary 57M27.

Keywords. Chromatic polynomial, Chromatic equivalence, Chromatic uniqueness, λ-coloring, Ladder-type graph.

1. Introduction

The chromatic polynomial was introduced by G. D. Birkhoff in 1912 as a function that counts the number of graph colorings for planar graphs to solve the four color problem [1]. In 1932 H . Whitney generalized it from the planar graphs to arbitrary graphs [7]. The chromatic polynomial, because of its theoretical and applied importance, has generated a large body of work. Chia [4] provides an extensive bibliography on the chromatic polynomial, and Dong, Koh, and Teo [6] give a comprehensive treatment.

The following two operations are essential to understand the chromatic polynomial definition for a graph G. These are: edge deletion denoted by $G^{\prime}=G-e$, and edge contraction $G^{\prime \prime}=G / e$.

The deletion/contraction operations

Definition 1.1. The chromatic polynomial is a function P from the set of all graphs to the set $\mathbb{Z}[\lambda]$, a ring of polynomials, such that

$$
P(G)=\left\{\begin{array}{l}
0 \\
\lambda^{n} \\
P(G-e)-P(G / e)
\end{array}\right.
$$

if there is a loop in G
if G consists of only n isolated vertices
otherwise
Two graphs are chromatically equivalent if they have the same chromatic polynomial; a graph G is chromatically unique if $P(G)=P\left(G^{\prime}\right)$ implies $G \cong G^{\prime}$.

For a positive integer λ, a λ-coloring of a graph G is a mapping of $V(G)$ into the set $\{1,2,3, \ldots, \lambda\}$ of λ colors. Thus, there are exactly λ^{n} colorings for a graph on n vertices. If φ is a λ-coloring such that $\varphi(u) \neq \varphi(v)$ for all $u v \in E$, then φ is called a proper (or admissible) coloring. The chromatic number of a graph G, denoted by $\gamma(G)$, is the smallest number of colors needed to color the vertices of G so that no two adjacent vertices share the same color.

Remark 1.2. Every evaluation of chromatic polynomial at some number λ actually gives the λ-coloring of the graph.

Since we are interested mainly in ladder-type graphs, we define them here. First, the two closely related definitions:

Definition 1.3. A ladder graph L_{n} is the Cartesian product of path graphs p_{n} and p_{2} :

We define a ladder-type graph a ladder graph with addition of some edges and vertices, in some pattern, keeping the main structure of L_{n} intact.

The ladder-type graphs we are concerned with are:

The subscripts $n, n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}, n_{7}$, and , n_{8} in these graphs respectively represent number of 'unit' boxes of types

The following is the chromatic polynomial of the ladder graph L_{n}, which already exists in the literature.

Proposition 1.4. The chromatic polynomial of the graph L_{n} is

$$
P\left(L_{n}\right)=\lambda(\lambda-1)\left(\lambda^{2}-3 \lambda+3\right)^{n} .
$$

First we give the chromatic polynomials of four 'basic' ladder-type graphs:
Theorem 1.5. The chromatic polynomials of $L_{n_{1}}, L_{n_{2}}, L_{n_{3}}$, and $L_{n_{4}}$ are
a. $P\left(L_{n_{1}}\right)=\lambda(\lambda-1)(\lambda-2)^{2 n_{1}}$,
b. $P\left(L_{n_{2}}\right)=\lambda(\lambda-1)(\lambda-2)^{4 n_{2}}$,
c. $P\left(L_{n_{3}}\right)=\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)^{n_{3}}$, and
d. $P\left(L_{n_{4}}\right)=\lambda(\lambda-1)(\lambda-2)^{n_{4}}(\lambda-3)^{n_{4}}$.

Then we have the proposition:
Proposition 1.6. The chromatic polynomials of $L_{n_{5}}, L_{n_{6}}, L_{n_{7}}$, and $L_{n_{8}}$ are
a. $P\left(L_{n_{5}}\right)=\lambda(\lambda-1)(\lambda-2)^{2 n_{5}}\left(\lambda^{2}-3 \lambda+3\right)^{n_{5}}$,
b. $P\left(L_{n_{6}}\right)=\lambda(\lambda-1)(\lambda-2)^{2 n_{6}}\left(\lambda^{2}-3 \lambda+3\right)^{n_{6}}$,
c. $P\left(L_{n_{7}}\right)=\lambda(\lambda-1)\left(\lambda^{2}-3 \lambda+3\right)^{n_{7}}\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)^{n_{7}}$, and
d. $P\left(L_{n_{8}}\right)=\lambda(\lambda-1)(\lambda-2)^{n_{8}}(\lambda-3)^{n_{8}}\left(\lambda^{2}-3 \lambda+3\right)^{n_{8}}$.

Besides the above graphs, the following are special types of ladder-types graphs. These are actually obtained by appending the ladder graph L_{n} to the graphs $L_{n_{1}}, L_{n_{2}}, L_{n_{3}}$, and $L_{n_{4}}$.

We shall give the chromatic polynomials of these graphs as a corollary of the general result:

Theorem 1.7. If a graph G is obtained by appending L_{n} to a graph G_{1} such that they share nothing except just one edge, then

$$
P(G)=\left(\lambda^{2}-3 \lambda+3\right)^{n} P\left(G_{1}\right)
$$

Corollary 1.8. a. $P\left(L_{n_{1}, n}\right)=\lambda(\lambda-1)(\lambda-2)^{2 n_{1}}\left[\lambda^{2}-3 \lambda+3\right]^{n}$.
b. $P\left(L_{n_{2}, n}\right)=\lambda(\lambda-1)(\lambda-2)^{4 n_{2}}\left[\lambda^{2}-3 \lambda+3\right]^{n}$.
c. $P\left(L_{n_{3}, n}\right)=\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)^{n_{3}}\left[\lambda^{2}-3 \lambda+3\right]^{n}$.
d. $P\left(L_{n_{4}, n}\right)=\lambda(\lambda-1)(\lambda-2)^{n_{4}}(\lambda-3)^{n_{4}}\left[\lambda^{2}-3 \lambda+3\right]^{n}$.

If L_{n} is sandwiched between a ladder-type graph $L_{n_{i}}, 1 \leq i \leq 4$, then then we shall denote the resultant ladder-type graph by $L_{n_{i}, n, n_{i}}$. The chromatic polynomials of the following graphs are given in a lemma:

Lemma 1.9. \quad a. $P\left(L_{n_{1}, n, n_{1}}\right)=(\lambda-2)^{2 n_{1}} P\left(L_{n_{1}, n}\right)$.
b. $P\left(L_{n_{2}, n, n_{2}}\right)=(\lambda-2)^{4 n_{2}} P\left(L_{n_{2}, n}\right)$.
c. $P\left(L_{n_{3}, n, n_{3}}\right)=\left(\lambda^{2}-5 \lambda+10 \lambda-7\right)^{n_{3}} P\left(L_{n_{3}, n}\right)$.
d. $P\left(L_{n_{4}, n, n_{4}}\right)=(\lambda-2)^{n_{4}}(\lambda-3)^{n_{4}} P\left(L_{n_{4}, n}\right)$.

The more general ladder-type graphs appear when L_{n} is sandwiched k times in $L_{n_{i}}, 1 \leq i \leq 4$. We denote these graphs by $L_{n_{1}, n, n_{1}, \ldots, n_{1}, n, n_{1}}, L_{n_{2}, n, n_{2}, \ldots, n_{2}, n, n_{2}}$, $L_{n_{3}, n, n_{3}, \ldots, n_{3}, n, n_{3}}$, and $L_{n_{4}, n, n_{4}, \ldots, n_{4}, n, n_{4}}$, and present their chromatic polynomials in the theorem:
Theorem 1.10. a. $P\left(L_{n_{1}, n, n_{1}, \cdots, n_{1}, n, n_{1}}\right)=\lambda(\lambda-1)(\lambda-2)^{2(k+1) n_{1}}\left(\lambda^{2}-3 \lambda+\right.$ $3)^{k n}$.
b. $P\left(L_{n_{2}, n, n_{2}, \cdots, n_{2}, n, n_{2}}\right)=\lambda(\lambda-1)(\lambda-2)^{4(k+1) n_{2}}\left(\lambda^{2}-3 \lambda+3\right)^{k n}$.
c. $P\left(L_{n_{3}, n, n_{3}, \cdots, n_{3}, n, n_{3}}\right)=\lambda(\lambda-1)\left(\lambda^{2}-5 \lambda+10 \lambda-7\right)^{(k+1) n_{3}}\left(\lambda^{2}-3 \lambda+3\right)^{k n}$.
d. $P\left(L_{n_{4}, n, n_{4}, \cdots, n_{4}, n, n_{4}}\right)=\lambda(\lambda-1)(\lambda-2)^{(k+1) n_{4}}(\lambda-3)^{(k+1) n_{4}}\left(\lambda^{2}-3 \lambda+\right.$ $3)^{k n}$.

The chromatic equivalence and chromatic uniqueness of these graphs are reflected in the theorem:
Theorem 1.11. a. Neither two of $L_{n}, L_{n_{1}}, L_{n_{3}}$, and $L_{n_{4}}$ are chromatically equivalent.
b. $L_{n_{1}}$ and $L_{n_{2}}$ are chromatically equivalent if $n_{1}=2 n_{2}$, but are not chromatically unique.
c. $L_{n_{1}, n}, L_{n_{3}, n}$, and $L_{n_{4}, n}$ are not chromatically unique.

2. Proofs

This section contains the proofs of the results we got.
Proof of Theorem 1.5(c). We proceed by induction on n_{3}. For $n_{3}=1$, we get

$(\lambda-2) P(\square)+P(\bigcirc)-P(\bigcirc)=(\lambda-2)(P(\swarrow)-P(\downarrow))+$ $P(\bigcirc \cdot)-P\left(\bigcirc^{\circ}\right)=(\lambda-2)\left(P\left(\swarrow^{\circ}\right)-P\left(\swarrow^{\circ}\right)-P\left(\swarrow^{\prime}\right)+P\left(D^{\prime}\right)+(\lambda-\right.$ 1) $P(\bigcirc)=(\lambda-2)((\lambda-2) P(\swarrow)+P(\mathfrak{l})-P(\bigcirc))+(\lambda-1)(P(\multimap)-$ $\left.P(\bigcirc))=(\lambda-2)\left((\lambda-2)\left\{P\left(\jmath^{\circ}\right)-P()_{0}\right)\right\}+P(\cdot)-P(\cdot)\right)+(\lambda-1)(P(\circ)-$. $P(0))=(\lambda-2)\left((\lambda-2)(\lambda-1) P\left(()+\left(\lambda^{2}-\lambda\right)\right)+(\lambda-1)\left(\lambda^{2}-\lambda\right)=(\lambda-\right.$ 2) $\left(P\left(\downarrow^{\circ}\right)-P(\swarrow)-P(\downarrow)+P(D)\right)+(\lambda-1) P(\bigcirc)=(\lambda-2)((\lambda-$ 2) $\left.P(\swarrow)+P\left(l^{\circ}\right)-P(\bigcirc)\right)+(\lambda-1)(P(\curvearrowleft)-P(\bigcirc))=(\lambda-2)((\lambda-$
 2) $\left.(\lambda-1) P\left({ }_{(}\right)+\left(\lambda^{2}-\lambda\right)\right)+(\lambda-1)\left(\lambda^{2}-\lambda\right)=(\lambda-2)((\lambda-2)(\lambda-1)\{P(\cdot)-P(\cdot)\}+$ $\left.\left(\lambda^{2}-\lambda\right)\right)+\lambda(\lambda-1)^{2}=(\lambda-2)\left((\lambda-2)(\lambda-1)\left(\lambda^{2}-\lambda\right)+\left(\lambda^{2}-\lambda\right)\right)+\lambda(\lambda-1)^{2}=$ $\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)$.

Now with the assumption that the result holds for an arbitrary n_{3}, we have

$\left((\lambda-2)\left(\lambda^{2}-3 \lambda+3\right)+(\lambda-1)\right) P(\swarrow \square-\square)=\left(\lambda^{3}-3 \lambda^{2}+3 \lambda-2 \lambda^{2}+6 \lambda-\right.$ $6+\lambda-1) P\left(L_{n_{3}}\right)=\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)\left(\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)^{n_{3}}\right)=$ $\lambda(\lambda-1)\left(\lambda^{3}-5 \lambda^{2}+10 \lambda-7\right)^{n_{3}+1}$,
as was required.

Proofs of the parts (a), (b), and (d) are similar.

Proof of Proposition 1.6. Here we give only the proof of part (d); other parts cab be proved similarly.

We again prove it by induction on n_{8}. For $n_{8}=1$ we have

 $\lambda(\lambda-1)(\lambda-2)(\lambda-3)\left(\lambda^{2}-3 \lambda+3\right)$

Now with the assumption that the result holds for an arbitrary n_{8}, we have

Proof of Theorem 1.7. We proceed by induction on n :
For $n=1$, we get
$P($
$\left.{ }^{\mathrm{G}_{1}} \square\right)=P\left(\stackrel{\mathrm{G}_{1}}{\square}\right)-P($
${ }^{\mathrm{G}_{1}}$
$\Delta)=P($
${ }^{\mathrm{G}_{1}} \bigsqcup \cdot-P($ $\left.{ }^{\mathrm{G}_{1}} \square\right)-$
 $\left.(\lambda-2)\left[P\left({ }^{\mathrm{G}_{1}}\right\rfloor \cdot\right)-P\left({ }^{\mathrm{G}_{1}} \varliminf_{)}\right]+P\left({ }^{\mathrm{G}_{1}} \emptyset_{)}\right)=[(\lambda-2)(\lambda-1)+1] P\left({ }^{\mathrm{G}_{1}}\right\rfloor\right)=$ $\left(\lambda^{2}-3 \lambda+1\right) P\left(G_{1}\right)$.

Suppose the result holds for $n=k$, that is
$P($ \square $\square \cdot\left(\lambda^{2}-3 \lambda+1\right)^{k} P\left(G_{1}\right)$.

Now for $n=k+1$, we have
$P($
$\left.{ }^{9} \square \square \square\right)=P($
${ }^{G}$

$+P($ $\left.{ }^{\mathrm{G}_{1}} \square \square\right)=(\lambda-2) P($
G_{1}

$\left.{ }^{\mathrm{G}_{1}} \square \square\right)-$
P

$)=(\lambda-2)[P($
$\mathrm{G}_{1} \square$

G_{1}

$P\left({ }^{\mathrm{G}_{1}} \square \square\right)=[(\lambda-2)(\lambda-1)+1] P\left(\mathrm{G}_{1} \square \quad \square \square\right)=[(\lambda-2)(\lambda-$

1) +1$]\left(\lambda^{2}-3 \lambda+1\right)^{k} P\left(G_{1}\right)=\left(\lambda^{2}-3 \lambda+1\right)^{k+1} P\left(G_{1}\right)$,
as was required.
Proof of Lemma 1.9. We give only proof of part (b), which is the most difficult; other parts have similar proofs.

Instead of the long ladder

we shall use a short form as

When a single unit
 of $L_{n_{2}}$ is appended to

$=(\lambda-2)^{3}\left[P\left(\bullet^{\mathrm{n}_{2}}{ }^{\mathrm{n}} \cdot \quad\right)-P\left(\bullet^{\mathrm{n}_{2}}{ }^{\mathrm{n}} \cdot\right)-P\left(\bullet^{\mathrm{n}_{2}}{ }^{\bullet}{ }^{\mathrm{n}} \cdot 0\right)+P\left(\square^{\mathrm{n}_{2}}{ }^{\mathrm{n}}{ }^{\bullet}\right)\right]$
$=(\lambda-2)^{4} P\left({ }^{\mathrm{n}_{2}}{ }^{\mathrm{n}}\right.$. $)$.

Now suppose the result holds when the appended ladder $\left(L_{n_{2}}\right)$ has k units, that is

If the appended ladder has $k+1$ units, then we receive

which is the desired result.
Proof of Theorem 1.10. In each case, apply recursively Lemma 1.9 and Theorem $1.5 k$ times and then use $P\left(L_{n_{i}}\right)$.

Proof of Theorem 1.11. 1. Obvious; just see Theorem 1.5.
2. Simply observe that if $n_{1}=2 n_{2}$, then $P\left(L_{n_{1}}\right)=P\left(L_{n_{2}}\right)$. These are not chromatically unique because $L_{n_{1}} \not \neq L_{n_{2}}$; just observe that there are vertices of degree 5 in $L_{n_{2}}$ but are not in $L_{n_{1}}$.
3. It is obvious; simply observe that $P\left(L_{n_{1}, n}\right)=P\left(L_{n_{5}}\right), P\left(L_{n_{2}, n}\right)=$ $P\left(L_{n_{6}}\right), P\left(L_{n_{3}, n}\right)=P\left(L_{n_{7}}\right)$, and $P\left(L_{n_{4}, n}\right)=P\left(L_{n_{8}}\right)$ while $L_{n_{1}, n} \nsupseteq$ $L_{n_{5}}, L_{n_{2}, n} \not \equiv L_{n_{6}}, L_{n_{3}, n} \nsubseteq L_{n_{7}}$, and $L_{n_{4}, n} \nsubseteq L_{n_{8}}$.

References

[1] G. D. Birkhoff, A determinant formula for the number of ways of coloring a map. Annals of Mathematics, 14(1912), 42-46.
[2] B. Bollobás, Modern Graph Theory. Gratudate Texts in Mathematics, Springer, New York, 1998.
[3] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs. CRC Press, Chapman and Hall Book, Boca Raton, 2011.
[4] G. L. Chia, A Bibliography on Chromatic Polynomials. Discrete Math. 172 (1997), 175-191.
[5] R. Diestel, Graph Theory. Springer (1997).
[6] F. M. Dong, K. M. Koh, K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs. World Scientific, New jersey, 2005.
[7] H. Whitney, A Logical Expansion in Mathematics. Bull. Amer. Math. Soc., 38 (1932), 572-579.

Abdul Rauf Nizami
Division of Science and Technology, University of Education, Lahore-Pakistan e-mail: arnizami@ue.edu.pk
Mobeen Munir
Division of Science and Technology, University of Education, Lahore-Pakistan e-mail: mobeenmunir@gmail.com
Amjad Shahbaz
Division of Science and Technology, University of Education, Lahore-Pakistan e-mail: amjadshahbaz7t@gmail.com

