A Note on Variational Principle of Subsets for Nonautonomous Dynamical Systems

Jiao Yang
School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University Nanjing 210023, Jiangsu, P.R.China
E-mail: jiaoyang6667@126.com

Abstract

This paper,we introduce measure-theoretic for Borel probability measures to characterize upper and lower Katok measure-theoretic entropies in discrete type and the measure-theoretic entropy for arbitrary Borel probability measure in nonautonomous case. Then we establish new variational principles for Bowen topological entropy for nonautonomous dynamical systems.

Keywords: Nonautonomous ; Measure-theoretical entropies ; Variational principles

1 Introduction

As an important invariant of topological conjugacy, the notion of topological entropy was introduced by Adler, Konheim and McAndrew [1] in 1965 [3]. Topological entropy is a key tool to measure the complexity of a classical dynamical system, i.e. the exponential growth rate of the number of distinguishable orbits of the iterates of an endomorphism of a compact metric space.In 1973,Bowen [2] introduced the topological entropy $h_{\text {top }}^{B}(T, Z)$ for any set Z in a topological dynamical system X, in a way resembling Hausdorff dimension, where X is a compact metric space and $T: X \rightarrow X$ is a continuous selfmap. Bowen topological entropy plays a key role in topological dynamics and dimension theory [2]. In 2012, Feng and Huang [6] showed that there is certain variational relation between Bowen topological entropy and measure-theoretic entropy for arbitrary non-invariant compact set of a topological dynamical system (X, T). Following the idea of Brin and

Katok [8], they defined the measure-theoretic entropy for Borel probability measure on X for their results.

In contrast with the autonomous discrete, in contrast with the autonomous discrete case [13], the properties of the entropies for the nonautonomous dynamical systems have not been fully investigated. In order to have a good understanding of the topological entropy of a skew product of dynamical systems (as we know that the calculation of its topological entropy can be transformed into that of its fibers), Kolyada and Snoha [4] proposed the concept of topological entropy in 1996 for a nonautonomous dynamical system determined by a sequence of maps.A nonautonomous discrete dynamical systems (in short: NADDS) is a natural generalization of a classical dynamical systems, its dynamics is determined by a sequence of continuous self-maps $f_{n}: X \rightarrow X$ where $n \in \mathbb{N}$, defined on a compact metric space X.

By a nonautonomous dynamical system(NADDS for short) we understand a pair $\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)$, where X is a compact metric space endowed with a metric d and $\left\{f_{n}\right\}_{n=1}^{\infty}$, is a sequence of continuous maps from X to X . In 2013, Kawan [11] generalized the classical notion of measure-theoretical entropy established by Kolomogorov and Sinai to NADSs, and proved that the measure-theoretical entropy can be estimated from above by its topological entropy. Following the idea of Brin and Katok [8] and Zhou [7] introduced the measure-theoretical entropy in nouautonomous case and established a variational principle for the first time. More results related to entropy for NADSs were developed in [12]. In this paper, We introduce ideas of Wang [9] to nonautonomous systems to establish new variational principles for Bowen topological entropy for nonautonomous dynamical systems.

Give a NADDS $\left(\mathrm{X},\left\{f_{n}\right\}_{n=1}^{\infty}\right)$. For each $n \in \mathbb{N}_{+}$, the Bowen metric d_{n} on x is defined by $d_{n}(x, y)=\max _{0 \leq i \leq n-1} d\left(f_{1}^{i}(x), f_{1}^{i}(y)\right)$. For every $\epsilon>0$, we denote by $B_{n}(x, \epsilon)$ the open ball of radius ϵ in the metric d_{n} around x, i.e., $B_{n}(x, \epsilon)=$ $\left\{y \in X: d_{n}(x, y)<\epsilon\right\}$.

We also consider a nonautonomous dynamical system (for short NADS) (X, ϕ) where (X, d) is a compact metric space and $\phi:[0,+\infty) \times X \rightarrow X$ is a continuous map with $\phi(0, x)=x$ for $x \in X$. We want to know whether there is certain variational relation of entropy for nonautonomous dynamical systems. For our study, we need to define the measure-theoretic entropy for arbitrary Borel probability measure in nonautonomous case.

Given a NADS (X, ϕ). For any $t \in[0,+\infty)$, the t th Bowen metric d_{t}^{ϕ} on X is defined by

$$
d_{t}^{\phi}(x, y)=\max _{0 \leq s \leq t}\{d(\phi(s, x), \phi(s, x))\}
$$

For every $\varepsilon>0$, we denote by $B_{t}^{\phi}(x, \varepsilon)$ the open ball of radius ε in the metric d_{t}^{ϕ} around x, i.e.,

$$
B_{t}^{\phi}(x, \varepsilon)=\left\{y \in X: d_{t}^{\phi}(x, y)<\varepsilon\right.
$$

Write $\phi^{i}(x):=\phi(i, x)$ for $i=1,2, \cdots$ and $x \in X$. In this case, we take $f_{n}(x)=\phi^{n}(x)$, then $\left\{\phi^{n}\right\}_{n=1}^{\infty}$ is a NADDS.

Let $M(X)$ denote the set of all Borel probability measures on $X, Z \subset X$ and $\mu \in M(X),\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)$ is a NADDS.
(1) A set $E \subset Z$ is said to be an (n, ε, Z)-separated set if $x, y \in E$ with $x \neq y$ implies $d_{n}^{\phi}(x, y)>\varepsilon$. Let $r_{n}(\varepsilon, Z)$ denote the maximum cardinality of (n, ε, Z)-separated set.
(2)A set $F \subset Z$ is said to be an (n, ε, Z)-spanning set if for any $x \in X$, there exists $y \in F$ with $d_{n}^{\phi}(x, y) \leq \varepsilon$. Let $s_{n}(\varepsilon, Z)$ denote the minimum cardinality of (n, ε, Z)-spanning sets.
(3) A set $F \subset X$ is said to be a $(\mu, n, \varepsilon, \delta)$-spanning set if the union $\bigcup_{x \in F} B_{n}(x, \varepsilon)$ has μ-measure more than or equal to $1-\delta$. Let $r_{n}(\mu, \varepsilon, \delta)$ denote the minimum cardinality of ($\mu, n, \varepsilon, \delta$)-spanning sets.
(4) We introduce a useful set: $X_{\mu, \delta}=\{Z \subset X: \mu(Z) \geq 1-\delta\}$. Then it is clear that

$$
r_{n}(\mu, \varepsilon, \delta)=\inf _{Z \in X_{\mu, \delta}} r_{n}(\varepsilon, Z)
$$

An open cover of X is a family of open subsets of X, whose union is X. For two covers \mathcal{U} and \mathcal{V} we say that \mathcal{U} is a refinement of \mathcal{V} if for each $U \in \mathcal{U}$ there is $V \in \mathcal{V}$ with $U \in V$. For $n \in \mathbb{N}$ and open covers $\mathcal{U}_{1}, \mathcal{U}_{2}, \cdots, \mathcal{U}_{n}$ of X we denote

$$
\bigvee_{i=1}^{n} \mathcal{U}_{i}=\left\{A_{1} \cap A_{2} \cap \cdots \cap A_{n}: A_{1} \in \mathcal{U}_{1}, A_{2} \in \mathcal{U}_{2}, \cdots, A_{n} \in \mathcal{U}_{n}\right\}
$$

Note that $\bigvee_{i=1}^{n} \mathcal{U}_{i}$ is also an open cover of X. We denote by $\mathcal{N}(\mathcal{U})$ the minimal cardinality of all subcovers chosen from U. Set

$$
f_{i}^{0}=i d_{X}, f_{i}^{n}=f_{i+(n-1)} \circ f_{i+(n-2)} \circ \cdots \circ f_{i+1} \circ f_{i}, f_{i}^{-n}=\left(f_{i}^{n}\right)^{-1}
$$

for all $i, n \in \mathbb{N}$, where $i d_{X}$ is the identity map on X. Let

$$
h_{\text {top }}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mathcal{U}\right)=\limsup _{n \rightarrow \infty} \frac{\log \mathcal{N}\left(\bigvee_{i=0}^{n} f_{1}^{-i} \mathcal{U}\right)}{n}
$$

The topological entropy is defined by

$$
h_{\text {top }}\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\left\{h_{\text {top }}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mathcal{U}\right): \mathcal{U} \text { is an open cover of } X\right\} .
$$

It was proved in [1] that for every NADS, we have

$$
h_{\text {top }}\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\log s_{n}(\varepsilon, X)}{n}=\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{\log r_{n}(\varepsilon, X)}{n}
$$

Following the idea of Katok [1],we give the following.
Definition 1.1. Let $\mu \in M(X)$. The NADDS Katok measure-theoretical lower and upper entropies of μ are defined respectively by

$$
\begin{aligned}
& \underline{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \inf \frac{1}{n} \log r_{n}(\mu, \varepsilon, \delta), \\
& \bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \sup \frac{1}{n} \log r_{n}(\mu, \varepsilon, \delta)
\end{aligned}
$$

In this paper, we introduce many quantities for Borel probability measure $\mu \in M(X)$, respectively denoted by $e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right), \underline{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right), \bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$, $e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$, and so on. According to the relations of the several types of NADS topological entropies, it is natural to consider relationship of some new quantities and Katok measure-theoretical lower and upper entropies. Therefore, we have the first main result.

Our main result is as follows.
Theorem 1.2. Let $\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)$ be a $N A D D S, \mu \in M(X)$. Then following statements hold.
(i) For any $Z \subseteq X, h_{\text {top }}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \leq h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$.
(ii) $\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$.
(iii) $\underline{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\underline{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$.
(iv) $e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \leq \underline{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \leq \bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$.
(v) $e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \leq e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\varepsilon \rightarrow 0} \lim _{\delta \rightarrow 0} \inf _{Z \in X_{\varepsilon}, \delta} h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)$.
where the definitions of these notions will be given in Section 2.
Theorem 1.3. Let $\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)$ be a $N A D D S$. If $K \subset X$ is a non-empty and compact, then

$$
h_{t o p}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, K\right)=\sup \left\{e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right): \mu \in M(X), \mu(K)=1\right\} .
$$

Theorem 1.4. Let (X, ϕ) be a $N A D S, \mu \in M(X)$. Then following statements hold.
(i) For any $Z \subseteq X, h_{\text {top }}^{B}(\phi, Z) \leq h_{\text {top }}^{P}(\phi, Z)$.
(ii) $e_{\mu}(\phi) \leq \underline{e}_{\mu}(\phi) \leq \bar{e}_{\mu}(\phi)$.
(iii) $e_{\mu}(\phi) \leq e_{\mu}^{*}(\phi)=\lim _{\varepsilon \rightarrow 0} \lim _{\delta \rightarrow 0} \inf _{Z \in X_{\varepsilon}, \delta} h_{\text {top }}^{P}(\phi, Z, \varepsilon)$.

Theorem 1.5. Let (X, ϕ) be a NADS. If $K \subset X$ is a non-empty and compact, then

$$
h_{\text {top }}^{B}(\phi, K)=\sup \left\{e_{\mu}(\phi): \mu \in M(X), \mu(K)=1\right\} .
$$

2 Preliminaries

2.1 NADDS

In this subsection, let $\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)$ be a NADDS, next we introduced NADDS's entropies. Following, we give some definitions of several NADDS topological entropies of subsets.

Definition 2.1. Let $Z \subset X, s \geq 0, N \in \mathbb{N}$ and $\varepsilon>0$, define

$$
M_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\inf \sum_{i} \exp \left(-s n_{i}\right)
$$

where the infimum is taken over all finite or countable families $\left\{B_{n_{i}}\left(x_{i}, \varepsilon\right)\right\}$ such that $x_{i} \in X, n_{i} \geq N$ and $\bigcup_{i} B_{n_{i}}\left(x_{i}, \varepsilon\right) \supseteq Z$. The quantity $M_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$ does not decrease as N increase and ε decreases, hence the following limits exist:

$$
\begin{gathered}
M_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\lim _{N \rightarrow \infty} M_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right), \\
M^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\lim _{\varepsilon \rightarrow 0} M_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) .
\end{gathered}
$$

Bowen's topological entropy $h_{\text {top }}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$ is defined as a critical value of the parameters s, where $M^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$ jumps from ∞ to 0 , i.e.

$$
M^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\left\{\begin{aligned}
0, & s>h_{t o p}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \\
\infty, & s<h_{\text {top }}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)
\end{aligned}\right.
$$

Definition 2.2. Let $Z \subseteq X$. For $s \geq 0, N \in \mathbb{N}$ and $\varepsilon>0$, define

$$
P_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\sup \sum_{i} \exp \left(-s n_{i}\right)
$$

where the supremum is taken over all finite or countable pairwise disjoint families $\left\{\bar{B}_{n_{i}}\left(x_{i}, \varepsilon\right)\right\}$ such that $x_{i} \in Z, n_{i} \geq N$ for all i, where $\left\{\bar{B}_{n_{i}}\left(x_{i}, \varepsilon\right)\right\}:=$ $\left\{y \in X: d_{n}(x, y) \leq \varepsilon\right\}$.
The quantity $P_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$ does not decrease as N, ε decrease, hence the following limit exists:

$$
P_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\lim _{N \rightarrow \infty} P_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) .
$$

Define

$$
\mathcal{P}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\inf \left\{\sum_{i=1}^{\infty} P_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right): \bigcup_{i=1}^{\infty} Z_{i} \supseteq Z\right\}
$$

There exists a critical value of the parameters s, which we will denote by $h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)$, where $P_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$ jumps from ∞ to 0 , i.e.

$$
\mathcal{P}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\left\{\begin{aligned}
0, & s>h_{t o p}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right) \\
\infty, & s<h_{t o p}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)
\end{aligned}\right.
$$

Note that $h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)$ increases when ε decreases. We call

$$
h_{t o p}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right):=\lim _{\varepsilon \rightarrow 0} h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)
$$

the packing topological entropy of Z.
Definition 2.3. Let $Z \subseteq X$. For $s \geq 0, N \in \mathbb{N}$ and $\varepsilon>0$, define

$$
R_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\inf \sum_{i} \exp (-s N)
$$

where the infimum is taken over all finite or countable families $\left\{B_{N}\left(x_{i}, \varepsilon\right)\right\}$ such that $x_{i} \in X$, and $\bigcup_{i} B_{N}\left(x_{i}, \varepsilon\right) \supseteq Z$. Let

$$
\begin{aligned}
& \underline{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\liminf _{N \rightarrow \infty} R_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right), \\
& \bar{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\limsup _{N \rightarrow \infty} R_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)
\end{aligned}
$$

and
$\underline{C h_{Z}}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon\right)=\inf \left\{s: \underline{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=0\right\}=\sup \left\{s: \underline{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=+\infty\right\}$,
$\overline{C h}_{Z}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon\right)=\inf \left\{s: \bar{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=0\right\}=\sup \left\{s: \underline{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=+\infty\right\}$.
The lower and upper capacity topological entropies of $\left\{f_{n}\right\}_{n=1}^{\infty}$ restricted to Z are defined respectively by

$$
\begin{aligned}
& \underline{C h_{Z}}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\varepsilon \rightarrow 0} \frac{C h_{Z}}{Z}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon\right) \\
& \overline{C h}_{Z}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\varepsilon \rightarrow 0} \overline{C h}_{Z}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon\right)
\end{aligned}
$$

Following we introduce several measure-theoretic definition.
Definition 2.4. Let $\mu \in M(X), s \geq 0, N \in \mathbb{N} \varepsilon>0$ and $0<\delta<1$, define

$$
M_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\inf \sum_{i} \exp \left(-s n_{i}\right)
$$

where the infimum is taken over all finite or countable families $\left\{B_{n_{i}}\left(x_{i}, \varepsilon\right)\right\}$ such that $x_{i} \in X, n_{i} \geq N$ and $\mu\left(\bigcup_{i} B_{n_{i}}\left(x_{i}, \varepsilon\right)\right) \geq 1-\delta$. The quantity $M_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)$ does not decrease as N increase, hence the following limit exist:

$$
M_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\lim _{N \rightarrow \infty} M_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)
$$

Using standard method, we have following is well- defined:

$$
\begin{aligned}
e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) & =\inf \left\{s: M_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=0\right\} \\
& =\sup \left\{s: M_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=+\infty\right\}
\end{aligned}
$$

defined

$$
e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)
$$

Definition 2.5. Let $\mu \in M(X), s \geq 0, N \in \mathbb{N}, \varepsilon>0$ and $0<\delta<1$, put

$$
R_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\inf \sum_{i} \exp (-s N)
$$

where the infimum is taken over all finite or countable families $\left\{B_{N}\left(x_{i}, \varepsilon\right)\right\}$ such that $x_{i} \in X$, and $\mu\left(\bigcup_{i} B_{N}\left(x_{i}, \varepsilon\right)\right) \geq 1-\delta$. Let

$$
\begin{aligned}
& \underline{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\liminf _{N \rightarrow \infty} R_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \\
& \bar{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\limsup _{N \rightarrow \infty} R_{N, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)
\end{aligned}
$$

Using standard method, we have following is well- defined:

$$
\begin{aligned}
\underline{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) & =\inf \left\{s: \underline{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=0\right\} \\
& =\sup \left\{s: \underline{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=+\infty\right\} \\
\bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) & =\inf \left\{s: \bar{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=0\right\} \\
& =\sup \left\{s: \bar{R}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=+\infty\right\}
\end{aligned}
$$

define

$$
\begin{aligned}
& \underline{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \underline{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right), \\
& \bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)
\end{aligned}
$$

Definition 2.6. Let $\mu \in M(X), s \geq 0, N \in \mathbb{N} \varepsilon>0$ and $0<\delta<1$, put

$$
\mathcal{P}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\inf \left\{\sum_{i=1}^{\infty} P_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right): \mu\left(\bigcup_{i=1}^{\infty} Z_{i}\right) \geq 1-\delta\right\}
$$

where $P_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)$ is defined in Definition 2.2. There exists a critical value of s such that

$$
\begin{aligned}
e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) & =\inf \left\{s: \mathcal{P}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=0\right\} \\
& =\sup \left\{s: \mathcal{P}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=+\infty\right\}
\end{aligned}
$$

Define

$$
e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) .
$$

2.2 NADS

In this subsection, let (X, ϕ) be a NADS, next we introduced NADS's entropies.

Definition 2.7. Let $Z \subset X, s \geq 0, N \in \mathbb{N}$ and $\varepsilon>0$, define

$$
M_{N, \varepsilon}^{s}(\phi, Z)=\inf \sum_{i} \exp \left(-s t_{i}\right)
$$

where the infimum is taken over all finite or countable families $\left\{B_{t_{i}}^{\phi}\left(x_{i}, \varepsilon\right)\right\}$ such that $x_{i} \in X, t_{i} \geq N$ and $\bigcup_{i} B_{t_{i}}^{\phi}\left(x_{i}, \varepsilon\right) \supseteq Z$. The quantity $M_{N, \varepsilon}^{s}(\phi, Z)$ does not decrease as N increase and ε decreases, hence the following limits exist:

$$
\begin{aligned}
M_{\varepsilon}^{s}(\phi, Z) & =\lim _{N \rightarrow \infty} M_{N, \varepsilon}^{s}(\phi, Z) \\
M^{s}(\phi, Z) & =\lim _{\varepsilon \rightarrow 0} M_{\varepsilon}^{s}(\phi, Z)
\end{aligned}
$$

Bowen's topological entropy $h_{\text {top }}^{B}(\phi, Z)$ is defined as a critical value of the parameters s, where $M^{s}(\phi, Z)$ jumps from ∞ to 0 , i.e.

$$
M^{s}(\phi, Z)=\left\{\begin{aligned}
0, & s>h_{t o p}^{B}(\phi, Z), \\
\infty, & s<h_{t o p}^{B}(\phi, Z) .
\end{aligned}\right.
$$

Other topological entropy definitions are similar to the discrete case definition.

Definition 2.8. Let $\mu \in M(X), s \geq 0, N \in \mathbb{N} \varepsilon>0$ and $0<\delta<1$, define

$$
M_{N, \varepsilon}^{s}(\phi, \mu, \delta)=\inf \sum_{i} \exp \left(-s t_{i}\right)
$$

where the infimum is taken over all finite or countable families $\left\{B_{t_{i}}^{\phi}\left(x_{i}, \varepsilon\right)\right\}$ such that $x_{i} \in X, t_{i} \geq N$ and $\mu\left(\bigcup_{i} B_{t_{i}}^{\phi}\left(x_{i}, \varepsilon\right)\right) \geq 1-\delta$. The quantity $M_{N, \varepsilon}^{s}(\phi, \mu, \delta)$ does not decrease as N^{i} increase, hence the following limit exist:

$$
M_{\varepsilon}^{s}(\phi, \mu, \delta)=\lim _{N \rightarrow \infty} M_{N, \varepsilon}^{s}(\phi, \mu, \delta)
$$

Using standard method, we have following is well- defined:

$$
e_{\mu}(\phi, \varepsilon, \delta)=\inf \left\{s: M_{\varepsilon}^{s}(\phi, \mu, \delta)=0\right\}=\sup \left\{s: M_{\varepsilon}^{s}(\phi, \mu, \delta)=+\infty\right\}
$$

defined

$$
e_{\mu}(\phi)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} e_{\mu}(\phi, \varepsilon, \delta)
$$

Other measure-theoretic entropy definitions are similar to the discrete case definition.

3 Proof of Theorem

3.1 Proof of Theorem 1.2

Proposition 3.1. Let $0<\delta<1, \mu \in M(X),\left\{Z_{i}\right\}_{i=1}^{\infty}$ be a family of Borel subsets of X with $\mu\left(\bigcup_{i=1}^{\infty} Z_{i}\right) \geq 1-\delta$. For any $\epsilon>0, M_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \leq$ $\sum_{i=1}^{\infty} M_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)$.

Proof. For any $\varepsilon>0, N, i \in \mathbb{N}$, there exists $N_{i}>N$ such that

$$
M_{N_{i}, \epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)<M_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)+\frac{\varepsilon}{2^{i}} .
$$

Hence, there exists a countable family $\left\{B_{n_{j}^{i}}\left(x_{j}^{i}, \epsilon\right)\right\}_{j=1}^{\infty}$ such that $n_{j}^{i} \geq N_{i}$, $x_{j}^{i} \in X,\left\{B_{n_{j}^{i}}\left(x_{j}^{i}, \epsilon\right)\right\} \supseteq Z_{i}$,

$$
\sum_{j=1}^{\infty} e^{-s n_{j}^{i}}<M_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)+\frac{\varepsilon}{2^{i}}
$$

Since $\mu\left(\bigcup_{i=1}^{\infty}\right) \geq 1-\delta$, we have $\mu\left(\bigcup_{i \geq 1} \bigcup_{j \geq 1}\left(B_{n_{j}^{i}}\left(x_{j}^{i}, \epsilon\right)\right)\right) \geq 1-\delta$. Hence

$$
M_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \leq \sum_{i \geq 1} \sum_{j \geq 1} e^{-s n_{j}^{i}}<\sum_{i=1}^{\infty} M_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)
$$

Now we are ready to prove the main result.
Proof. (i) Let $Z \subseteq x$ and assume be $0<s<h_{\text {top }}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$. For any $n \in \mathbb{N}$ and $\varepsilon>0$, let $R=R_{n}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)$ be the largest number so that there is a disjoint family $\left\{\bar{B}_{n}\left(x_{i}, \varepsilon\right)\right\}_{i=1}^{R}$ with $x_{i} \in Z$. Then it is easy to see that for any $\delta>0$,

$$
\bigcup_{i=1}^{R} \bar{B}_{n}\left(x_{i}, 2 \varepsilon+\delta\right) \supseteq Z,
$$

which implies that

$$
M_{n, 2 \varepsilon+\delta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \leq R e^{-n s} \leq P_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)
$$

for any $s \geq 0$, and hence $M_{2 \varepsilon+\delta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \leq P_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$, we have $M_{2 \varepsilon+\delta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \leq \mathcal{P}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$. Since $0<s<h_{\text {top }}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$, we have $M^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\infty$ and thus $M_{2 \varepsilon+\delta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \geq 1$ when ε and δ are small enough. Hence $\mathcal{P}_{\varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \geq 1$ and $h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right) \geq s$ when ε is small. Therefore $h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\lim _{\varepsilon \rightarrow 0} h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right) \geq s$. This implies that $h_{\text {top }}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right) \leq h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)$.
(ii) Denote

$$
\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \log r_{n}(\mu, \varepsilon, \delta)
$$

then $\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\delta \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)$. We first prove that

$$
\bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) \leq \bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)
$$

for any $0<\delta<1$ and $\varepsilon>0$, using like-Huasdorff dimension method. For any $s>\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)$ and $Z \in X_{\mu, \delta}$, let F is a (n, ε, Z)-spanning set, then

$$
R_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \leq \sum_{x \in F} \exp (-s n)=\sharp F \cdot e^{-s n}
$$

which follows that

$$
R_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \leq e^{-s n} \cdot \inf _{Z \in X_{\mu, \delta}} r_{n}(\varepsilon, Z)
$$

Hence

$$
R_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \leq e^{-s n} \cdot r_{n}(\mu, \varepsilon, \delta)=e^{-n\left(s-\frac{1}{n} \log r_{n}(\mu, \varepsilon, \delta)\right)}
$$

Since $\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)=\limsup _{n \rightarrow \infty} \frac{1}{n} \log r_{n}(\mu, \varepsilon, \delta)<s$, we have

$$
\limsup _{n \rightarrow \infty} R_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=0
$$

For $s>\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)$ we get $\bar{R}_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=0$ and $\bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) \leq$ s. Hence $\bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) \leq \bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)$.
Next we prove $\bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) \geq \bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)$ for any $0<\delta<1$ and $\varepsilon>0$ by showing $\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) \leq s$ whenever $s>\bar{e}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right)$. For such a s, we have $\bar{R}_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=0$. Then there exists $N \in \mathbb{N}$ such that $R_{n, \varepsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)<1$ for any $n \geq N$. Fix $n \geq N$, we can find a finite family $\left\{B_{n}\left(x_{i}, \varepsilon\right)\right\}_{i \in I}$ such that $x_{i} \in X$,

$$
\mu\left(\bigcup_{i \in I} B_{n}\left(x_{i}, \varepsilon\right)\right) \geq 1-\delta \text { and } \sharp I \cdot e^{-s n}<1
$$

So $r_{n}(\mu, \varepsilon, \delta) \leq e^{s n}$ for any $n \geq N$. Hence $\bar{h}_{\mu}^{K}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \varepsilon, \delta\right) \leq s$.
(iii) The proof of (iii) is similar to (ii).
(iv) The proof of (iv) is a consequence of definition.
(v) We first show that $e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \leq e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$. Let $s<e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$, $0<\delta<1$ and $\left\{Z_{i}\right\}_{i=1}^{\infty}$ be a family of Borel subsets of X with $\mu\left(\bigcup_{i=1}^{\infty} Z_{i}\right) \geq$
$1-\delta$. For any $i, n \in \mathbb{N}$ and $\epsilon>0$, let $R_{n}^{i}=R_{n}\left(Z_{i}, \varepsilon\right)$ be the largest number such that there is a disjoint family $\left\{\bar{B}_{n}\left(x_{j}^{i}, \epsilon\right)\right\}_{j=1}^{R_{n}}$ with $x_{j}^{i} \in Z_{i}$. Then we can verify that for any $\theta>0$,

$$
\left\{B_{n_{j}^{i}}\left(x_{j}^{i}, 2 \epsilon+\theta\right)\right\} \supseteq Z_{i} .
$$

It following that $M_{n, 2 \epsilon+\theta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right) \leq e^{-s n} \cdot R_{n}^{i} \leq P_{n, \epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)$ and $M_{2 \epsilon+\theta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right) \leq P_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)$. Therefore, by the Proposition3.1, we have $M_{2 \epsilon+\theta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \leq \mathcal{P}_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)$. As $s<e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$, we can get $<e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, 2 \epsilon+\theta, \delta\right)$ when ϵ, θ, δ are small enough. This implies that $M_{2 \epsilon+\theta}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\infty$ and thus $\mathcal{P}_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\infty$. Therefore, it can be deduced that $e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \geq s$. So the desired inequality holds.
Now we proved that $e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)=\lim _{\varepsilon \rightarrow 0} \lim _{\delta \rightarrow 0} \inf _{Z \in X_{\varepsilon}, \delta} h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)$. Let $e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)>s$, then there exists $\epsilon^{\prime}, \delta^{\prime}>0$ such that $e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \epsilon, \delta\right) \geq s$ for any $\epsilon \in\left(0, \epsilon^{\prime}\right)$ and $\delta \in\left(0, \delta^{\prime}\right)$. Thus, $\mathcal{P}_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\infty$. For any $Z \in X_{\mu, \delta}$ and any $\left\{Z_{i}\right\}_{i \geq 1}$ with $\bigcup_{i=1}^{\infty} Z_{i} \supseteq Z$, we have $\mu\left(\bigcup_{i=1}^{\infty} Z_{i}\right) \geq 1-\delta$. It follows from $\mathcal{P}_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\infty$ that $\sum_{i=1}^{\infty} P_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)=\infty$. So $\mathcal{P}_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\infty$, which gives that $h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right) \geq s$.
On the other hand, let $s<\lim _{\varepsilon \rightarrow 0} \lim _{\delta \rightarrow 0} \inf _{Z \in X_{\varepsilon}, \delta} h_{t o p}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)$. Then there exist $\epsilon^{\prime}, \delta^{\prime}>0$ such that $h_{\text {top }}^{P}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z, \varepsilon\right)>s$ for any $\epsilon \in\left(0, \epsilon^{\prime}\right), \delta \in\left(0, \delta^{\prime}\right)$ and $Z \in X_{\mu, \delta}$. Thus, we have $\mathcal{P}_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z\right)=\infty$. Fix $\left\{Z_{i}\right\}_{i \geq 1}$ with $\mu\left(\bigcup_{i=1}^{\infty} Z_{i}\right) \geq 1-\delta$ and write $Z=\bigcup_{i=1}^{\infty} Z_{i}$, then $Z \in X_{\mu, \delta}$. So, $\sum_{i=1}^{\infty} P_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, Z_{i}\right)=$
∞, which yields that $\mathcal{P}_{\epsilon}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right)=\infty$. Furthermore, we can get $e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \epsilon, \delta\right) \geq s$ and $e_{\mu}^{*}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \geq s$.

3.2 Proof of Theorem 1.3

Proposition 3.2. For $\mu \in M(X)$, it holds that

$$
\underline{h}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \leq e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \leq \inf \left\{h_{\text {top }}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, K\right): \mu(K)=1\right\}
$$

Proof. The second inequality is a direct consequence of the definition and we only deduce the first one. For $s>0$ with $\underline{h}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)>s$. By a standard procedure, there exist $A \subset X$ with $\mu(A)>0$ and $N \in \mathbb{N}$ such that

$$
\mu\left(B_{n}(x, \varepsilon)\right)<e^{-n s}, \quad \forall x \in A, n \geq N
$$

Pick $\delta \in(0, \mu(A))$. Let $\left\{B_{n_{i}}\left(x_{i}, \frac{\varepsilon}{2}\right)\right\}_{i \in I}$ be a countable family such that $n_{i} \geq N, x_{i} \in X$ and $\mu\left(\bigcup_{i \in I} B_{n_{i}}\left(x_{i}, \frac{\varepsilon}{2}\right)\right) \geq 1-\delta$ that intersects A, if taking $y_{i} \in B_{n_{i}}\left(x_{i}, \frac{\varepsilon}{2}\right) \cap A$, then one has $B_{n_{i}}\left(x_{i}, \frac{\varepsilon}{2}\right) \subseteq B_{n_{i}}\left(y_{i}, \varepsilon\right)$ and thus

$$
\mu\left(B_{n_{i}}\left(x_{i}, \frac{\varepsilon}{2}\right)\right) \leq B_{n_{i}}\left(y_{i}, \varepsilon\right) \leq e^{-n_{i} s}
$$

Then we have

$$
\begin{aligned}
\sum_{i \in I} e^{-n_{i} s} \geq \sum_{i \in I} \mu\left(B_{n_{i}}\left(y_{i}, \varepsilon\right) \cap A\right) & \geq \sum_{i \in I} \mu\left(B_{n_{i}}\left(x_{i}, \frac{\varepsilon}{2}\right) \cap A\right) \\
& \geq \mu\left(\bigcup_{i} B_{n_{i}}\left(x_{i}, \frac{\varepsilon}{2}\right) \cap A\right)=\mu(A)>0
\end{aligned}
$$

Hence $M_{\frac{\varepsilon}{2}}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \geq M_{N, \frac{\varepsilon}{2}}^{s}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \mu, \delta\right) \geq \mu(A)$. By Bowen's definition, we can derive that $e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, \frac{\varepsilon}{2}, \delta\right) \geq s$ and moreover $\underline{h}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right) \leq$ $e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right)$.

Definition 3.3. Let $\mu \in M(X)$. The $N A D S(x, \phi)$ measure-theoretical lower entropies of μ is defined by

$$
\underline{h}_{\mu}(\phi,)=\int \underline{h}_{\mu}(\phi, x) d \mu(x)
$$

where

$$
\underline{h}_{\mu}(\phi, x)=\lim _{\varepsilon \rightarrow 0} \liminf _{t \rightarrow \infty}-\frac{1}{t} \log \mu\left(B_{t}^{\phi}(x, \varepsilon)\right) .
$$

Lemma 3.4 ([5, Theorem 1.4]). Let $\left(X,\left\{f_{n}\right\}_{n=1}^{\infty}\right)$ be a $N A D D S$. If $K \subseteq X$ is non-empty and compact,then

$$
h_{t o p}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, K\right)=\sup \left\{\underline{h}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right): \mu \in M(X), \mu(K)=1\right\} .
$$

Next we prove Theorem 1.3.
Proof. By the Proposition, we have

$$
\begin{aligned}
\sup \left\{\underline{h}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right): \mu \in M(X), \mu(K)=1\right\} & \leq \sup \left\{e_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right): \mu \in M(X), \mu(K)=1\right\} \\
& \leq \inf \left\{h_{t o p}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, K\right): \mu \in M(X) \mu(K)=1\right\} .
\end{aligned}
$$

Combining with lemma,

$$
h_{t o p}^{B}\left(\left\{f_{n}\right\}_{n=1}^{\infty}, K\right)=\sup \left\{\underline{h}_{\mu}\left(\left\{f_{n}\right\}_{n=1}^{\infty}\right): \mu \in M(X), \mu(K)=1\right\} .
$$

the conclusion can be proved.
Using the same proof method of Theorem 1.2 and, Theorem 1.3, we have result of Theorem 1.4 and Theorem 1.5.

References

[1] R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
[2] R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136.
[3] P. Walters, An Introduction to Ergodic Theory, Springer, Berlin, 1981.
[4] S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems, Random. Dyn. 4 (1996), 205-233.
[5] L. Xu, X. Zhou, Variational principles for entropies of nonautonomous dynamical systems, J. Dyn. Differ. Equ. 30 (2018), 10531062.
[6] D. Feng, W. Huang, Variational principle for topological entropies of subsets, J. Funct. Anal. 263 (2012), 2228-2254.
[7] X. Zhou, A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst. 36 (2016), 4063-4075.
[8] M. Brin, A. katok, On local entropy, I. Math. Phys. Anal. Geom. 2 (1999), 323-415.
[9] T. Wang, Some note on tological and measure-theoretic entropy, Qual. Theory Dyn.Syst. 20 (2021).
[10] A. Bis, Topological and Measure-Theoretical Entropies of Nonautonomous Dynamical Systems, J. Dynam. Differential Equations, to appear
[11] C. Kawan, Metric entropy of nonautonomous dynamical systems, Nonauton. Dyn. Syst. 1 (2013), 26-52.
[12] S. Kolyada, M. Misiurewicz, L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the inteval, Fund. Math. 160(1990), 161-181.
[13] Y. Zhu, Z. Liu and W. Zhang, Entropy of nonautonomous dynamical systems, J. Korean Math. 49 (2012), 165-185.

