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Abstract

This paper,we introduce measure-theoretic for Borel probability
measures to characterize upper and lower Katok measure-theoretic
entropies in discrete type and the measure-theoretic entropy for ar-
bitrary Borel probability measure in nonautonomous case. Then we
establish new variational principles for Bowen topological entropy for
nonautonomous dynamical systems.
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1 Introduction

As an important invariant of topological conjugacy, the notion of topo-
logical entropy was introduced by Adler, Konheim and McAndrew [1] in
1965 |3|. Topological entropy is a key tool to measure the complexity of a
classical dynamical system, i.e. the exponential growth rate of the number of
distinguishable orbits of the iterates of an endomorphism of a compact met-
ric space.In 1973, Bowen [2]| introduced the topological entropy hgp(T, Z) for
any set Z in a topological dynamical system X,in a way resembling Haus-
dorff dimension, where X is a compact metric space and T : X — X is
a continuous selfmap. Bowen topological entropy plays a key role in topo-
logical dynamics and dimension theory [2|. In 2012, Feng and Huang [6]
showed that there is certain variational relation between Bowen topological
entropy and measure-theoretic entropy for arbitrary non-invariant compact

set of a topological dynamical system (X, T’). Following the idea of Brin and
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Katok [8], they defined the measure-theoretic entropy for Borel probability
measure on X for their results.

In contrast with the autonomous discrete, in contrast with the autonomous
discrete case [13], the properties of the entropies for the nonautonomous dy-
namical systems have not been fully investigated. In order to have a good
understanding of the topological entropy of a skew product of dynamical
systems (as we know that the calculation of its topological entropy can be
transformed into that of its fibers), Kolyada and Snoha [4] proposed the con-
cept of topological entropy in 1996 for a nonautonomous dynamical system
determined by a sequence of maps.A nonautonomous discrete dynamical
systems (in short: NADDS) is a natural generalization of a classical dy-
namical systems, its dynamics is determined by a sequence of continuous
self-maps f,, : X = X where n € N, defined on a compact metric space X.

By a nonautonomous dynamical system(NADDS for short) we under-
stand a pair (X, {f,},—,), where X is a compact metric space endowed with
a metric d and {f,} ~,, is a sequence of continuous maps from X to X. In
2013, Kawan [11] generalized the classical notion of measure-theoretical en-
tropy established by Kolomogorov and Sinai to NADSs, and proved that the
measure-theoretical entropy can be estimated from above by its topological
entropy. Following the idea of Brin and Katok [8] and Zhou [7] introduced
the measure-theoretical entropy in nouautonomous case and established a
variational principle for the first time. More results related to entropy for
NADSs were developed in [12]|. In this paper, We introduce ideas of Wang
[9] to nonautonomous systems to establish new variational principles for
Bowen topological entropy for nonautonomous dynamical systems.

Give a NADDS (X,{f,} —,).For each n € N, ,the Bowen metric d,, on =
is defined by d,(z,y) = .
By,(z, €) the open ball of radius ¢ in the metric d,, around z, i.e., B (z,¢) =
{y e X :d,(x,y) < e}

We also consider a nonautonomous dynamical system (for short NADS)
(X, ¢) where (X, d) is a compact metric space and ¢ : [0, +00) x X — X is
a continuous map with ¢(0,z) = z for z € X. We want to know whether

max d(fi(x), fi(y)). For every e> 0, we denote by

there is certain variational relation of entropy for nonautonomous dynamical
systems. For our study, we need to define the measure-theoretic entropy for
arbitrary Borel probability measure in nonautonomous case.

Given a NADS (X, ¢). For any t € [0, +00), the tth Bowen metric df on
X is defined by

df (x,y) = max {d(¢(s, z), (s, ))}

0<s<t



For every € > 0, we denote by BY (x,€) the open ball of radius ¢ in the

metric d‘f around z, i.e.,

Bi(r,6) = {y € X : di(w,y) < e

Write ¢'(x) := ¢(i,z) for i = 1,2,--- and z € X. In this case ,we take
Jn(z) = ¢"(x), then {¢"}~ | is a NADDS.

Let M(X) denote the set of all Borel probability measures on X, Z C X
and p € M(X),(X,{fn.}.—,) is a NADDS.

(1) A set E' C Z is said to be an (n, e, Z)-separated set if x,y € E with
x # y implies d?(x,y) > €. Let r,(¢, Z) denote the maximum cardinality of
(n,e, Z)-separated set.

(2)A set F' C Z is said to be an (n, e, Z)-spanning set if for any z € X,
there exists y € F with d?(z,y) < ¢ . Let s,(g,Z) denote the minimum
cardinality of (n,e, Z)-spanning sets.

(3) A set FF C X is said to be a (u,n,¢e,d)-spanning set if the union

U Bn(z,¢) has p-measure more than or equal to 1—4. Let 7,(u, €, 6) denote
el

the minimum cardinality of (u, n, e, §)-spanning sets.
(4) We introduce a useful set: X, s = {Z C X : u(Z) > 1 —6}. Then it
is clear that
ro(p,e,0) = inf r,(e, 2)

ZGXM75
An open cover of X is a family of open subsets of X, whose union is X.
For two covers U and V we say that U/ is a refinement of V if for each U € U
there is V € V with U € V. Forn € N and open covers Uy, Us, - -+ ,U, of X

we denote

VUi ={ANAN- NA, A €Uy, Ay €Uy, -+ Ay €UY

i=1

Note that \/ U; is also an open cover of X. We denote by N (U) the

=1
minimal cardinality of all subcovers chosen from U. Set

f=idx, fI' = firno1) © fistnezy 0+ 0 fipr 0 fi fi " = (f1) !

for all i,n € N, where idx is the identity map on X. Let

log N(V/ fi 1)
Pop({ fu '}y ,U) = limsup =0 :

n—00 n



The topological entropy is defined by

Pop(X, { futoey) = {hiop({ fu oy s U) : U is an open cover of X}.
It was proved in [1] that for every NADS, we have

logr, (e, X
= lim lim sup %.
=0 nooo n

Biop(X, {fa}221) = lim lim sup

n—0o0

log s, (g, X)
n

Following the idea of Katok [1],we give the following.

Definition 1.1. Let u € M(X). The NADDS Katok measure-theoretical
lower and upper entropies of i are defined respectively by

1
Qﬁ{({fn}zo:l) = lim lim lim inf - logr, (i, €, 9),

6—0e—0n—o0

- 1
hff({fn}flo:l) = (1Sim lim lim sup - log 7, (i, €, 9)

—0e—=0n—oc0

In this paper, we introduce many quantities for Borel probability measure

1 € M(X), respectively denoted by e, ({fn},—1)e,({fatner)€u{futne);
eZ({ fntor,), and so on. According to the relations of the several types of
NADS topological entropies, it is natural to consider relationship of some
new quantities and Katok measure-theoretical lower and upper entropies.
Therefore, we have the first main result.

Our main result is as follows.

Theorem 1.2. Let (X {f,},—,) be a NADDS,;u € M(X). Then following
statements hold.

(i) For any Z C X, hie ({fn}ZO:MZ) < hi, ({fn}ZO:MZ)-

(i) By ({£a20) = eu({fu}i):

(i) BE({fa}o2)) = (L}

() eu({fu}e)) < e (ha)ey) < eufu}iy).

() u{F3720) < ep{fufi) = timlim inf hE, (£}, 2.)

where the definitions of these notions will be given in Section 2.

Theorem 1.3. Let (X {f,} —,) be a NADDS. If K C X is a non-empty

and compact, then

hiop({fn}ary s K) = sup{eu({fu}il1): 1 € M(X), u(K) = 1}.



Theorem 1.4. Let (X, ¢) be a NADS,u € M(X). Then following state-

ments hold.
(i) For any Z C X, h{} (¢, Z) < hi,, (¢, Z).

(i) eu(¢) <e,(¢) <euld).
(i) ey () < ei(¢) =limlim inf R (6,27 €).

e—=00—02€eX.,0

Theorem 1.5. Let (X,p) be a NADS. If K C X is a non-empty and

compact, then

hiy(0, K) = sup{eu(¢): p € M(X), u(K) =1}

2 Preliminaries

2.1 NADDS

In this subsection, let (X, { f,} ) be a NADDS, next we introduced NADDS’s
entropies. Following, we give some definitions of several NADDS topological

entropies of subsets.

Definition 2.1. Let Z C X, s >0, N € N and ¢ > 0, define

MNE({fTL et L 1HfZexp —sn;),

where the infimum is taken over all finite or countable families { B, (z;,¢)}

such that z; € X, n; > N and | By, (w5,€) 2 Z. The quantity M} .({fu},—,, Z)

n=1"
(2
does not decrease as N increase and e decreases, hence the following limits

exist:

Ms({fn}zozl ) Z) = ]\}1_1?;0 M]if,s({fn}zozl ) Z)’
MS({fn}Zozl ) Z) = lli% Mf({fn}zo:1 ) Z)-

Bowen’s topological entropy htop({fn}oo Z) is defined as a critical value of

n=1"
the parameters s, where M*({f,}>2,,Z) jumps from oo to 0, i.e.

n=1"

07 s> hﬁp({fn}zozl 7Z)’
0, s§< hﬁp({fn}zozl 7Z)

Definition 2.2. Let Z C X. For s > 0,N € N and ¢ > 0, define

Ms({fn}zozlaz) = {

sz/,g({fn}fﬂ ) Z) = Sup Z eXp<_5ni>7



where the supremum is taken over all finite or countable pairwise disjoint
families{ B,,, (z;, )} such that z; € Z, n; > N for all i, where {B,, (7;,€)} :=
{ye X :dp(z,y) <e}.
The quantity P _({fu},-

following limit exists:

Pss<{fn}zo:1 ) Z) = ]\}l_rgo P]if,s({fn}zozl ) Z)'

.—1,2Z) does not decrease as N ¢ decrease, hence the

Define
P:({fa}nss 2) mf{ZPS {filoii 2 UZ 2 Z}.

There exists a critical value of the parameters s, which we will denote by
Doy ({ i} oy s Z,€), where PE({f,}0", , Z) jumps from oo to 0, i.e.

0, s> hig,({fuols: Z.€),
00, s<hl

top({fn}zozl ’ Z’ 8)'

({fn},1 . Z,€) increases when ¢ decreases. We call

top({fn}n 1> ) = hm hg)p<{fn}1io:1 ’ Z7 8)

the packing topological entropy of Z.

P({futnzr Z) = {

Note that h?

top

Definition 2.3. Let Z C X. For s > 0,N € N and ¢ > 0, define
Ry ({fadoly . Z) = inf ) _exp(—sN),

where the infimum is taken over all finite or countable families { By (x;,¢)}
such that z; € X, and | By (z;,¢) 2 Z. Let

R({fn},21» Z) = liminf Ry ({fn},21, 2),
R({fa}ily 2) = timsup Ry ({u};21 . 2)
and
Chy({futntr e) = inf{s: RX({fn},2,, Z) = 0} = sup{s : R({fu},2, . Z) = +oo},

Chz({fudoly6) = inf{s: R.({fu}yl1, Z) = 0} = sup{s : RA({fu};2, . Z) = +oc}.
The lower and upper capacity topological entropies of {f,}. -, restricted to
7 are defined respectively by

Chy({fntnzy) =i Chy({fu},y ©),

Chy({fa}>2,)) = lim Chz({fn}n 15€)-



Following we introduce several measure-theoretic definition.

Definition 2.4. Let p € M(X),s >0, NeNe>0and 0 <06 < 1, define

My ({fadis s 1 0) = inf ) exp(—sn),
where the infimum is taken over all finite or countable families { B, (z;,¢)}
such that z; € X, n; > N and pu(lJ By, (zi,¢)) > 1 —§. The quantity

M3 ({fa}pey s 11, 0) does not decrease as N increase, hence the following

limit exist:

ML 0) = T My (L2, p.9).
Using standard method, we have following is well- defined:
e#({fn}zozl ,€,0) = inf{s: Ms({fn}fﬂ 1, 0) = 0}
= Sup{s : M;({fn}zozl » Ms 5) = +OO}?

defined

(U 1i) = limlim e, ({1, 2,0).

Definition 2.5. Let p € M(X),s>0, NeN,e>0and 0 < < 1, put

%,e({fn}zozl ) 1 5) = infz exp(—sN),

where the infimum is taken over all finite or countable families { By (x;, )}

such that z; € X, and pu(|J By (xi,e)) > 1 —0. Let
B, ) = liminf R (£, 0.0),

R fadiy s ms6) = limsup Ry ({fail 1.)
Using standard method, we have following is well- defined:
eu({fntnzy € 0) = inf{s - RZ({fu},2y 1, 0) = O}
= sup{s : RZ({fu},—; 1, 0) = +o0}
eu{fulnii e,0) = mf{s : Ri({fu};2y 1, 0) = 0}
= sup{s : R.({fa}n’1, . 0) = +oo},
define
e (UhY) = I lime, ({£,)32,.2.9),

Eu({fn};ozl) = llsl_r)%ll_l}ééu({fn}zozl & 6)



Definition 2.6. Let p € M(X),s >0, NeNe>0and 0<¢ <1, put

Pe{fabies 1:9) mf{ZPS {fudos 2 UZ >1- 6},

where P?({f.}°
value of s such that

6;({fn}20:1 ) 5) = inf{s : P;({fn}zoﬂ s s 5) = O}
= sup{s: Pﬁ({fn}zo:1 1y 0) = +oo}.

Z;) is defined in Definition 2.2. There exists a critical

n=1"

Define
e, ({f}ozy) = limlime; ({fu},2, . €, 9).

6—0e—0

2.2 NADS

In this subsection, let (X, ¢) be a NADS, next we introduced NADS’s en-

tropies.

Definition 2.7. Let Z C X, s >0, N € N and ¢ > 0, define

My (¢, 2) = 1anexp —st;)

where the infimum is taken over all finite or countable families {Bf’ (x;,€)}
such that z; € X, ¢t; > N and UBz(a:i,s) 2 Z. The quantity My (¢, 2)

K3
does not decrease as N increase and ¢ decreases, hence the following limits

exist:
M:(6,2) = lim My (6, 2),
N—oo ’

Bowen’s topological entropy htop(¢, Z) is defined as a critical value of the

parameters s, where M*(¢, Z) jumps from oo to 0, i.e.

e 7 — 0, s>hi(6,72),
(9,2) = 00, 3<h5)p(¢,Z).

Other topological entropy definitions are similar to the discrete case def-

inition.
Definition 2.8. Let p € M(X),s>0, NeNe>0and 0 <6 < 1, define

MR (b, 1, 9) mfZeXp —st;)



where the infimum is taken over all finite or countable families {Bf’ (x,€)}
such that z; € X, t; > N and u( Bi(:pi,s)) > 1 — 0. The quantity

M3 (¢, 11,0) does not decrease as N increase, hence the following limit

exist:
M2 (¢, p,0) = lim My (¢, 1, 9).
—00
Using standard method, we have following is well- defined:
€,(6.2.6) = inf{s : M2(6.1,8) = 0} = sup{s : M2(6.1.6) = +oo},
defined
eu(¢) =limlime,(¢,¢,d).

6—0e—0

Other measure-theoretic entropy definitions are similar to the discrete
case definition.

3 Proof of Theorem

3.1 Proof of Theorem 1.2

Proposition 3.1. Let 0 < 6 <1, p € M(X), {Z;}2, be a family of Borel
subsets of X with u(\J Z;) > 1 —0. For any € > 0, ME({fu}rr, 1, 0) <

i=1
; ME{fadoly s Z0)-
Proof. For any € > 0,N,i € N, there exists N; > N such that

My (Y Z) < MY, Z0) + 5

Hence, there ex1sts a countable family {B,, (arj, €)}52, such that n} > N,
o€ X, {By(eh )} 2 2

[e.e]

2. < MR Z) +

Since,u(U)>1—5 we have u(|J U (B, ( 2%,¢€))) > 1 — 6. Hence

i=1 i>15>1
ME({ bl i 8) <D0 e <ZM$ (£}, Z0).
i>1 5>1
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Now we are ready to prove the main result.

Proof. (i) Let Z C x and assume be 0 < s < h} ({fu}ney,Z). For any
neNande>0,let R=R,{f.} —,.Z ¢c) be the largest number so that
there is a disjoint family {B,(v;,€)}2, with ; € Z. Then it is easy to see
that for any 0 > 0,

C:u

n(xi, 26 +9)
=1

which implies that

n2£+5({fn}n 15 Z) < Re™™ < P§7a<{fn}zo:1 , 7)

for any s > 0, and hence M3 s({fn},—).Z) < P:({fu}oey.Z), we have

M3 s (U} 20, 2) < PR, 2). Since 0 < s < B ({fu}2,, Z), we
have M*({f.},~,,Z) = oo and thus M5, s({fu},—;,Z) > 1 when ¢ and §
are small enough. Hence P:({fn},—,,Z) > 1 and h{,({fu},—,.Z.€) > s
when ¢ is small. Therefore hf,,({fu}, ), Z) = hm hip({fn}zozl,Z, g) > s.

This implies that htop({fn}nzl AR hfzp({fn}nzl 7).
(ii) Denote

1
T ({fYoes 2,6) = limsup —log 7 (4, €, 0)

n—oo

then Ef({fn}zozl) %n(l)hm hu ({fn}o—, ., 0). We first prove that

—0

ul{fadys2:0) < by ({Fadiey 2,0)

for any 0 < 6 < 1 and ¢ > 0, using like-Huasdorff dimension method. For
any s > Ef({fn}f;l ,6,0) and Z € X, 5, let F'is a (n,e, Z)-spanning set,
then

()T 8) < 3 explosm) — 4P

xel’
which follows that

R ({fatory i, 0) <e ™ inf ry(e, 2).

ZEX#’(S

Hence

sz,g({fn}zozl " 5) < e~ rn(u’€7 5) _ 6—n(s—%log7"n(,u,s,6))'

Since Ei{({fn}f;l ,€,0) =limsup X logr,(p,e,0) < s, we have

n—oo

limsup B ({£, 15, 11.6) = 0.

n—o0



11

For s > E ({fu}nzi €, 6) we get Rns({fn} 1o 1,0) = 0and e, ({fn}, 2, ,€,6) <
s. Hence %({fn}n 1,6.0) ShE({fadiy 1€, 0).

Next we prove eu({fn}n 1,6.0) = hE({ fa}l, ,€,6) for any 0 < 6 < 1 and
e > 0 by showing h ({fn} ) .€,0) < s whenever s > €,({f.},—, .€,0). For
such a s, we have RM({fn}n:1 i, 0) = 0. Then there exists N € N such
that R _({fu}nei,t,0) <1 for any n > N. Fixn > N, we can find a finite
family {B,(z;,€)}ier such that z; € X,

UB (r;,e)) >1—6 and #l-e " <1
i€l

So 7n(pt,€,6) < e for any n > N. Hence hf({fu}e
(iii) The proof of (iii) is similar to (ii).

£,0) <s

n=1"

(iv) The proof of (iv) is a consequence of definition.
(v) We first show that e,({fn},21) < es({fu}o2y)- Let s < eu({fn}oo ),
0 <d < 1and {Z;}2, be a family of Borel subsets of X with M(U Z;) >

1—0. For any i,n € Nand € > 0, let R, = R, (ZZ, e) be the largest number
such that there is a disjoint family {B, (%, €) j:’ll with 2% € Z;. Then we
can verify that for any 6 > 0,

(B (a}.2¢ +0)} 2 Z:.

It following that M, o({fu}oe) Zi) < e R, < Py ({fu}ozi: Z:) and

M. o({fulniy  Zi) < P*({fu}ory+ Zi). Therefore, by the Proposition3.1,
we have M3 o({fu},Zi,1,0) < Pi({faknis, 1,0). As s < eu({fu}oly), we
can get < e, ({fn} —,,2¢+6,9) when ¢,0,§ are small enough. This implies
that M3, o({fn}oy .1, 0) = 0o and thus P*({f,} 1, 1, 0) = co. Therefore,
it can be deduced that e} ({f.},—;) > s. So the desired inequality holds.
Now we proved that e ({fn}n ;) = limlim inf h{f,p({fn};"il,z, ) . Let

€000 ZEX.,
¢r({fn}ir;) > s, then there exists € ,0° > 0 such that e ({fatey 60) > s

for any € € (0,¢) and § € (0,0). Thus Pi({futor 1,#,5) = oo. For any
Z € X,s and any {Z;},>1 with UZ D Z, we have M(U Zi) > 1-=49.

=1

It follows from P?({f.},—, .1 ) = oo that ZPS({fn}n 1, Zi) = 0. So

Pi({fu}or,+Z) = oo, which gives that htop({fn}n 1, Z,€) > s.
On the other hand, let s < lim lim inf hP ({fn}.21 . Z,€). Then there ex-

e=00-0 ZEX.,6 1P
ist €,6" > 0 such thathf,,({f.}or, . Z, 8) > s for any € € (0,¢), 6 € (0,6)

and Z € X,s. Thus, we have PS({fn}n 1, Z) = oo. le {Z;}i>1 with
(U Z;) > 1—0 and write Z = U Z;,then Z € X, 5. So, ZPS({fn}n 2 =

=1
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oo, which yields that P*({f,} —,,u,0) = oo. Furthermore, we can get
e.({fnlnzr,60) = s and €, ({fn},2)) = 5. O

3.2 Proof of Theorem 1.3

Proposition 3.2. For p € M(X), it holds that

b ({fatnis) < eu{fadnly) < inf{h, ({f}ly K) - p(K) = 13

Proof. The second inequality is a direct consequence of the definition and
we only deduce the first one. For s > 0 with h,({f.},—;) > s. By a standard
procedure, there exist A C X with u(A) > 0 and N € N such that

w(Bp(x,e)) <e™, Yee An>N

Pick § € (0,u(A)). Let {B,,(xi, 5)}ier be a countable family such that

n; > N,z; € X and pu({J Bp,(zi,5)) = 1 — 6 that intersects A, if taking
el
Yi € By, (75, 5) N A, then one has By, (z;, 5) € By, (¥, <) and thus

€ —n;is
“(Bm(xlﬁ 5)) < Bni(yia‘g) <e ™

Then we have

D e = (B (yie) NA) > Y nzxu—)ﬂA)

el i€l i€l

> pllJ Bu (o 5) 0 4) = () > 0

Hence M?({fn}zo Lo s 0) > MY, a({fn}zo L1, 0) > pu(A). By Bowen’s defi-
nition, we can derive that eu({fn} 5,0) > s and moreover b, ({f.},~;) <

n=172 n=1/ —

eu{fntniy)- .

Definition 3.3. Let 4 € M(X). The NADS (z, ¢) measure-theoretical lower
entropies of i is defined by

ho(6,) = / (6, 2)dpi(z)

where
¢
h,(¢,x) = hmhmmf——logu(B (x,¢€)).

e—0 t—oo

Lemma 3.4 ([5, Theorem 1.4]). Let (X, {f.},—,) be a NADDS. If K C X
18 non-empty and compact,then

higp({ oty - K) = sup{h, ({fu};21) 1 p € M(X), u(K) = 1}.
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Next we prove Theorem 1.3.

Proof. By the Proposition, we have

sup{h, ({f}22): o € M(X), ju(K) = 1} < sup{ep({fu}2,): 1 € M(X), u(K) = 1}
< f{hE, ({ £}, K) s p € M(X)u(K) = 1}.

top
Combining with lemma,
higy({ o} » K) = sup{h, ({fa};2)): 1 € M(X), u(K) = 1},
the conclusion can be proved. ]

Using the same proof method of Theorem 1.2 and, Theorem 1.3, we have
result of Theorem 1.4 and Theorem 1.5.
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