
Fund Management Strategies for a Defined Contribution (DC) 

Pension Scheme under the Default Fund Phase IV 

Bright. O. Osu1, Kevin. N. C Njoku2 and Othusitse S. Basimanebotlhe  

1Department of Mathematics, Michael Okpara University of Agriculture, Umudike, Nigeria. 

2Department of Mathematics, Imo State University, Owerri, Imo State, Nigeria. 

3Department of Mathematics, University of Botswana, Private Bag 0022, Gaborone, Botswana. 

Abstract 

This work studied and developed pension fund management strategies in a DC scheme, during the 

distribution phase. The Pension plan member (PPM) is allowed to invest in a risk-free and a risky 

asset, under the constant elasticity of variance (CEV) model. The constrained optimization 

program was developed and transformed into a nonlinear partial differential equation, using the 

associated Hamilton Jacobi Bellman equation. The explicit solution of the constant relative risk 

aversion (CRRA) is obtained, using Legendre transform, dual theory, and change of variable 

methods. It is established herein, with a proposition that the elastic parameter, β, say, must not 

necessarily be equal to one (β≠1). A theorem is constructed and proved on the pension wealth 

investment strategy. Through a sensitivity analysis, we exposed the dangers of CRRA utility 

options during the period after retirement. A numerical simulation was used to buttress our 

investigation. 
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1. Introduction  

There are two major designs of pension plan, namely, the defined benefit (DB) pension, and the 

defined contribution (DC) pension plan. As the names implies, in that of the DB, the benefits of 

the plan member are defined, and the sponsor bears the financial risk. Whereas, in the DC pension 

plan, the contributions are defined, the retirement benefits depends on the contributions and the 

investment returns, and the contributors (the plan members) bears the financial risk. Recently, the 

DC pension has taken dominance over the DB pension plan in the pension scheme, since DC 

pension plan is fully funded, which makes it easier for the plan managers (Pension Fund 

Administrators (PFAs’) and the Pension Fund Custodians (PFCs’) to invest equitably in the 

market, and also makes it easier for the plan members to receive their retirement benefit as and 

when due.  

             Investment strategies of the contributions, which in turn is a strong determinant of the 

investment returns vis-a-vis the benefits of the contributors at retirement must be given optimum 

attention. Recent publications in economic Journals and other reputable Mathematics and Science 

Journals have brought to light, variety of methods of optimizing investment strategies and returns. 



For instance, some researchers have made various contributions in this direction, particularly, in 

DC Pension Plan. Cairns et al [4], did a work on, “stochastic life styling: optimal dynamic asset 

allocation for defined contribution pension plans. In their work, various properties and 

characteristics of the optimal asset allocation strategy, both with and without the presence of non-

hedge able salary risk were discussed. The significance of alternative optimal strategy by pension 

providers was established. Wang, and Chen [15] investigated a defined contribution (DC) pension 

plan investment problem during the accumulation phase under the multi-period mean-variance 

criterion. Mwanakatwe et al [12] analysed the optimal investment strategies for a DC pension fund 

under the Hull-White interest rate model. Under this model, the pension fund manager can invest 

capital in the bank account, stock index, and real estates. More so, Battocchio et al [2] studied 

optimal pension management in a stochastic framework, they came out with a significant result. 

In order to deal with optimal investment strategy, the need for maximization of the expected utility 

of the terminal wealth became necessary. Example, the Constant Relative Risk Aversion (CRRA) 

utility function, and (or) the Constant Absolute Risk Aversion (CARA) utility function were used 

to maximize the terminal wealth. Cairns et al [4], Gao [8], Boulier, et al [3], Deelstra, et al [7], and 

Xiao et al [16] used CRRA to maximize terminal wealth. However, Gao [10] used the CRRA and 

the CARA to maximize terminal wealth, and this triggered our research. Ours is a modification of 

his work, by considering different categories of contributors, with some other additional 

assumptions made. Our task in this work is to establish, with a theorem the fact that the elastic 

parameter 1  , which is lacking in his work. We used a similar approach in obtaining some of 

our results. 

1.1 Preliminaries 

We start with a complete and frictionless financial market that is continuously open over the fixed 

time interval [0, 𝑇], for 𝑇 > 0, representing the retirement time of any plan member. 

     We assume that the market is composed of the risk-free asset (cash), and risky asset (stock). 

Let (Ω, 𝐹, 𝑃) be a complete probability space, where Ω is a real space and 𝑃  is a probability 

measure,     ,
s tw t w t are two standard orthogonal Brownian motions,     ,t sF t F t are right 

continuous filtrations whose information are generated by the two standard Brownian motions 

    ,
s tw t w t , whose sources of uncertainties are respectively to the stock market and time 

evolution. 

2. Methodology 

2.1 Hamilton-Jacobi-Bellman (HJB) equation 

Assume we represent su u as the strategy and we define the utility attained by the contributor 

from a given state y at time 𝑡 as  

        , , : ,u ut r y E U Y t r t r y t y      ,                                                                      (2.1.1) 

Where 𝑡 is the time, 𝑟 is the short interest rate and y  is the wealth. Our interest here is to find the 

optimal value function  



   , , , ,u ut r y Sup t r y                                                                                                      (2.1.2) 

and the optimal strategy 
su u   such that 

   , , , ,
u

t r y t r y                                                                                                              (2.1.3) 

2.2. Legendre Transformation 

The Legendre transform and dual theory help to transform the nonlinear partial differential 

equation that is formed due to (2.1), to a linear partial differential equation. 

Theorem 2.2 (Jonsson and Sircar [11]): Let 𝑓: 𝑅𝑛 → 𝑅 be a convex function for 𝑧 > 0, then the 

Legendre transform is defined as; 

    max yL z f y zy  ,                                                                                                      (2.2.1)  

Where 𝐿(𝑧) is the Legendre dual of  f y . 

Since  f y  is convex, from theorem 2.2 we defined the Legendre transform 

    ˆ , , , , : 0t r z Sup t r y zy y     , 0 t T                                                              (2.2.2) 

Where ̂ is the dual of   and 𝑧 > 0 is the dual variable of 𝑥.  

The value of y where this optimum is attained is denoted by ℎ(𝑡, 𝑟, 𝑧), so that 

      ˆ, , inf : , , , ,h t r z y t r y zy t r z    0 t T  .                                                          (2.2.3) 

The function h  and ̂ are closely related and can be referred to as the dual of . These functions 

are related as follows 

   ˆ , , , ,t r z t r h zh                                                        (2.2.4) 

where, 

  ˆ, , , ,y zh t r z y z h     .                                                                                                 (2.2.5) 

At terminal time,T , we denote 

    ˆ : 0  U z Sup U y zy y T    , and       ˆ: Uz Sup y y zy U z    . 

As a result  

   1z U z                                   (2.2.6) 

Where   is the inverse of the marginal utility U and note that    , ,T r y U y  . 

At terminal time 𝑇, we can define 

      0
ˆ, , inf : t, ,yh T r y y U y zy r z   and     0

ˆ t, , yr z Sup U y zy    



so that     1T, ,h r z U z .  

3. The Model   

This session introduces the financial market and proposes the optimization problems in the Default 

Fund phase IV. 

3.1The Financial Market 

Here, we consider a financial market that consists of a risk-free asset (i.e., cash in the bank) and a 

risky asset (stock). 

Let the risk-free asset, tC , say, at any positive time, t , evolve as;   

t tdC rC dt
                                                                                                                         

(3.1.1) 

where r represents constant rate of interest. 

Next, we denote the price of the risky asset (stock) at any positive time, t , by tS , as in Gao [10], 

Akpanibah et al [1], and Njoku et [13] thus; 

1

t t t tdS S dt kS dW  
                                                                                                         

(3.1.2) 

 

where  r represents the instantaneous rate of return on stock, β (β ≤ 0) is the elastic constant 

parameter, k is a constant, tkS   represents the instantaneous volatility. 

Let  ; 0tW t  denote a standard Brownian motion, defined on a probability space,  ,F,P where 

 tF F is an augmented filtration generated by the Brownian motion. 

3.2 Model Assumption 

Consistent with the Nigerian Pension Reform Act of 2004 [14], we make the following 

assumptions  

(a) The Pension Scheme accumulates wealth. 

(b) There are different categories of contributions. 

(c) The contributors will not willingly withdraw from the scheme. 

(d) Payments are made to the retirees. 

(e) An accumulated amount is paid to the Next-of-kin of the dead contributors, at  the 

instance of death by any contributor(s). 

(f) A certain amount is retained from the payment made to the Next-of-kin of  

dead contributors, by the Pension managers (i.e., management fee). 

 



3.3 Model Formation (i.e., the Optimization Program) 

The fund accruing from the contributors can be invested in both Bank and stock. Particularly, the 

fund to be invested by the fund manager is the surplus, which is the fund that is available after 

each period of routine disbursements. That is, let the contribution process be 

  11 i idy C dt  
                                                                                                                (3.3.1) 

and the payment process  

 1 1i i sdj b dt a dW    .                                                                                                    (3.3.2) 

Then the surplus 

   1 1 11 i i i i sdP dy dj C dt b dt a dW   
          

   1 1 1 1i i i i i sC C b dt a dW        
.                                                                          (3.3.3) 

Therefore our task is to find an optimal investment strategy for the assets for the remaining periods 

after retirement, to enable us maximize the expected utility at each retirement period. 

Without loss of generality, the pension wealth is denoted by  tY  at any time 0 t T T N    , 

and it evolves stochastically, thus: 

           1 1 1 11t t
s s i i i i i s

t t

dS dC
dY t u Y t u Y t C C b dt a dW

S C
           

                      

(3.3.4) 

1,...,1,0  ni  and 0 1 20, 1, 2,..,     i (an integer) = staff loading, where; 01 ia  represents 

various amount that is paid to the Next-of-Kin of the dead contributors, 01 ib  represents various 

amount paid to retired contributors, 01 ic  represents various amount contributed,  is the 

service charge deducted from the  1ia  . 

However, relevant to the provisions of the Nigerian Pension Reform Act of 2004 [14], on the 

eligibility condition for signing up on the Pension Scheme, by both government and private 

sectors, we have; 

           1 1 1 11t t
s s i i i i i s

t t

dS dC
dY t u Y t u Y t C C b dt a dW

S C
            ,                         (3.3.5) 

4,5.., 1,i n  and 4 5 64, 5, 6,..., n n        (a positive integer)= staff loading. 

Assuming, 1 1 1i i d ib C r C    ; dr r , and dr represents discounted interest, then 

           1 11t t
s s i d i i s

t t

dS dC
dY t u Y t u Y t r C dt a dW

S C
         ,                                (3.3.6) 



4,5,.., 1,i n  and 4 5 64, 5, 6,..., , 0n in         (integer)= staff loading. 

Taking into (3.1.1), (3.1.2) and (3.3.6), one obtains the wealth process 

 

           

           

            

1 1

1 1

1 1

1s t s i d i i s

s s t s i d i i s

s s i d i s t i s

dY t u Y t dt kS dW u Y t rdt r C dt a dW

u Y t dt u Y t kS dW Y t rdt u Y t rdt r C dt a dW

u Y t Y t r u Y t r r C dt u Y t kS dW a dW







  

  

  

 

 

 

         

       

       
 

                                                                                                                                            (3.3.7)        

4,5,.., 1,i n  and 4 5 64, 5, 6,..., , 0n in         (integer)= staff loading. 

Based on the wealth process in (3.3.7), the Pension manager seeks a strategy,
su , which maximizes 

the utility function, such that   max (T) , (t)su E U Y u   . Where u( )  is an increasing concave 

utility function, which satisfies the Inada conditions; 

( ) 0,U    and (0)U    (cf. Gao [10]) 

4. Applying the Associated HJB Equation to maximize equation (3.3.7) 

 

Let the maximizing equation be, 

              1 1 ,

0,1 0

s s i d i s t i s

s s

dY t u Y t Y t r u Y t r r C dt u Y t kS dW a dW

u u

          

  
 

Then, applying the associated HJB to the maximizing equation above, one obtains 

 

   

 

2 2 2 2 2 2 2

1 1

2 2 2 1 1

1 1

1 1 1
(t) (t)

2 2 2

1 1 1 1 1
(t) (t) u 0

2 2 2 2 2

t s s y i d i y ss s yy s i yy

s yy i yy s sy i sy sy

S Y u r r r C k S u Y k S u Y kS a

u Y kS a k S Y kS a kS

  

   

          

         



 

  

 

          

      
                                                                                                                                               

(4.1) 

To obtain the optimal value *

su , we differentiate (4.1) with respect to su  

   

  

22 2 2 1 1

1 1 1

2 2 2 2

1

2 2

1 1 1 1

2 2 2 2

1 1 1
(t) (t) (t)

2 2 2
sup 0

1
(t)

2

s

t s i d i y ss i yy i sy sy

s y s yy s i yy s yy

u

s sy

s r C k s a ks a ks

Y u r r u Y k S u Y kS a u kS

k s Y u

  

  



           

      

 

  

  





       

 
      

  
 
  

,     (4.2) 



so that 

 

   

* 1

2 2 2

1*

2 2 2

.
2 (t) 2 (t) (t) 2 (t)

.
2 (t) (t) 2 (t)

y syi
S

yy yy

y syi

S

yy yy

ra
u

Y kS Y kS Y k S Y S

a r
u

Y kS Y k S Y S

   

  

   

 

    

 










    

 
   

.                                               (4.3) 

Putting back (4.3) into (4.2) gives; 

 
  

           

1 2 2 2

1 1

2 22 2 2 4 22 !

1 1

2 2 2

1
(t)

2 2

0
4 2 2 2 8

i

t s i d i y ss yy

y y sy syi i

sy

yy yy yy

r a
s Y r r C k S c

kS

r r k SkS a kS a

k S S







 

  
      

          


  

 





 



  
       

 

    
      
          

(4.4) 

4,5,.., 1, r di n r   and 4 5 6 14, 5, 6,..., , 1, 0n n in n            (integer)= staff loading, 

and  

     
2 2 2

1 1 1

1 3

2 4
i ic a a       .                                                                                      (4.5) 

Having seen that stochastic control problem described in the previous session has been converted 

to a nonlinear PDE, our next tax is to solve for  in (4.4)and subsequently substitute it into (4.3), 

to enable us obtain the optimal wealth investment strategy (i.e., the control strategy).In order to 

achieve this, we use employ the services of the Dual theory and Legendre transformation. 

5. Transforming (4.4) into its Dual and applying Legendre Transformation 

Here, we transform the nonlinear second order partial differential equation (4.4) into a linear PDE, 

using the Dual theory and Legendre transformations in Gao [10], that is; 

zy  and

zz

sz

ys

zz

yy

zz

sz

sssssstt













ˆ

ˆ
,

ˆ

1
,

ˆ

ˆ
ˆ,ˆ,ˆ

2 



 .                                              (5.1) 

Putting (5.1) into (4.4) 

 
 

 

           

2 2 2 1
1 1

2 2 22 1 2 4 2
1 1 2

2 2 2

1
ˆ ˆ ˆ(t)

ˆ2 2

ˆ ˆ
ˆ ˆ 0

ˆ ˆ4 2 2 2 8

t s i d i i ss

zz

i i sz sz
zz sz

zz zz

r c
S Y r r C a z k S

kS

kS a kS a r r k S
z z

k S s







 

 
     



        
 

 



 



 



 
        

 

    
      
  

             (5.2) 

4,5,.., 1, r di n r   and 4 5 6 14, 5, 6,..., , 1, 0n n in n            (integer)= staff loading, 

and      
2 2 2

1 1 1

1 3

2 4
i ic a a       . 



Taking zhy ̂  into (5.2), and differentiating with respect to z , we obtain 

 
          

         

2 2 1

1 1 12 2 2 1
1 2 2
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where,  
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6. Test For Some Utility Functions 

Here, we seek to obtain the explicit solution for the CRRA utility functions, using change of 

variable method. 

6.1 Explicit solution to the CRRA utility  

Following Gao [10] and Zhang et al [5], we use 
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1, , , 1,ph t s z z p p o   .                                                                                              (6.1.1) 

Let us conjecture a solution to (5.3), thus 
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Now, obtaining the various first and second partial derivatives with respect to , ,t s z , we have  
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Putting (6.1.2) and (6.1.3) into (5.3), we obtain 
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Factoring out terms that depends on 1

1

pz , and z , and the ones that is independent of either of the 

two mentioned, we split (6.1.4) into three, thus 
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            (6.1.7) 

Solving (6.1.5) at the boundary condition,   0a T  , we obtain the continuous annuity of duration, 

T t , yields  
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        , and rt  are the so called continuous 

annuity of duration T t , and the continuous technical rate, respectively. 

From (6.1.6), we propose the following 
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Proof: Suppose, for contradiction, 1, 1
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
   .We observe that either of the following two cases 

arises 

Case 1: 
 1

0
sg p

g


  1p p  1, by definition of p in (6.1.1). 
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contradicting the assumption that 1
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Hence, the proposition holds, and this completes the proof.  

Corollary 6.1.1: The correlation between stock and time, represented, s tdw dw is equal to 1, 

thereby making 1
2


 , holds only if stock attains its maximum yield at every increase in time, 

which is not realistic.   

 

Lastly, solving (6.1.7), observe firstly that the equation contains some variable coefficients, 
 22 2 2, , ,s s s s
     , and this makes obtaining solution somewhat difficult. However, in order to 

overcome this difficulty, we employ the services of power transformation and change of variable 

technique as in Cox [6]. 

Assuming, 
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then putting (6.1.10) and (6.1.11) into (6.1.7), gives 
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where, .
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s s 
 . 

Following Proposition 6.1.1, we observe that some cases may arise in (6.1.12), 0, 1   , 

provided 0, 1p p   

Case 1: 0  (i.e., the GBM case), yields 
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Next, we find the solution of (6.1.13), using the structure below 
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Putting (6.1.14) into (6.1.13) yields 
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where .
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Observe that we can further split (6.1.15) by separating the terms that depends on j , thus 
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Solving (6.1.16) at the initial condition   0B T  , yields 
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where su r   . 

Next, we solve (6.1.17) at initial condition   1A T  , yields 
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where, su r   . 

Taking into (6.1.18), (6.1.19) and (6.1.14), we have 
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In this sequel, we state; 

Theorem 6.1: Let equations (6.1.2), (6.1.8), (6.1.10) and (6.1.20) hold. Then the optimal wealth 

investment made in stock is given as; 
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Taking into (6.1.8), (6.1.10), (6.1.20) and (6.1.2), we have 
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Differentiating (6.1.21) w r t s and z , yields 

0sh                                                                                                                                  (6.1.22) 

and 
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Therefore, taking into (6.22), (6.23) and (5.5), thus 
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where, 
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7. Sensitivity analysis  

From (6.1.21) and (6.1.24), if we set 0  , that is, saying that stock and time have orthogonal 

relationship, then the satisfaction of the contributors will reduce to (7.6), but has significant negative 

effect on the optimal investment made in stock, and we have 
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and, 
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Again, suppose, no money is paid to the Next-of-kin of the dead contributors, that is, setting  1 0ia   

, and this yields, respectively  
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Result 1  

Then, from (7.6) and (7.8), we see that when stock and time have orthogonal relationship and when no 

money was paid to the Next-of-kin of the dead contributors, we have the same level of satisfaction on the 

contributors. However, both have significant effect on the satisfaction of the contributors when there is 

orthogonal relationship between stock and time, and also when payments are made to the Next-of-kin of 

the dead contributors. 

 

 

Result 2  

From (7.7) and (7.9), we observe that the introduction of the orthogonal relationship between stock and 

time, and the nonpayment of benefits to the Next-of-kin of the dead contributors have a negative 

significant effect on the money invested in stock. However, both introductions have the same negative 

effect (i.e., a decline in stock investment) on the investment made in stock.  

8. Numerical illustration 

A numerical example of the proposed model was given to demonstrate the dynamic behaviour of a DC 

pension fund and optimal investment strategy. Nigeria-National PensionFund Administration (NNPFA) 

real data was used to illustrate the efficiency of the proposed model. The parameters used are 

summarized in Table I below, for 𝑇 = 35. 𝑡 = 0, 5, 10, 15, 20, 25, 30, 35 with 𝑖 = 4, 5, … , 𝑛 − 1 and 𝜃4 =

4, 𝜃5 = 5, 𝜃6 = 6, … , 𝜃𝑛 = 𝑛. 

Table 1: Parameters and their respective values 

 

Name of parameter Symbol used Values 

constant rate of interest 𝑟 0.02 

Expected stock returns 𝜇 0.10 

Instantaneous stock returns 𝑢𝑆 = 𝑢𝐿 0.07 

stock volatility 𝑘 0.55 

Risk aversion 𝑝 = 𝑞 0.50 

Rate of contribution 𝑟𝑑 0.075 

Management fee 𝜂 0.025 



 

Results  

Figure 1 describes the investment strategy for the CRRA utility function under the the constant 

elasticity of variance (CEV) model using (6.1.21) when 𝑐1 =
1

2
(𝑎𝑖+1 − 𝜂)2 +

3

8
(𝛼𝛾)2(𝑎𝑖+1 −

𝜂)2, 𝑗 = ℓ−2𝛽 , 𝛽 = 0 ⇒ 𝑗 = 1.It shows that the stock price has significant effect on the optimal 

investment made in stock. 

Figure 2 shows the influence instantaneous stock returns on the optimal investment strategies using 

(6.1.24) with 𝑐1 =
1

2
(𝑎𝑖+1 − 𝜂)2 +

3

8
(𝛼𝛾)2(𝑎𝑖+1 − 𝜂)2, 𝑌(𝑡) = 1000. It reveals that the optimal 

investment policies increase with time. That is, as the time passes on, investment in riskless asset 

decreases. Results suggest that the pension fund manager maintains diversifying the portfolio by 

investing more in stock since the optimal investment strategies in risky assets increase with time.  

 

Figure 1: Investment strategy under CEV using (6.1.21) 

 

Figure 2: influence of instantaneous stock returns on the optimal investment strategies 

 



8. Conclusion  

We studied and established the investment strategy for contracts under the constant elasticity of 

variance (CEV) as in literature to show that the elastic parameter takes values other than unity, 

using proposition 6.1.1. We also constructed the Pension wealth investment strategy during the 

decumulation phase, in a defined contribution (DC) Pension scheme and obtained the explicit 

solution of the constant relative risk aversion (CRRA) utility functions. From our overall results, 

we state that is not advisable to use CRRA utility option in averting investment risk, after 

retirement from service. In view of this, we suggest the option of CARA utility function.   

9. Recommendations 

In order to obtain a somewhat optimal result, we recommend the fund investment strategy, whose utility 

option is CARA.   
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