
On A Recursive Algorithm For Pricing
Discrete Barrier Options

Dennis G. Llemit
Department of Mathematics

Adamson University
1000 San Marcelino Street, Ermita, Manila

Abstract

An alternative and simple algorithm for valuating the price of dis-
crete barrier options is presented. This algorithm computes the price
just exactly the same as the Cox-Ross-Rubinstein (CRR) model. As
opposed to other pricing methodologies, this recursive algorithm uti-
lizes only the terminal nodes of the binomial tree and it captures the
intrinsic property, the knock-in or knock-out feature, of barrier op-
tions. In this paper, we apply the algorithm to compute the price of
an Up and Out Put (UOP) barrier option and compare the results ob-
tained from the CRR model. We then determine the time complexity
of the algorithm and show that it is Θ(n2).

Keywords: UOP barrier option, time complexity, pricing algorithm

1

1 Introduction

An option is a derivative contract which confers to the owner (or buyer) the
right but not the obligation to buy or sell certain amounts of an underlying
at a future time at a predetermined price. Knock-out barrier options are
derivative contracts which remain valid if and only if the underlying St has
never breached the barrier level B throughout their lifespan. In particular,
an Up and Out Put (UOP) barrier option is a contract which confers to the
owner the right to sell units of the underlying instrument at strike price K
at maturity date T if and only if

St < B (1)

for all t ∈ {0, 1, · · · , T}.

Determining the premium price V0 of a derivative contract is the heart and
soul of Option Pricing Theory. In continuous time, the Black-Scholes model
is usually used to get V0. This involves solving a partial differential equations
(PDE) with certain boundary conditions [2]. However, an equivalent value
can be obtained via risk-neutral valuation. Under this principle, it is assumed
that the world is indifferent to risk such that the value of an option is the
expected pay-off discounted by the risk-free interest rate r [6]. That is,

V0 = e−rT E [VT] , (2)

where VT is the value of the option at maturity. This principle is also used
in the Cox-Ross-Rubinstein (CRR) binomial model which is one of the most
widely used valuation methods in discrete time.

In 2009, Tina Sol, together with her adviser Dr. van der Weide of Techni-
cal University of Delft, conceptualized a recursive algorithm that computed
the price of a knock-out call barrier option. The values that they obtained
using their algorithm were exactly equal to the values computed using the
CRR model. The algorithm was then compared to other computing algo-
rithms and found that it was unique [8]. Hence, they concluded that their’s
is a new algorithm in computational finance. For the purpose of identifica-
tion and precision, we will call the algorithm developed by Sol as the Sol -
van der Weide algorithm or SWA.

2

In this paper we intend to (1) verify the accuracy of the Sol - van der
Weide algorithm (SWA) relative to the CRR model using a knock-out put
barrier option, and to (2) determine the algorithm’s time complexity. The
SWA is a promising computational method since it is very simple and resilient
compared to the CRR. Hence, it is imperative that we apply the algorithm to
a knock-out put option in order to complete the story behind its viability as
an alternative to the CRR. Although, we are using a particular type of knock-
out put option (UOP), the framework of price valuation would just be similar
and would be applicable to other knock-out put derivative contracts. If it
can be shown that the algorithm does the same job as the CRR and better
at that, then it will give finance practitioners an alternative computational
tool in pricing barrier options. The second objective seeks to provide the
time complexity analysis of the algorithm which was not provided by Sol.
Determining the time complexity of the algorithm will enable us to compare
the algorithm to the CRR’s known time complexity.

2 Up and Out Put Barrier Option Price

2.1 CRR Price

The pay-off function of an option is the non-negative difference between the
strike price K and the underlying value. That is,

Vt = (K − St)+ = max{K − St, 0}. (3)

Suppose that there are n time steps, then we can write the maturity value
of the option, as well as the underlying, to end at a node (n, 2j − n) as

VT (n, 2j − n)

and
ST (n, 2j − n) = S0u

jdn−j, (4)

where j is the number of up-steps in the binomial tree.
Thus, using the risk-neutral principle, the option price at node (n, 2j−n)

is given by

V0 = e−rT E
[
VT (n, 2j − n)

]
= e−rT

n∑
j=0

P (n, 2j − n)
(
K − S0u

jdn−j
)+

(5)

3

where P (n, 2j − n) stands for the probability that the underlying will end
at node (n, 2j − n). Since our tree is binomial, we come up with

V0 = e−rT
n∑
j=0

(
n

j

)
pjqn−j

(
K − S0u

jdn−j
)+

. (6)

To incorporate the ”in-the-money” feature into equation (6), we determine
the maximum number of up-steps x such that the underlying stays below the
strike price. We do this by solving for j in

S0u
jdn−j < K(
u

d

)j
<

K

S0dn

j <
log
(

K
S0dn

)
log
(
u
d

) .

We then set

x = bjc =

 log
(

K
S0dn

)
log
(
u
d

)
.

To incorporate the knock-out property, we replace
(
n
j

)
with F (n, 2j−n) which

represents the number of paths from the origin to a node (n, 2j−n) that stay
below the barrier level B. Consider nodes (0, 2m) and (n, 2j−n) where m is
the height of the barrier level (see Figure 1). By Andre’s symmetry principle
[1], the number of paths from (0, 2m) to (n, 2j − n) that traverse the barrier
is just (

total steps taken

height difference + half of remaining steps

)
=

(
n− 0

2m− (2j − n) + 1
2

(
n− (2m− (2j − n))

))
=

(
n

n+m− j

)
=

(
n

j −m

)
. (7)

4

Figure 1: Binomial tree with the indicated nodes

Since, this value represents the paths that cross the barrier level, we
subtract it from the total path from the origin to a node (n, 2j−n) to obtain

F (n, 2j − n) =

(
n

j

)
−
(

n

j −m

)
. (8)

Hence, we obtain the explicit pricing formula for an Up-and-Out put barrier
option.
If x > m then

V0 = e−rT
m−1∑
j=0

[(
n

j

)
−
(

n

j −m

)]
pjqn−j

(
K − S0u

jdn−j
)
. (9)

If x < m, then

V0 = e−rT
x∑
j=0

[(
n

j

)
−
(

n

j −m

)]
pjqn−j

(
K − S0u

jdn−j
)
. (10)

Cases x = m and j ≥ m will cause the option to be worthless.

2.2 SWA Price

The first part of the algorithm is called the initialization subprocedure since
it essentially initializes the vectors representing the underlying and pay-off
values at maturity T for a number of time steps n.

5

Initialize the underlying and pay-off vectors

ST =


ST (n, n)

ST (n, n− 2)
...

ST (n,−n+ 2)
ST (n,−n)

 =


S0u

n

S0u
n−1d
...

S0ud
n−1

S0d
n



VT =


VT (n, n)

VT (n, n− 2)
...

VT (n,−n+ 2)
VT (n,−n)

 = (K − ST)+ .× (ST < B) .

Here, .× represents pointwise vector multiplication. The vector (ST < B)
contains logicals 0 or 1. If the underlying is below the barrier B then the
vector contains only 1′s. Otherwise, the vector contains only 0′s. This vector
clearly captures the knock-out property of UOP.

The second part is called the recursion subprocedure since it recursively
runs the operation until it obtains the single entry vector V0 which is the
option price of UOP.

For i = 1, 2, · · · , n and h = T
n

update the pay-off vector

VT−ih = e−rih ·
(
pV up

i + qV down
i

)
.× (ST−ih < B) . (11)

Run recursively until V0 is obtained.

Here, h is the length of each time step. The updating of vectors requires
that they must be based from the original vectors VT and ST . The vector
ST−ih is attained by using either one of the two formulas:

ST−ih = u · Sdowni (12)

or
ST−ih = d · Supi (13)

6

where vectors Sdowni and Supi are obtained by deleting the first i and the last
i entries, respectively, of ST . The multiplier u or d makes sure that the nodes
or elements of either Sdowni or Supi will coincide with the nodes or elements of
the next ith vector, ST−ih. Similarly, the vectors V up

i and V down
i are obtained

from VT in the same manner. The deletion of entries goes on until they
become single entry vectors.

3 Algorithm Implementation

The only algorithm modification that we made in this paper relative to that
of Sol’s is the expression K − ST in order to suit a put derivative contract.
The resulting Matlab code, UOPSWAprice(S,K,BT,m, r, gamma, sigma)
is found in the appendix.

As for the CRR formula, we implement it in Matlab using Sol’s framework
[8]. Accordingly, the formula requires careful programming especially the
term F (n, 2j−n) =

(
n
j

)
−
(

n
j−m

)
becauseMatlab cannot handle large values for

n. The resultingMatlab code is UOPCRRprice(S,K,B, T,m, r, gamma, sigma)
in the appendix.

In both m.files, we used Boyle and Lau’s formula for determining the
number of time steps n to avoid ”bumping up against the barrier” [3]. Mis-
pricing of barrier options happens when the true barrier lies between two
nodes. This is prevented by choosing an appropriate number of time steps

n. In Boyle and Lau’s work, they came up with n =
⌊

m2σ2T
log2(B/S)

⌋
.

Lastly, the values that we used for the constants were r = 0.056, γ =
0.007, σ = 0.13, S0 = 0.0083, K = 0.0080, B = 0.0091, and T = 0.5 which
can be found in [5].

4 Time Complexity Analysis

To begin our analysis, we define the following measures of time complexity
according to Cormen [4] :

Definition (Big O Complexity). For any monotonic functions f(n) and g(n)
where n ≥ 0, we say that f(n) = O(g(n)) when there exist constants c > 0
and n0 > 0 such that f(n) ≤ c · g(n), for all n ≥ n0.

7

Definition (Big Omega Complexity). For any monotonic functions f(n)
and g(n) where n ≥ 0, we say that f(n) = Ω(g(n)) if there exist a constant
c such that f(n) ≥ c · g(n) for all sufficiently large n.

Definition (Big Theta Complexity). For any monotonic functions f(n) and
g(n) where n ≥ 0, we say that f(n) = Θ(g(n)) if there exist constants c1 and
c2 such that 0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all sufficiently large n.

Then we state a series of theorems from Rosen [7].

Theorem 1. For any monotonic functions f(n) and g(n) where n ≥ 0, we
say that f(n) = Θ(g(n)) if and only f(n) = O(g(n)) and f(n) = Ω(g(n)) for
all sufficiently large n.

Theorem 2. Let f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0, where a0, a1, · · · , an
are real numbers with an 6= 0. Then f(x) is of order xn.

Theorem 3. Suppose that f1(x) is O(g1(x)) and f2(x) is O(g2(x)) . Then

(f1 + f2) (x) is O

(
max

(∣∣g1(x)
∣∣ ,∣∣g2(x)

∣∣)) .

Theorem 4. Suppose that f1(x) is Ω(g1(x)) and f2(x) is Ω(g2(x)). Then

(f1 + f2) (x) is Ω

(
max

(∣∣g1(x)
∣∣ ,∣∣g2(x)

∣∣)).

Now, suppose that S(n) is the running time function for the Sol-van der
Weide algorithm. We have the following time complexity analyses.

For the worst-case time complexity, we argue that both vectors ST and VT
have lengths n+1 in the initialization subprocedure. Putting them together,
they contribute 2n+ 2 instructions in this subprocedure. Hence, by theorem
(2),

initialization subprocedure time complexity = 2n+ 2 ∈ O(n).

As for the recursion subprocedure, it involves three vectors, ST−ih, VT−ih and
(K − ST−ih)+ which contract by length one every iteration. This reduction
in length can be expressed as

3(n) + 3(n− 1) + . . .+ 3(2) + 3(1) = 3

[
n (n+ 1)

2

]
=

3

2
n2 +

3

2
n.

8

According to theorem (2), 3
2
n2 + 3

2
n ∈ O(n2). Thus the worst-case time

complexity of the entire algorithm according to theorem (3) is

S(n) = initialization subprocedure time complexity

+ recursion subprocedure time complexity

= O(n) +O(n2)

= O(n2).

As for the best-case time complexity, we note that the initialization sub-
procedure has to process all the input elements and reducing its length will
affect the accuracy of the computation. Hence, we conclude that the initial-
ization subprocedure has a linear time complexity. That is

initialization subprocedure time complexity = Ω(n)

For the recursion subprocedure, we conclude that it is also quadratic
similar to its worst-case counterpart for the following reasons:

1.) the recursion is iterative and contains no conditional statement.

2.) the recursion is based on a closed form equation (11).

Therefore, by theorem (4), the best-case time complexity of the entire algo-
rithm is

S(n) = initialization subprocedure time complexity

+ recursion subprocedure time complexity

= Ω(n) + Ω(n2)

= Ω(n2).

Since, S(n) = O(n2) and S(n) = Ω(n2), we conclude that S(n) = Θ(n2) by
Theorem (1).

5 Results and Discussion

We implemented the two m.files on a desktop computer with an installed
random access memory (RAM) of 2.0 GB and Intel Core 2 Duo processors
with speeds of 2.0 GHz and 1.99 GHz. We also included the empirical running
times, t1 and t2, of each method. We listed the results in the table below.

9

As we can see from the computed values, both methods give exactly the
same option value which is a good thing for SWA (Sol - van der Weide
algorithm). The CRR method appears initially to be slower than the SWA
but as m (height of the barrier) grows large, the computational time of CRR
grows slowly compared to SWA. One good aspect of SWA is that it is more
resilient than CRR because it was able to compute option prices way beyond
the capabilities of CRR.

m n x CRRprice t1 SWAprice t2
10 101 48 1.1063e-004 0.0643 1.1063e-004 0.0013
20 406 198 1.0993e-004 0.0037 1.0993e-004 0.0071
30 914 450 1.0999e-004 0.0162 1.0999e-004 0.0203
40 1626 804 1.1001e-004 0.0396 1.1001e-004 0.0494
50 2541 1260 1.1005e-004 0.0547 1.1005e-004 0.1252
100 10166 5062 NaN 0.4960 1.1003e-004 1.1668
200 40664 20291 NaN 5.7070 1.1003e-004 18.4292
300 91495 45687 NaN 159.5513 1.1003e-004 196.1419

6 Conclusions

This paper had two goals. Firstly, it aimed to apply the Sol - van der Weide
algorithm to a knock-out put barrier option in to order verify its accuracy
relative to the CRR model. This is because in Sol’s paper [8] it was only
used to price a knock-out call barrier option. As shown by our results, it
computed exactly the same values as the CRR model. Not only that, the
algorithm showed that it can compute prices for larger values of barrier height
m. Secondly and the most significant advancement in this paper, we were
able to analyze its time complexity. We have shown that its time complexity
is Θ(n2).

For further works, it would be interesting to study whether it is possible
to optimize the algorithm and determine its memory complexity. Obviously,
we would like to apply the Sol - van der Weide algorithm to trinomial trees.
This is a logical step since trinomial trees are more general compared to
binomial trees.

10

References

[1] Andell, J. Mathematics of Chance. John Wiley and Sons, Inc., 2001.

[2] Black, F. and Scholes, M. The Pricing of Options and Corporate Liabil-
ities. Journal of Political Economy, 1973.

[3] Boyle, P. and Lau, S. Bumping Up Against the Barrier with the Binomial
Method. Journal of Derivatives, 1994.

[4] Cormen, T.H., Leiserson, C.E., Rivest, R., Stein, C. Introduction to
Algorithms, 3rd Ed. The MIT Press, 2009.

[5] Costabile, M. A Combinatorial Approach for Pricing Parisian Options
(Decisions in Economics and Finance). Springer-Verlag, 2002.

[6] Hull, J.C. Options, Futures, and other Derivatives, 4th Ed. Prentice Hall,
2000.

[7] Rosen, K.H. Discrete Mathematics and Its Applications, 6th Ed.
McGraw-Hill, 2008.

[8] Tina Sol. Pricing Barrier Options in Discrete Time. Bachelor Thesis,
Technische Universiteit Delft, 2009.

Appendices

A UOP CRR Matlab Code

f unc t i on UOPCRRprice(S , K, B, T, m, r , gamma, sigma)
% INPUT:
% m=minimum number o f up s t ep s in order to h i t the b a r r i e r
% r = i n t e r e s t r a t e
% gamma= div idend y i e l d
% sigma = v o l a t i l i t y
% S=i n i t i a l a s s e t p r i c e
% K=s t r i k e p r i c e
% B=he ight o f b a r r i e r

11

% T=l i f e t i m e
% OUTPUT: V 0 = premium p r i c e
n=f l o o r (T∗(m∗ sigma/ log (B/S))ˆ2) % number o f time s t ep s

%to be in the money
h=T/n ; % s i z e o f each step
u=exp (sigma∗ s q r t (h)) ; % up f a c t o r
d=1/u ; % down f a c t o r
p=(exp ((r−gamma)∗h)−d)/(u−d) ; % p r o b a b i l i t y o f up−s tep
q=1−p ; % p r o b a b i l i t y o f down−s tep
%t i c ;
%Construct v e c t o r s with f i n a l a s s e t p r i c e s and opt ion pay−o f f s
Sf=S∗u . ˆ (n:−2:−n) ;
Vf1=(K−Sf) . ∗ ((Sf<B) . ∗ (Sf<K)) ;
%Calcu la te the max . no o f up s t ep s to be in the money at maturity
x=max(f l o o r (l og (K/(S∗dˆn))/ l og (u/d)) , 0) ;
%Construct v e c t o r s with p r o b a b i l i t i e s f o r a s s e t p r i c e to end
%at po in t s that are in the money and below the b a r r i e r
Pf=ze ro s (n+1 ,1) ;
f o r k=0: f l o o r (0 . 5∗n)

N=(n−k +1) :1 : n ;
D=1:1: k ;
Pf (k+1)=prod (p∗q∗N. /D)∗q ˆ(n−2∗k) ;

end
f o r k=c e i l (0 . 5∗n) : f l o o r (0 . 5∗ (n+m))

N=(k +1) :1 : n ;
D=1:1:n−k ;
Pf (k+1)=prod (p∗q∗N. /D)∗pˆ(2∗k−n) ;

end
Pf=f l i p u d (Pf) ;
%Construct a ’ c o r r e c t i on ’ vec to r that e l i m i n a t e s va lue from
% exp i red paths
Cf=ze ro s (n+1 ,1) ;
f o r j=n−f l o o r (0 . 5∗ (n+m)) : n

N=n−j−m+1:1:n−j ;
D=j +1:1 : j+m;
Cf (j+1)=1−prod (N. /D) ;
XX2(j+1)=Cf (j +1);

end

12

%Mult ip ly the 3 ve c t o r s po intwise , sum and d i scount to get V 0
Vfe=exp(−r∗T)∗sum(Vf1 ’ . ∗ Pf .∗Cf)
%t2=toc

B UOP SWA Matlab Code

f unc t i on UOPSWAprice(S , K, B, T, m, r , gamma, sigma)
% INPUT:
% m=minimum number o f up s t ep s in order to h i t the b a r r i e r
% r = i n t e r e s t r a t e
% gamma= div idend y i e l d
% sigma = v o l a t i l i t y
% S=i n i t i a l a s s e t p r i c e
% K=s t r i k e p r i c e
% B=he ight o f b a r r i e r
% T=l i f e t i m e
% OUTPUT: V 0 = premium p r i c e
n=f l o o r (T∗(m∗ sigma/ log (B/S))ˆ2) % number o f time s t ep s to be

%in the money
h=T/n ; % s i z e o f each step
u=exp (sigma∗ s q r t (h)) ; % up f a c t o r
d=1/u ; % down f a c t o r
p=(exp ((r−gamma)∗h)−d)/(u−d) ; % p r o b a b i l i t y o f up−s tep
q=1−p ; % p r o b a b i l i t y o f down−s tep

%t i c ;
%Construct v e c t o r s with f i n a l a s s e t p r i c e s and opt ion pay−o f f s
Sf=S∗u . ˆ (n:−2:−n) ;
Vf2=(K−Sf) . ∗ ((Sf<B) . ∗ (Sf<K)) ;
%Calcu la te backwards to f i n d V 0
f o r i =1:1 :n

Sf=d∗Sf (1 : end−1);
Vf2=exp(−r∗h)∗ (p∗Vf2 (1 : end−1)+q∗Vf2 (2 : end)) . ∗ (Sf<B) ;

end
Vf2
%t2=toc

13

