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Abstract
Some recent cross-country cross-sectional analyses have employed Bayesian
Model Averaging to tackle the issue of model uncertainty. Bayesian model
averaging has become an important tool in empirical settings with large
numbers of potential regressors and relatively limited number of observa-
tions. We examine the effect of a variety of prior assumptions on the in-
ference, posterior inclusion probabilities of regressors and on predictive per-
formance. Bayesian model averaging (BMA) has become a widely accepted
way of accounting for model uncertainty in regression models. However,
to implement BMA, a prior is usually specified in two parts: prior for the
regression parameters and prior over the model space. Hence, the choice
of prior specification becomes paramount in Bayesian inference, unfortu-
nately, in practice, most Bayesian analyses are performed with the so-called
non-informative priors (i.e. priors constructed by some formal rule). The ar-
bitrariness in the choice of prior or choosing inappropriate priors often lead
to badly behaved posteriors. It is therefore imperative to study the effect
of choice of priors in Bayesian model averaging. Six candidate parameter
priors namely, Unit information prior (UIP), Risk inflation criterion (RIC),
Bayesian Risk Inflation criterion (BRIC), Hannan-Quinn criterion (HQ),
Empirical Bayes (EBL) and hyper-g and three model priors: uniform, beta-
binomial and binomial were examined in this study. The performances of
the resulting eighteen cases were judged using posterior inference, posterior
inclusion probabilities of regressors and predictive performance. Analyses
were carried out using datasets with 8-potential drivers of growth for 126
countries from 2010 to 2014. Finally, our analysis shows that the EBL pa-
rameter prior with random model prior robustly identifies far more growth
determinants than other priors.

Keywords: Prior specification, Bayesian Model Averaging, Economic
growth, Predictive performance

1 Introduction

Variable selection process has received considerable attention in the economet-
rics and statistics literature over the years. The special issues of the Journal of
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Econometrics (Vol. 16, No. 1, 1981) and Statistica Sinica (Vol. 7, No. 2, 1997)
were devoted to the subject of model selection process in view of its relevance. In
modeling, functional forms, whether linear or non linear; error structures, whether
addictive or multiplicative; variables inclusion, whether redundant or relevant;
and model choice are uncertain. When a single model is selected by considering
its highest posterior probability value and later use to make inference, it ignores
and underestimates the uncertainties involved in the models. The overall uncer-
tainty about quantities of interest usually lead to unreliable standard error and
confidence interval of such model.

A Bayesian tool for dealing with such uncertainties inherent in the model selection
process is known as Bayesian Model Averaging (BMA). BMA is used in empirical
settings with large amount of possible regressors and relatively limited number
of observations to account for uncertainties. It is a weighted averaging method
based on posterior distribution which the literature has shown that it provides
an improved out - of sample predictive performance. Bayesian Model Averaging
has been applied successfully to many econometric model classes especially the
normal linear regression model [Raftery etal 1997; Raftery etal 2005; Fernandez
etal (2001a, 2001b)].

BMA is a method that allows selecting models consistently from a model space,
without having to analyse every model in order to determine which ones better
fit the data or assist to predict more accurately a variable of interest. This can
be achieved by drawing a sample of models from the distribution of the model
space and order them according to the posterior probability, which relies on the
likelihood of the model and a prior belief on each particular model. Thus, the
weight attributed to each prediction to be combined is given by each posterior
model probability. In Bayesian paradigm, posterior model probabilities (PMP)
are very sensitive to Prior specification (Zellner (1986)), (Fernandez etal (FLS)
(2001a)), (Olubusoye and olawale (2009)) and (Ley et al (2011)) under the uncer-
tainty inherent in model selection. Also, the best priors to be elicited for both the
quantities of interest and the choice of models in the BMA approach are major
problems encountered by the Bayesian econometricians. Using the BMA, priors
are elicited in two forms namely, model and parameter priors. Model priors can
be fixed, random, uniform or even custom prior inclusion probability while the
parameter priors can also be fixed, empirical Bayes (local) or hyper g prior.

From the literature, the Zellner g- structure in the parameter prior is expected to
be as small as possible such that consistency of the true posterior model probabil-
ity holds. And improving on work of the Fernandez etal (2001a) priors, therefore
this study focuses on the g-parameter prior elicitation in the BMA approach to
normal linear regression model. This modified prior structure allows the marginal
likelihood be computed analytically and does not violate the probability rule (not
rely on the sample model y). It is independent of input from the researcher or in-
formation in the data but depends only on the sample size. Three different model
priors and six parameter priors were elicited for this study.
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The rest of the paper is divided into four sections. Section II describes the BMA
theoretical approach while section III elicits the determinants of economic growth.
Section IV shows the results of the data and the analysis and finally, the discussion
of the results and concluding remarks are given in section V.

2 Bayesian Model averaging Framework

Consider n independent random samples from a normal linear regression model
with constant term, β0, K potential explanatory variables in a matrix X of di-
mension n x K and a normal IID error term ε with variance σ2 ≡ (h−1). If Xj

are the explanatory variables included in Model j, j = 1, ...,M (M = 2K plausible
models) which contains the choice of 0 < kj < K (kj is the number of regressors
in model j) and then leads to the linear regression model, ‘y’ of the form:

y = β0in +Xjβj + ε ε ∼ N
(
0, h−1I

)
(1)

In Bayesian paradigm, we may be interested in a quantity or variable (βj) across
the entire model space. Hence, the posterior distribution of the quantity of interest,
(βj) given the data is as:

P (βj/D) =
2K∑
j=1

P (βj/D,Mj)P (Mj/D) (2)

where D is the sample data. Equation (2) is the mixture of the posterior distri-
butions of that quantity under each of the models with the weighted probability
model - P (Mj/D)

Thus,

P (Mj/D) =
P (D/Mj)P (Mj)

2K∑
i=1

P (D/Mi)P (Mi)

=

 2K∑
i=1

P (D/Mi)P (Mi)

P (D/Mj)P (Mj)

−1 (3)

Where, P (Mj) is prior probability that Mj is the true model and the
Marginal Likelihood is given by

P (D/Mj) =

∫ ∞
0

P
(
D
/
β0, βj, h

−1,Mj

)
P
(
β0, βj, h

−1/Mj

)
dβ0, dβj, dh

−1 (4)

where h is the model precision, P (D/Mj) -Marginal likelihood, P (D/β0, βj, h
−1,

Mj) likelihood of the data and P (β0, βj, h
−1/Mj) - the prior distribution for the

parameters given the model. BMA gets the Posterior Inclusion Probability (PIP)
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of an explanatory variable by summing the Posterior Model Probabilities across
those models that contain the explanatory variable.

Introducing the g parameter prior to (4) and taking its ratio gives us another very
important tool in BMA called the Bayes factor (Bjr) for comparing two models
Mj and Mr and can be computed analytically by

Bjr =

(
gj

gj + 1

)kj/2(gr + 1

gr

)kr/2  1
gr+1

y1QXry + gr
gr+1

(
y − yin

)1 (
y − yin

)
1

gj+1
y1QXj

y +
gj

gj+1

(
y − yin

)1 (
y − yin

)
n−1

2

ifkj, kr ≥ 1

(5)
Source: Fernadez et al. (2001a)

2.1 Priors in BMA

Basically, in BMA two priors are specified namely, model priors and parameter
priors. The model prior P (Mj) is specified by the researcher which should reflect
the prior belief about the model. A common choice is to elicit a uniform prior
probability for each model to explain the lack of prior information and this follows
from the rule of thumb. There are other model priors like binomial, beta-binomial
and custom prior inclusion probabilities but for this study the binomial, beta-
binomial and the uniform model prior are used and are stated as follow:

P (Mj) = 1/2K , P (Mj) > 0 and
M∑
j=1

P (Mj) = 1 (6)

The g- parameter priors considered in this study are Unit Information Prior(UIP),
Local empirical Bayes, Hyper-g or fixed (Zellner-g) prior,Bayesian Risk Inflation
criterion (BRIC), Hannan-Quinn criterion (HQ), Empirical Bayes (EBL). The g-
prior was first introduced under the BMA in Zellner (1986). Zellner assumed that
covariance of the prior should be proportional to covariance expression (X∗

′
j X

∗
j )−1

of the posterior gotten from the data with the scalar g (to be elicited by the re-
searcher) to determine the degree of importance attributed to the prior precision.
And from the literature, this g prior structure has shown that it leads to simple
closed form expressions of posterior statistics.

Following from the rule of Thumb, the prior probability for

The intercept is
P (β0) = 1 (7)

The prior probability for precision is

P (h) = (1/h) (8)
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Then,
The parameter prior is

P (βj/h) ∼ N

(
0kj , h

−1
[
gjX

∗′
j X

∗
j

]−1)
(9)

Source: Zellner, 1986

Where, X∗j is the mean deviation of Xj, and the g-prior is proportional to the
comparable data based quantity; the smaller the g, the fewer the prior parameter
variance.

Table 1 shows the g-parameter priors elicited in the literature. These g-priors in
the BMA are related to a natural conjugate prior with the scalar g to be elicited
by the researcher (Zellner (1986)). The g-prior with unit information prior (UIP),
g = (1/n) and g = (1/

√
n) explaining that the priors contain information ap-

proximately equal to that contained in a single typical observation. Also, their
resulting posterior model probabilities are closely approximated by Schwarz (SIC)
or Bayesian Information Criterion (BIC). They have the same mean and preci-
sion except for UIP with maximum likelihood as its mean. Prior 2, it is called
Bayesian Risk Inflation Criterion prior. Prior 3 explains the decrease in the prior
information even slower with sample size and there is asymptotic convergence to
the Hannan Quinn Criterion with CHQ = 1. But if the g-prior elicitation de-
pends only on the regressors like g = 1/K2, it is approximated by Risk Inflation
Criterion (RIC), the larger the value of K the higher the prior information. Prior
can also rely on information from the data with R2 known, the closer the R2 to 1
the smaller the precision and the higher the prior information. This type of g-class
(prior 5 of Table 1) is called Hyper-g prior, the data dependent prior as elicited in
the work of Raftery et al (1997). Another class of g with a natural conjugate prior
structure which is subjectively elicited through predictive implications is prior six
specification.
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Table 1: The g-Parameter Prior Structures
Prior Specification of g-prior Comment Source
1 Unit Information Prior The prior contains information ap-

proximately equal to that con-
tained in a single typical observa-
tion. The resulting posterior model
probabilities are closely approxi-
mated by the Schwarz Criterion,
BIC.

Kass and
Wasser-
man (1995),
Raftery
(1995)

2 BRIC A mechanism that asymptotically
converges to the unit information
prior (g =N) or the risk in ation
criterion (g = K2). That is, the g
prior is set to g = max(N;K2).

FLS (2001b)

3 HQ The Hannan-Quinn criterion.
CHQ = 3 as n becomes large.

Hannan-
Quinn (1979)

4 EBL Prior information decreases even
slower with sample size and there
is asymptotic convergence to the
Hannan-Quinn criterion with
CHQ=1.

Hannan-
Quinn (1979)

5 RIC Sets g = K2 and conforms to the
risk in ation criterion

Foster and
George
(1994)

6 Hyper − g This option uses a family of priors
on g that provides improved mean
square risk over ordinary maximum
likelihood estimates in the normal
means problem. An advantage of
the hyper-g prior is that the poste-
rior distribution of g given a model
is available in closed form.

Strawder
(1971)

source: Eicher et al 2009

6



3 Determining Growth Determinants

Since economic growth is the fundamental driver of living standards, it is of great
interest to economists and policymakers alike to identify which of the numerous
theories proposed receive support from the data and which determinants have a
significant effect on growth. Attempts to identify robust growth determinants date
back to Levine and Renelt (1992), who used extreme bounds analysis. Formal
BMA analysis was conducted by Brock and Durlauf (2001), FLS (2001a) and
SDM (2004). The dataset used across studies always contains a core of at least 41
candidate regressors, motivated by Sala-i-Martin (1997) and FLS (2001a).
In this section a time series cross-sectional (panel) data of 126 countries has been
used in the analysis. The annual time period ranges from 2010 to 2014. The
variables considered for the countries are the GDP, Government Consumption
rate, Inflation rate, Fiscal Policy Rate,Unemployment Rate, Industrial Production,
Trade Opennes, Exchange Rate and Public Debt.
Data for all these variables, was obtained from World Bank World Development
Indicators (WDI). Trade openness data was obtained using the simple measure
(exports plus imports divided by GDP). For exports, imports and GDP data,
these were obtained also from World Bank WDI. For datasets with small numbers
of observations, priors play important role.

4 Analysis of Results

In this section we will present Posterior Inference, Posterior Inclusion Probability
(PIP) and the Predictive Inference results for three model priors discussed in the
methodology above. We focus, in particular, on the effect of the prior choices on
posterior model distributions, the spread of the posterior mass over model space,
posterior model probabilities and the inclusion of individual regressors.

4.1 Assessment of Prior Distributions Using Posterior Inference

Tables 2,3 and 4 present the posterior inference using the three stated model priors
against each of the parameter priors discussd above. The response variable is only
associated with the stochastic error term. The average posterior probability of
the model used here indicates higher probability value for small samples but lower
(0.52) compared to Table 2 as n tends to infinity (0.9996). It is also noticed that
the average probability for the two models is equally likely with a value of 0.9678.
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Figure 1: Model Probabilities Composition

Table 2: Posterior Inference using Uniform Model Prior(Mean and Standard De-
viation)

PARAMETER PRIORS
VARIABLES UIP RIC BRIC HQ EBL HYPER

FISCAL BALANCE 1054.96 1038.78 1054.96 1050.17 995.17 996.29
(168.19) (167.06) (168.19) (167.83) (164.45) (164.53)

GOVERNMENT CONSUMPTION -1634.04 -1533.83 -1634.04 -1586.27 -1450.64 -1456.21
(417.83) (386.94) (417.83) (403.86) (371.42) (373.83)

INDUSTRIAL PRODUCTION -533.77 -623.26 -533.77 -583.41 -621.90 -617.37
(343.94) (285.33) (343.94) (318.01) (257.54) (262.12)

TRADE OPENNESS -1159.97 -1380.19 -1159.97 -1280.33 -1384.02 -1373.64
(795.83) (665.49) (795.83) (740.27) (598.76) (609.71)

POLICY INTEREST -32.64 -75.64 -32.64 -47.88 -111.24 -104.51
(105.29) (149.48) (105.29) (124.69) (166.25) (163.33)

INFLATION RATE 17.26 36.58 17.26 24.10 53.02 49.93
(54.44) (73.92) (54.45) (62.83) (81.94) (80.53)

PUBLIC DEBT 0.8025 2.0908 0.8025 1.2051 3.18 3.50
(6.49) (10.2306) (6.46) (7.87) (13.42) (12.91)

EXCHANGE RATE -0.6794 -0.0176 -0.0068 0.0103 -0.031 -0.0285
(0.0648) (0.1026) (0.0648) (0.0792) (0.13) (0.129)

UNEMPLOYMENT RATE 3.0622 7.5331 3.0622 4.5115 13.04 12.05
(30.40) (47.57) (30.40) (36.88) (62.26) (59.898)
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Table 3: Posterior Inference using Fixed Model Prior (Mean and Standard Devi-
ation)

PARAMETER PRIORS
VARIABLES UIP RIC BRIC HQ EBL HYPER

FISCAL BALANCE 1054.96 1038.78 1054.96 1050.17 995.17 996.29
(168.19) (167.06) (168.19) (167.83) (164.45) (164.53)

GOVERNMENT CONSUMPTION -1634.03 -1533.83 -1634.04 -1586.27 -1450.64 -1456.21
(417.83) (386.94) (417.83) (403.86) (371.42) (373.83)

INDUSTRIAL PRODUCTION -533.77 -623.26 -533.77 -583.41 -621.90 -617.37
(343.94) (285.33) (343.94) (318.01) (257.54) (262.12)

TRADE OPENNESS -1159.97 -1380.19 -1159.97 -1280.33 -1384.02 -1373.64
(795.83) (665.49) (795.83) (740.27) (598.76) (609.71)

POLICY INTEREST -32.64 -75.64 -32.64 -47.88 -111.24 -104.51
(105.29) (149.48) (105.29) (124.69) (166.25) (163.33)

INFLATION RATE 17.26 36.58 17.26 24.10 53.02 49.93
(54.44) (73.92) (54.45) (62.83) (81.94) (80.53)

PUBLIC DEBT 0.8025 2.0908 0.8025 1.2051 3.18 3.50
(6.49) (10.2306) (6.46) (7.87) (13.42) (12.91)

EXCHANGE RATE -0.6794 -0.0176 -0.0068 0.0103 -0.031 -0.0285
(0.0648) (0.1026) (0.0648) (0.0792) (0.13) (0.129)

UNEMPLOYMENT RATE 3.0622 7.5331 3.0622 4.5115 13.04 12.05
(30.40) (47.57) (30.40) (36.88) (62.26) (59.898)

Table 4: Posterior Inference using Random Model Prior(Mean and Standard De-
viation)

PARAMETER PRIORS
VARIABLES UIP RIC BRIC HQ EBL HYPER

FISCAL BALANCE 1058.18 1039.04 1058.18 1051.89 984.51 986.43
(168.52) (167.12) (168.52) (168.04) (163.94) (164.14)

GOVERNMENT CONSUMPTION -1697.67 -1538.33 -1697.67 -1620.22 -1421.73 -1429.57
(433.59) (386.88) (433.59) (416.77) (364.69) (368.17)

INDUSTRIAL PRODUCTION -460.28 -618.27 -460.28 -544.398 -630.17 -625.17
(367.38) (290.14) (367.38) (339.34) (242.69) (248.75)

TRADE OPENNESS -992.85 -1369.16 -992.85 -1190.22 -1404.63 -1392.40
(839.21) (674.78) (839.21) (784.01) (561.42) (575.96)

POLICY INTEREST -29.29 -94.07 -29.29 -49.84 -164.32 -154.22
(100.22) (161.40) (100.22) (126.83) (177.88) (176.87)

INFLATION RATE 15.54 45.22 17.26 24.95 78.42 73.64
(51.89) (79.61) (54.45) (63.699) (18.50) (87.54)

PUBLIC DEBT 0.7644 32.30 0.7644 1.3956 8.1984 7.46
(6.2923) (12.49) (6.29) (8.42) (18.50) (17.81)

EXCHANGE RATE -0.0063 -0.02595 -0.0063 -0.0116 -0.0632 -0.0577
(0.0627) (0.1238) (0.0626) (0.0839) (0.1870) (0.1794)

UNEMPLOYMENT RATE 2.853 10.898 2.85 5.0263 25.84 23.63
(29.40) (57.37) (29.40) (39.03) (87.39) (83.75)

Note: The values above shows the posterior mean of the economic variables un-
der different parameter priors and the Posterior standard deviations in the brack-
ets.
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4.2 Assessment of Prior Distributions Using Posterior Inclusion Probabil-
ity(PIP)

Tables 5,6 and 7 report the BMA posterior inclusion probabilities for all 6 prior
distributions applied to the growth dataset. Table 5 shows the result of the uni-
form model priors against the 6 parameter priors. Table 6 shows the result for fixed
model prior and table 7 for random model prior. Posterior inclusion probabilities
and the number of regressors that exhibit evidence of an effect on growth vary
substantially across priors. The number of regressors whose inclusion probability
exceeds 50% ranges from a low of four regressors (Priors UIP, Hyper and RIC) to
a high of 4 regressors (EBL) considering random model prior.

Table 5: Posterior Inclusion Probability(PIP) for Uniform Model Prior
PARAMETER PRIORS

VARIABLES UIP RIC BRIC HQ EBL HYPER
FISCAL BALANCE 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

GOVERNMENT CONSUMPTION 0.9966 0.9982 0.9966 0.9974 0.9986 0.9985
INDUSTRIAL PRODUCTION 0.7848 0.9164 0.7848 0.8551 0.9496 0.9427

TRADE OPENNESS 0.7578 0.9027 0.7578 0.8342 0.9409 0.9330
POLICY INTEREST 0.1227 0.2838 0.1227 0.1791 0.4368 0.4103
INFLATION RATE 0.1267 0.2762 0.1267 0.1788 0.4430 0.3977

PUBLIC DEBT 0.0479 0.1234 0.0479 0.0717 0.2297 0.2115
EXCHANGE RATE 0.0448 0.1154 0.0448 0.0673 0.2147 0.1977

UNEMPLOYMENT RATE 0.0441 0.1127 0.0441 0.0659 0.2098 0.1932

Table 6: Posterior Inclusion Probability(PIP) for Fixed Model Prior
PARAMETER PRIORS

VARIABLES UIP RIC BRIC HQ EBL HYPER
FISCAL BALANCE 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

GOVERNMENT CONSUMPTION 0.9966 0.9982 0.9966 0.9974 0.9986 0.9985
INDUSTRIAL PRODUCTION 0.7848 0.9164 0.7848 0.8551 0.9496 0.9427

TRADE OPENNESS 0.7578 0.9027 0.7578 0.8342 0.9409 0.9330
POLICY INTEREST 0.1227 0.2838 0.1227 0.1791 0.4368 0.4103
INFLATION RATE 0.1267 0.2762 0.1267 0.1788 0.423 0.3977

PUBLIC DEBT 0.0479 0.1234 0.0479 0.0717 0.2297 0.2115
EXCHANGE RATE 0.0448 0.1154 0.0448 0.0673 0.2147 0.1977

UNEMPLOYMENT RATE 0.0441 0.1127 0.0441 0.0659 0.2098 0.1932
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Figure 2: Cummulative model inclusion probabilities Probabilties

Table 7: Posterior Inclusion Probability(PIP) for Random Model Prior
PARAMETER PRIORS

VARIABLES UIP RIC BRIC HQ EBL HYPER
FISCAL BALANCE 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

GOVERNMENT CONSUMPTION 0.9964 0.9983 0.9964 0.9971 0.9992 0.999
INDUSTRIAL PRODUCTION 0.6791 0.9082 0.6791 0.7992 0.9689 0.9606

TRADE OPENNESS 0.6508 0.8950 0.6508 0.7767 0.9637 0.9544
POLICY INTEREST 0.1102 0.3438 0.1101 0.1858 0.6396 0.6112
INFLATION RATE 0.1142 0.2762 0.1267 0.1788 0.4430 0.3977

PUBLIC DEBT 0.0451 0.1837 0.0451 0.0814 0.4740 0.4324
EXCHANGE RATE 0.0420 0.1718 0.0420 0.0760 0.4532 0.4126

UNEMPLOYMENT RATE 0.0414 0.1680 0.0414 0.00744 0.4468 0.4065

Figure 2 below shows the cumulative model inclusion probabilities based on best
200 models. It also depicts the inclusion of a regressor with its sign in the model
selection process. This image plot is based on the UIP parameter [rior against
uniform model priro. Blue color corresponds to a positive coefficient, red to a
negative coefficient, and white to non-inclusion(a zero coefficient) of the respective
variable. The horizontal axis is scaled by the models’ posterior model probabili-
ties. It is confirmed that the selected best model with PMP of 29% includes only
the real interest rate of red colour (a negative sign of the posterior mean).

11



4.3 Assessment of Prior Distributions Using Predictive Performance

We now compare the competing default priors on the basis of predictive per-
formance on hold-out samples, a neutral criterion that allows the comparison of
different methods on the same footing. We compare the performance of the full
predictive distributions produced by the methods, as well as that of point pre-
dictions. We use a proposed method by Theo Eicher (”bma.compare” proposed
by Theo Eicher(2010) , programmed in R) simultaneously evaluates all 6 differ-
ent parameter priors and any specific prior expected model size, as well as their
predictive performance. We divide the dataset randomly into a training set,DT ,
which is used to estimate the BMA predictive distribution, and a hold-out set,DH

, which is used to assess the quality of the resulting predictive distributions. We
use three different criteria, or scoring rules: the mean squared error (MSE) of
prediction, the log predictive score (LPS; Good, 1952), and the continuous ranked
probability score (CRPS; Matheson and Winkler , 1976). All our scoring rules are
negatively oriented, that is, lower is better.

The MSE is the most popular measure to assess predictive performance in
economics. It focuses on point estimation, while the LPS and the CRPS assess the
entire predictive distribution. The CRPS and the LPS assess both the sharpness
of a predictive distribution and its calibration, namely the consistency between
the distributional forecasts and the observations. However, the LPS assigns harsh
penalties to particularly poor probabilistic forecasts, and can be very sensitive
to outliers and extreme events (Weigend and Shi, 2000; Gneiting and Raftery,
2007). This may be a factor when we split our small sample to examine predictive
performance. The CRPS is more robust to outliers (Carney, Cunningham and
Byrne, 2006; Gneiting and Raftery, 2007), and hence it is our preferred measure
of the performance of the predictive distribution as a whole.
The MSE of prediction is conventionally used to assess the quality of point predic-
tions. The BMA point prediction for an observation in the hold-out dataset ,ynew,
with predictors xnew, is

ynew, BMA =
k∑

k=1

E[ynew|xnew, DT ,Mk]pr(Mk)|DT

The MSE of prediction is then

1/nH

∑
ynew∈DH

(ynew − ŷnew, BMA)2

where nH is the number of observations in DT .
The other two scoring rules measure the quality of the predictive distribution as
a whole. The BMA predictive distribution is

prBMA, (ynew) =
k∑

k=1

pr[ynew|xnew, DT ,Mk]pr(Mk)|DT
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The LPS is then defined as

LPS = −
∑

ynew∈DH

logprBMA(ynew)

Let FBMA(ynew) be the cumulative distribution function corresponding to the BMA
predictive densityFBMA(ynew). Then the CRPS for the single observation ynew is

CPRS(ynew) =

∫ + inf

− inf

(FBMA(y)− 1{ynew < y})2dy

where 1{ynew < y} = 1 if ynew < y and 0 otherwise. The CRPS for the hold-out
dataset as a whole is then

CPRS = 1/nH

∑
ynew∈DH

CPRS(ynew)

The CRPS measures the area between a step function at the observed value and
the predictive cumulative distribution function. Unlike the LPS, it is defined when
the prediction is deterministic; in that case it reduces to the mean absolute er-
ror (Hersbach, 2002). The LPS and the CRPS assess both the sharpness of a
predictive distribution and its calibration, namely the consistency between the
distributional forecasts and the observations. However, the LPS assigns particu-
larly harsh penalties to poor probabilistic forecasts, and so can be very sensitive to
outliers and extreme events (Weigend and Shi, 2000; Gneiting and Raftery, 2007).
The CRPS is more robust to outliers (Carney et al., 2009; Gneiting and Raftery,
2007), and hence it is our preferred measure of the performance of the predictive
distribution as a whole. We also report the LPS for comparability with previous
work, notably that of FLS (2001b) and LS. We divided the dataset randomly into
a training set that contains 80% of the data and thus leaves 20% of the data to be
predicted, and we repeated the analysis for 400 different random splits, reporting
the average over all splits.

Table 8 shows the predictive performance of the 6 parameter priors in conjunc-
tion with uniform, fixed and random model priors as evaluated by the MSE, LPS
and CRPS. The MSE and the CRPS agree that our baseline UIP decisively out-
performed all the other priors. The LPS suggests, however, that EBL and BRIC
outperform UIP. Since this result runs counter to the results from the two other
scoring rules, it seems possible that the difference is due to influential observations
in the dataset or outliers in a particular subsample. Several of the regressors have
extreme outlying values. When such cases are in the test set, they can have a
large effect on the LPS, while the CRPS is more robust to individual cases. Given
the known outlier sensitivity of the LPS, we discount the results it gives for this
dataset, and conclude that EBL performs best in this case.
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Table 8: Parameter priors and predictive performance: performance scores relative
to parameter UIP

Prior Uniform model Fixed model Random model
MSE
BRIC 0.715 1.000 1.03
HQ 1.08 1.06 0.907
EBL 0.621 0.628 0.969
RIC 0.983 0.767 0.926

HYPER 0.808 0.903 0.786
CRPS
BRIC 0.498 0.567 0.525
HQ 0.583 0.556 0.533
EBL 0.454 0.489 0.558
RIC 0.531 0.505 0.543

HYPER 0.539 0.551 0.524
LPS

BRIC 160 179 177
HQ 183 183 172
EBL 155 154 176
RIC 170 163 174

HYPER 166 173 164

Table 9 represents the MCMC and the exact posterior probabilities for the
first best 10 models. The numbers in the left-hand column represent analyti-
cal PMPs (PMP (Exact)) while the right-hand side displays MCMC-based PMPs
(PMP (MCMC)). Both decline in roughly the same fashion, however sometimes
the values for analytical PMPs differ considerably from the MCMC-based ones.
This comes from the fact that MCMC-based PMPs derive from the number of
iteration counts, while the ”exact” PMPs are calculated from comparing the ana-
lytical likelihoods of the best models. Both columns sum up to the same number
and show that in total, the top 2,000 models of posterior model mass.
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Figure 3: Posterior Marginal Density

Table 9: The MCMC and the Exact Posterior probabilities for the First Best 10
Models

Models PMP (Exact) PMP (MCMC)
021 0.8670 0.8670
025 0.0255 0.0260
031 0.0212 0.02124
0a1 0.0199 0.020
061 0.01879 0.0188
023 0.01766 0.0177
029 0.0177 0.0176
035 0.00097 0.00097
0a5 0.00094 0.00094
065 0.00092 0.00092

Figure 3 shows the computed marginal posterior densities are a Bayesian model
averaging mixture of the marginal posterior densities of the individual models. The
accuracy of the result therefore depends on the number of ”best” models. Note
that the marginal posterior density can be interpreted as ”conditional on inclu-
sion”: If the posterior inclusion probability of a variable is smaller than one, then
some of its posterior density is Dirac at zero. Therefore the integral of the returned
density vector adds up to the posterior inclusion probability, i.e., the probability
that the coefficient is not zero.

Figure 4,5 and 6 below show the posterior inclusion probabilities plot of the 6
parameter priors under different model priors. The trend shows the posterior in-
clusion probabilities of the economic variables captures by the different parameter
priors. Figure 4 shows the trend of the priors under uniform model prior. Figure 5
shows the trend under fixed model prior and figure 6 for the random model prior.
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5 Conclusion

To identify the best prior for our growth dataset, we examine the predictive per-
formance of 6 candidate default parameter priors that have been proposed in the
economics and statistics literature, as well as three candidate model priors. We
argue that predictive performance is a neutral criterion for comparing different
priors, and we introduce an improved scoring rule. In addition, we examine these
priors success in identifying the right determinants in the datasets. The Empiri-
cal Bayes Local(EBL) for the parameters performed consistently better than the
other 5 priors in the growth data, and in the data, and as measured by all three
scoring rules. We view the random model prior together with the Empirical Bayes
Local(EBL) as a reasonable default prior and starting place, but our results also
highlight that researchers should also assess other possibilities that may be more
appropriate for their data.

In spite of widespread doubts about the ability of the small cross-country growth
dataset to provide a rich set of growth determinants, our analysis shows that the
random model prior together with the Empirical Bayes Local(EBL) robustly iden-
tifies far more growth determinants than other priors. The random model prior
discovers substantial evidence for 5 growth determinants as compared to others
considered. Hence we show that the appropriate prior in the growth context de-
livers a rich set of robust growth determinants that also generate good predictive
performance. The new regressors prominently feature fiscal balance,trade open-
ness, government consumption and industrial production. Thus our results provide
support for several new growth theories.
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Figure 4: Posterior Inclusion Probability for Uniform Model Prior

Figure 5: Posterior Inclusion Probability for Fixed Model Prior

Figure 6: Posterior Inclusion Probability for Random Model Pror
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Figure 7: Posterior Model size Distribution for uniform model prior

Figure 8: Posterior Model size Distribution for fixed model prior
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Figure 9: Posterior Model size Distribution for random model prior
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