A Note on Variational Principle of Subsets for Nonautonomous Dynamical Systems

Jiao Yang

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University Nanjing 210023, Jiangsu, P.R.China E-mail: jiaoyang6667@126.com

Abstract

This paper, we introduce measure-theoretic for Borel probability measures to characterize upper and lower Katok measure-theoretic entropies in discrete type and the measure-theoretic entropy for arbitrary Borel probability measure in nonautonomous case. Then we establish new variational principles for Bowen topological entropy for nonautonomous dynamical systems.

Keywords: Nonautonomous ; Measure-theoretical entropies ; Variational principles

1 Introduction

As an important invariant of topological conjugacy, the notion of topological entropy was introduced by Adler, Konheim and McAndrew [1] in 1965 [3]. Topological entropy is a key tool to measure the complexity of a classical dynamical system, i.e. the exponential growth rate of the number of distinguishable orbits of the iterates of an endomorphism of a compact metric space. In 1973, Bowen [2] introduced the topological entropy $h_{top}^B(T, Z)$ for any set Z in a topological dynamical system X, in a way resembling Hausdorff dimension, where X is a compact metric space and $T: X \to X$ is a continuous selfmap. Bowen topological entropy plays a key role in topological dynamics and dimension theory [2]. In 2012, Feng and Huang [6] showed that there is certain variational relation between Bowen topological entropy and measure-theoretic entropy for arbitrary non-invariant compact set of a topological dynamical system (X, T). Following the idea of Brin and Katok [8], they defined the measure-theoretic entropy for Borel probability measure on X for their results.

In contrast with the autonomous discrete, in contrast with the autonomous discrete case [13], the properties of the entropies for the nonautonomous dynamical systems have not been fully investigated. In order to have a good understanding of the topological entropy of a skew product of dynamical systems (as we know that the calculation of its topological entropy can be transformed into that of its fibers), Kolyada and Snoha [4] proposed the concept of topological entropy in 1996 for a nonautonomous dynamical system determined by a sequence of maps. A nonautonomous discrete dynamical systems (in short: NADDS) is a natural generalization of a classical dynamical systems, its dynamics is determined by a sequence of continuous self-maps $f_n: X \to X$ where $n \in \mathbb{N}$, defined on a compact metric space X.

By a nonautonomous dynamical system(NADDS for short) we understand a pair $(X, \{f_n\}_{n=1}^{\infty})$, where X is a compact metric space endowed with a metric d and $\{f_n\}_{n=1}^{\infty}$, is a sequence of continuous maps from X to X. In 2013, Kawan [11] generalized the classical notion of measure-theoretical entropy established by Kolomogorov and Sinai to NADSs, and proved that the measure-theoretical entropy can be estimated from above by its topological entropy. Following the idea of Brin and Katok [8] and Zhou [7] introduced the measure-theoretical entropy in nouautonomous case and established a variational principle for the first time. More results related to entropy for NADSs were developed in [12]. In this paper, We introduce ideas of Wang [9] to nonautonomous systems to establish new variational principles for Bowen topological entropy for nonautonomous dynamical systems.

Give a NADDS $(X, \{f_n\}_{n=1}^{\infty})$. For each $n \in \mathbb{N}_+$, the Bowen metric d_n on x is defined by $d_n(x, y) = \max_{0 \le i \le n-1} d(f_1^i(x), f_1^i(y))$. For every $\epsilon > 0$, we denote by $B_n(x, \epsilon)$ the open ball of radius ϵ in the metric d_n around x, i.e., $B_n(x, \epsilon) = \{y \in X : d_n(x, y) < \epsilon\}$.

We also consider a nonautonomous dynamical system (for short NADS) (X, ϕ) where (X, d) is a compact metric space and $\phi : [0, +\infty) \times X \to X$ is a continuous map with $\phi(0, x) = x$ for $x \in X$. We want to know whether there is certain variational relation of entropy for nonautonomous dynamical systems. For our study, we need to define the measure-theoretic entropy for arbitrary Borel probability measure in nonautonomous case.

Given a NADS (X, ϕ) . For any $t \in [0, +\infty)$, the *t*th Bowen metric d_t^{ϕ} on X is defined by

$$d_t^{\phi}(x, y) = \max_{0 \le s \le t} \{ d(\phi(s, x), \phi(s, x)) \}$$

For every $\varepsilon > 0$, we denote by $B_t^{\phi}(x, \varepsilon)$ the open ball of radius ε in the metric d_t^{ϕ} around x, i.e.,

$$B_t^{\phi}(x,\varepsilon) = \{ y \in X : d_t^{\phi}(x,y) < \varepsilon \}$$

Write $\phi^i(x) := \phi(i, x)$ for $i = 1, 2, \cdots$ and $x \in X$. In this case, we take $f_n(x) = \phi^n(x)$, then $\{\phi^n\}_{n=1}^{\infty}$ is a NADDS.

Let M(X) denote the set of all Borel probability measures on $X, Z \subset X$ and $\mu \in M(X), (X, \{f_n\}_{n=1}^{\infty})$ is a NADDS.

(1) A set $E \subset Z$ is said to be an (n, ε, Z) -separated set if $x, y \in E$ with $x \neq y$ implies $d_n^{\phi}(x, y) > \varepsilon$. Let $r_n(\varepsilon, Z)$ denote the maximum cardinality of (n, ε, Z) -separated set.

(2) A set $F \subset Z$ is said to be an (n, ε, Z) -spanning set if for any $x \in X$, there exists $y \in F$ with $d_n^{\phi}(x, y) \leq \varepsilon$. Let $s_n(\varepsilon, Z)$ denote the minimum cardinality of (n, ε, Z) -spanning sets.

(3) A set $F \subset X$ is said to be a $(\mu, n, \varepsilon, \delta)$ -spanning set if the union $\bigcup_{x \in F} B_n(x, \varepsilon) \text{ has } \mu\text{-measure more than or equal to } 1-\delta. \text{ Let } r_n(\mu, \varepsilon, \delta) \text{ denote}$ the minimum cardinality of $(\mu, n, \varepsilon, \delta)$ -spanning sets.

(4) We introduce a useful set: $X_{\mu,\delta} = \{Z \subset X : \mu(Z) \ge 1 - \delta\}$. Then it is clear that

$$r_n(\mu,\varepsilon,\delta) = \inf_{Z \in X_{\mu,\delta}} r_n(\varepsilon,Z)$$

An open cover of X is a family of open subsets of X, whose union is X. For two covers \mathcal{U} and \mathcal{V} we say that \mathcal{U} is a refinement of \mathcal{V} if for each $U \in \mathcal{U}$ there is $V \in \mathcal{V}$ with $U \in V$. For $n \in \mathbb{N}$ and open covers $\mathcal{U}_1, \mathcal{U}_2, \cdots, \mathcal{U}_n$ of X we denote

$$\bigvee_{i=1}^{n} \mathcal{U}_{i} = \{A_{1} \cap A_{2} \cap \dots \cap A_{n} : A_{1} \in \mathcal{U}_{1}, A_{2} \in \mathcal{U}_{2}, \dots, A_{n} \in \mathcal{U}_{n}\}$$

Note that $\bigvee_{i=1}^{n} \mathcal{U}_i$ is also an open cover of X. We denote by $\mathcal{N}(\mathcal{U})$ the minimal cardinality of all subcovers chosen from U. Set

$$f_i^0 = id_X, f_i^n = f_{i+(n-1)} \circ f_{i+(n-2)} \circ \cdots \circ f_{i+1} \circ f_i, f_i^{-n} = (f_i^n)^{-1}$$

for all $i, n \in \mathbb{N}$, where id_X is the identity map on X. Let

$$h_{top}(\{f_n\}_{n=1}^{\infty}, \mathcal{U}) = \limsup_{n \to \infty} \frac{\log \mathcal{N}(\bigvee_{i=0}^{n} f_1^{-i}\mathcal{U})}{n}.$$

The topological entropy is defined by

$$h_{top}(X, \{f_n\}_{n=1}^{\infty}) = \{h_{top}(\{f_n\}_{n=1}^{\infty}, \mathcal{U}) : \mathcal{U} \text{ is an open cover of } X\}.$$

It was proved in [1] that for every NADS, we have

$$h_{top}(X, \{f_n\}_{n=1}^{\infty}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{\log s_n(\varepsilon, X)}{n} = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{\log r_n(\varepsilon, X)}{n}.$$

Following the idea of Katok [1], we give the following.

Definition 1.1. Let $\mu \in M(X)$. The NADDS Katok measure-theoretical lower and upper entropies of μ are defined respectively by

$$\underline{h}_{\mu}^{K}(\{f_{n}\}_{n=1}^{\infty}) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \lim_{n \to \infty} \inf \frac{1}{n} \log r_{n}(\mu, \varepsilon, \delta),$$
$$\overline{h}_{\mu}^{K}(\{f_{n}\}_{n=1}^{\infty}) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \lim_{n \to \infty} \sup \frac{1}{n} \log r_{n}(\mu, \varepsilon, \delta)$$

In this paper, we introduce many quantities for Borel probability measure $\mu \in M(X)$, respectively denoted by $e_{\mu}(\{f_n\}_{n=1}^{\infty}), \underline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}), \overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}), e_{\mu}^*(\{f_n\}_{n=1}^{\infty}), and so on.$ According to the relations of the several types of NADS topological entropies, it is natural to consider relationship of some new quantities and Katok measure-theoretical lower and upper entropies. Therefore, we have the first main result.

Our main result is as follows.

Theorem 1.2. Let $(X, \{f_n\}_{n=1}^{\infty})$ be a NADDS, $\mu \in M(X)$. Then following statements hold.

(i) For any $Z \subseteq X$, $h_{top}^B(\{f_n\}_{n=1}^{\infty}, Z) \le h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z)$.

(ii)
$$\overline{h}_{\mu}^{K}(\{f_n\}_{n=1}^{\infty}) = \overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty})$$

- (iii) $\underline{h}_{\mu}^{K}(\{f_n\}_{n=1}^{\infty}) = \underline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}).$
- (iv) $e_{\mu}(\{f_n\}_{n=1}^{\infty}) \leq \underline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}) \leq \bar{e}_{\mu}(\{f_n\}_{n=1}^{\infty}).$
- $(\mathbf{v}) \ e_{\mu}(\{f_n\}_{n=1}^{\infty}) \leq e_{\mu}^*(\{f_n\}_{n=1}^{\infty}) = \lim_{\varepsilon \to 0} \lim_{\delta \to 0} \inf_{Z \in X_{\varepsilon}, \delta} h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon).$

where the definitions of these notions will be given in Section 2.

Theorem 1.3. Let $(X, \{f_n\}_{n=1}^{\infty})$ be a NADDS. If $K \subset X$ is a non-empty and compact, then

$$h_{top}^B(\{f_n\}_{n=1}^\infty, K) = \sup\{e_\mu(\{f_n\}_{n=1}^\infty) \colon \mu \in M(X), \mu(K) = 1\}.$$

Theorem 1.4. Let (X, ϕ) be a NADS, $\mu \in M(X)$. Then following statements hold.

- (i) For any $Z \subseteq X$, $h_{top}^B(\phi, Z) \le h_{top}^P(\phi, Z)$.
- (ii) $e_{\mu}(\phi) \leq \underline{e}_{\mu}(\phi) \leq \overline{e}_{\mu}(\phi)$.
- (iii) $e_{\mu}(\phi) \le e_{\mu}^{*}(\phi) = \lim_{\varepsilon \to 0} \lim_{\delta \to 0} \inf_{Z \in X_{\varepsilon,\delta}} h_{top}^{P}(\phi, Z, \varepsilon).$

Theorem 1.5. Let (X,ϕ) be a NADS. If $K \subset X$ is a non-empty and compact, then

$$h_{top}^{B}(\phi, K) = \sup\{e_{\mu}(\phi) \colon \mu \in M(X), \mu(K) = 1\}.$$

2 Preliminaries

2.1 NADDS

In this subsection, let $(X, \{f_n\}_{n=1}^{\infty})$ be a NADDS, next we introduced NADDS's entropies. Following, we give some definitions of several NADDS topological entropies of subsets.

Definition 2.1. Let $Z \subset X$, $s \ge 0$, $N \in \mathbb{N}$ and $\varepsilon > 0$, define

$$M_{N,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty}, Z) = \inf \sum_{i} \exp(-sn_i),$$

where the infimum is taken over all finite or countable families $\{B_{n_i}(x_i,\varepsilon)\}$ such that $x_i \in X$, $n_i \ge N$ and $\bigcup_i B_{n_i}(x_i,\varepsilon) \supseteq Z$. The quantity $M_{N,\varepsilon}^s(\{f_n\}_{n=1}^{\infty}, Z)$ does not decrease as N increase and ε decreases, hence the following limits exist:

$$M^s_{\varepsilon}(\{f_n\}_{n=1}^{\infty}, Z) = \lim_{N \to \infty} M^s_{N,\varepsilon}(\{f_n\}_{n=1}^{\infty}, Z),$$
$$M^s(\{f_n\}_{n=1}^{\infty}, Z) = \lim_{\varepsilon \to 0} M^s_{\varepsilon}(\{f_n\}_{n=1}^{\infty}, Z).$$

Bowen's topological entropy $h_{top}^B(\{f_n\}_{n=1}^{\infty}, Z)$ is defined as a critical value of the parameters s, where $M^s(\{f_n\}_{n=1}^{\infty}, Z)$ jumps from ∞ to 0, i.e.

$$M^{s}(\{f_{n}\}_{n=1}^{\infty}, Z) = \begin{cases} 0, & s > h_{top}^{B}(\{f_{n}\}_{n=1}^{\infty}, Z), \\ \infty, & s < h_{top}^{B}(\{f_{n}\}_{n=1}^{\infty}, Z). \end{cases}$$

Definition 2.2. Let $Z \subseteq X$. For $s \ge 0, N \in \mathbb{N}$ and $\varepsilon > 0$, define

$$P_{N,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty}, Z) = \sup \sum_{i} \exp(-sn_i),$$

where the supremum is taken over all finite or countable pairwise disjoint families $\{\overline{B}_{n_i}(x_i,\varepsilon)\}$ such that $x_i \in Z$, $n_i \geq N$ for all i, where $\{\overline{B}_{n_i}(x_i,\varepsilon)\} := \{y \in X : d_n(x,y) \leq \varepsilon\}.$

The quantity $P_{N,\varepsilon}^s(\{f_n\}_{n=1}^{\infty}, Z)$ does not decrease as N,ε decrease, hence the following limit exists:

$$P_{\varepsilon}^{s}(\{f_{n}\}_{n=1}^{\infty}, Z) = \lim_{N \to \infty} P_{N,\varepsilon}^{s}(\{f_{n}\}_{n=1}^{\infty}, Z)$$

Define

$$\mathcal{P}^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, Z) = \inf\{\sum_{i=1}^{\infty} P^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, Z_{i}) : \bigcup_{i=1}^{\infty} Z_{i} \supseteq Z\}.$$

There exists a critical value of the parameters s, which we will denote by $h_{top}^{P}(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon)$, where $P_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty}, Z)$ jumps from ∞ to 0, i.e.

$$\mathcal{P}^{s}(\{f_{n}\}_{n=1}^{\infty}, Z) = \begin{cases} 0, & s > h_{top}^{P}(\{f_{n}\}_{n=1}^{\infty}, Z, \varepsilon), \\ \infty, & s < h_{top}^{P}(\{f_{n}\}_{n=1}^{\infty}, Z, \varepsilon). \end{cases}$$

Note that $h_{top}^{P}(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon)$ increases when ε decreases. We call

$$h_{top}^{P}(\{f_n\}_{n=1}^{\infty}, Z) := \lim_{\varepsilon \to 0} h_{top}^{P}(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon)$$

the packing topological entropy of Z.

Definition 2.3. Let $Z \subseteq X$. For $s \ge 0, N \in \mathbb{N}$ and $\varepsilon > 0$, define

$$R_{N,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty}, Z) = \inf \sum_{i} \exp(-sN),$$

where the infimum is taken over all finite or countable families $\{B_N(x_i, \varepsilon)\}$ such that $x_i \in X$, and $\bigcup_i B_N(x_i, \varepsilon) \supseteq Z$. Let

$$\underline{R}^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, Z) = \liminf_{N \to \infty} R^{s}_{N,\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, Z),$$
$$\overline{R}^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, Z) = \limsup_{N \to \infty} R^{s}_{N,\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, Z)$$

and

$$\underline{Ch}_{Z}(\{f_{n}\}_{n=1}^{\infty},\varepsilon) = \inf\{s:\underline{R}_{\varepsilon}^{s}(\{f_{n}\}_{n=1}^{\infty},Z) = 0\} = \sup\{s:\underline{R}_{\varepsilon}^{s}(\{f_{n}\}_{n=1}^{\infty},Z) = +\infty\},\$$
$$\overline{Ch}_{Z}(\{f_{n}\}_{n=1}^{\infty},\varepsilon) = \inf\{s:\overline{R}_{\varepsilon}^{s}(\{f_{n}\}_{n=1}^{\infty},Z) = 0\} = \sup\{s:\underline{R}_{\varepsilon}^{s}(\{f_{n}\}_{n=1}^{\infty},Z) = +\infty\}.$$

The lower and upper capacity topological entropies of $\{f_n\}_{n=1}^{\infty}$ restricted to Z are defined respectively by

$$\underline{Ch}_{Z}(\{f_{n}\}_{n=1}^{\infty}) = \lim_{\varepsilon \to 0} \underline{Ch}_{Z}(\{f_{n}\}_{n=1}^{\infty}, \varepsilon),$$
$$\overline{Ch}_{Z}(\{f_{n}\}_{n=1}^{\infty}) = \lim_{\varepsilon \to 0} \overline{Ch}_{Z}(\{f_{n}\}_{n=1}^{\infty}, \varepsilon).$$

Following we introduce several measure-theoretic definition.

Definition 2.4. Let $\mu \in M(X)$, $s \ge 0$, $N \in \mathbb{N} \in \mathbb{O}$ and $0 < \delta < 1$, define

$$M_{N,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = \inf\sum_{i}\exp(-sn_i),$$

where the infimum is taken over all finite or countable families $\{B_{n_i}(x_i,\varepsilon)\}$ such that $x_i \in X$, $n_i \geq N$ and $\mu(\bigcup_i B_{n_i}(x_i,\varepsilon)) \geq 1 - \delta$. The quantity $M_{N,\varepsilon}^s(\{f_n\}_{n=1}^{\infty}, \mu, \delta)$ does not decrease as N increase, hence the following limit exist:

$$M^s_{\varepsilon}(\{f_n\}_{n=1}^{\infty}, \mu, \delta) = \lim_{N \to \infty} M^s_{N,\varepsilon}(\{f_n\}_{n=1}^{\infty}, \mu, \delta).$$

Using standard method, we have following is well- defined:

$$e_{\mu}(\{f_n\}_{n=1}^{\infty},\varepsilon,\delta) = \inf\{s: M_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = 0\}$$
$$= \sup\{s: M_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = +\infty\},\$$

defined

$$e_{\mu}(\{f_n\}_{n=1}^{\infty}) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} e_{\mu}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta).$$

Definition 2.5. Let $\mu \in M(X)$, $s \ge 0$, $N \in \mathbb{N}$, $\varepsilon > 0$ and $0 < \delta < 1$, put

$$R_{N,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = \inf\sum_{i} \exp(-sN),$$

where the infimum is taken over all finite or countable families $\{B_N(x_i,\varepsilon)\}$ such that $x_i \in X$, and $\mu(\bigcup_i B_N(x_i,\varepsilon)) \ge 1 - \delta$. Let

$$\underline{R}^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty},\mu,\delta) = \liminf_{N \to \infty} R^{s}_{N,\varepsilon}(\{f_{n}\}_{n=1}^{\infty},\mu,\delta),$$
$$\overline{R}^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty},\mu,\delta) = \limsup_{N \to \infty} R^{s}_{N,\varepsilon}(\{f_{n}\}_{n=1}^{\infty},\mu,\delta).$$

Using standard method, we have following is well- defined:

$$\underline{e}_{\mu}(\{f_n\}_{n=1}^{\infty},\varepsilon,\delta) = \inf\{s:\underline{R}_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = 0\}$$

$$= \sup\{s:\underline{R}_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = +\infty\}$$

$$\overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty},\varepsilon,\delta) = \inf\{s:\overline{R}_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = 0\}$$

$$= \sup\{s:\overline{R}_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = +\infty\},\$$

define

$$\underline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \underline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta),$$
$$\overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta).$$

Definition 2.6. Let $\mu \in M(X)$, $s \ge 0$, $N \in \mathbb{N} \in \mathcal{S} > 0$ and $0 < \delta < 1$, put

$$\mathcal{P}^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, \mu, \delta) = \inf\{\sum_{i=1}^{\infty} P^{s}_{\varepsilon}(\{f_{n}\}_{n=1}^{\infty}, Z_{i}) : \mu(\bigcup_{i=1}^{\infty} Z_{i}) \ge 1 - \delta\},\$$

where $P_{\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty}, Z_i)$ is defined in Definition 2.2. There exists a critical value of s such that

$$e^*_{\mu}(\{f_n\}_{n=1}^{\infty},\varepsilon,\delta) = \inf\{s: \mathcal{P}^s_{\varepsilon}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = 0\}$$
$$= \sup\{s: \mathcal{P}^s_{\varepsilon}(\{f_n\}_{n=1}^{\infty},\mu,\delta) = +\infty\}.$$

Define

$$e_{\mu}^{*}(\{f_{n}\}_{n=1}^{\infty}) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} e_{\mu}^{*}(\{f_{n}\}_{n=1}^{\infty}, \varepsilon, \delta).$$

2.2 NADS

In this subsection, let (X, ϕ) be a NADS, next we introduced NADS's entropies.

Definition 2.7. Let $Z \subset X$, $s \ge 0$, $N \in \mathbb{N}$ and $\varepsilon > 0$, define

$$M_{N,\varepsilon}^{s}(\phi, Z) = \inf \sum_{i} \exp(-st_{i}),$$

where the infimum is taken over all finite or countable families $\{B_{t_i}^{\phi}(x_i,\varepsilon)\}$ such that $x_i \in X$, $t_i \geq N$ and $\bigcup_i B_{t_i}^{\phi}(x_i,\varepsilon) \supseteq Z$. The quantity $M_{N,\varepsilon}^s(\phi,Z)$ does not decrease as N increase and ε decreases, hence the following limits exist:

$$M^{s}_{\varepsilon}(\phi, Z) = \lim_{N \to \infty} M^{s}_{N,\varepsilon}(\phi, Z),$$
$$M^{s}(\phi, Z) = \lim_{\varepsilon \to 0} M^{s}_{\varepsilon}(\phi, Z).$$

Bowen's topological entropy $h_{top}^B(\phi, Z)$ is defined as a critical value of the parameters s, where $M^s(\phi, Z)$ jumps from ∞ to 0, i.e.

$$M^{s}(\phi, Z) = \begin{cases} 0, & s > h^{B}_{top}(\phi, Z), \\ \infty, & s < h^{B}_{top}(\phi, Z). \end{cases}$$

Other topological entropy definitions are similar to the discrete case definition.

Definition 2.8. Let $\mu \in M(X)$, $s \ge 0$, $N \in \mathbb{N} \in \mathbb{S} > 0$ and $0 < \delta < 1$, define

$$M_{N,\varepsilon}^{s}(\phi,\mu,\delta) = \inf \sum_{i} \exp(-st_{i}),$$

where the infimum is taken over all finite or countable families $\{B_{t_i}^{\phi}(x_i,\varepsilon)\}$ such that $x_i \in X$, $t_i \geq N$ and $\mu(\bigcup_i B_{t_i}^{\phi}(x_i,\varepsilon)) \geq 1 - \delta$. The quantity $M_{N,\varepsilon}^s(\phi,\mu,\delta)$ does not decrease as N increase, hence the following limit exist:

$$M^s_{\varepsilon}(\phi,\mu,\delta) = \lim_{N \to \infty} M^s_{N,\varepsilon}(\phi,\mu,\delta).$$

Using standard method, we have following is well- defined:

$$e_{\mu}(\phi,\varepsilon,\delta) = \inf\{s: M^{s}_{\varepsilon}(\phi,\mu,\delta) = 0\} = \sup\{s: M^{s}_{\varepsilon}(\phi,\mu,\delta) = +\infty\}$$

defined

$$e_{\mu}(\phi) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} e_{\mu}(\phi, \varepsilon, \delta).$$

Other measure-theoretic entropy definitions are similar to the discrete case definition.

3 Proof of Theorem

3.1 Proof of Theorem 1.2

Proposition 3.1. Let $0 < \delta < 1$, $\mu \in M(X)$, $\{Z_i\}_{i=1}^{\infty}$ be a family of Borel subsets of X with $\mu(\bigcup_{i=1}^{\infty} Z_i) \ge 1 - \delta$. For any $\epsilon > 0$, $M_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, \mu, \delta) \le \sum_{i=1}^{\infty} M_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z_i)$.

Proof. For any $\varepsilon > 0, N, i \in \mathbb{N}$, there exists $N_i > N$ such that

$$M_{N_i,\epsilon}^s(\{f_n\}_{n=1}^\infty, Z_i) < M_{\epsilon}^s(\{f_n\}_{n=1}^\infty, Z_i) + \frac{\varepsilon}{2^i}.$$

Hence, there exists a countable family $\{B_{n_j^i}(x_j^i, \epsilon)\}_{j=1}^{\infty}$ such that $n_j^i \ge N_i$, $x_j^i \in X$, $\{B_{n_j^i}(x_j^i, \epsilon)\} \supseteq Z_i$,

$$\sum_{j=1}^{\infty} e^{-sn_j^i} < M_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z_i) + \frac{\varepsilon}{2^i}.$$

Since $\mu(\bigcup_{i=1}^{\infty}) \ge 1 - \delta$, we have $\mu(\bigcup_{i\ge 1} \bigcup_{j\ge 1} (B_{n_j^i}(x_j^i, \epsilon))) \ge 1 - \delta$. Hence

$$M_{\epsilon}^{s}(\{f_{n}\}_{n=1}^{\infty}, \mu, \delta) \leq \sum_{i \geq 1} \sum_{j \geq 1} e^{-sn_{j}^{i}} < \sum_{i=1}^{\infty} M_{\epsilon}^{s}(\{f_{n}\}_{n=1}^{\infty}, Z_{i}).$$

Now we are ready to prove the main result.

Proof. (i) Let $Z \subseteq x$ and assume be $0 < s < h_{top}^B(\{f_n\}_{n=1}^{\infty}, Z)$. For any $n \in \mathbb{N}$ and $\varepsilon > 0$, let $R = R_n(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon)$ be the largest number so that there is a disjoint family $\{\overline{B}_n(x_i, \varepsilon)\}_{i=1}^R$ with $x_i \in Z$. Then it is easy to see that for any $\delta > 0$,

$$\bigcup_{i=1}^{R} \overline{B}_n(x_i, 2\varepsilon + \delta) \supseteq Z_i$$

which implies that

$$M_{n,2\varepsilon+\delta}^s(\{f_n\}_{n=1}^\infty, Z) \le Re^{-ns} \le P_{n,\varepsilon}^s(\{f_n\}_{n=1}^\infty, Z)$$

for any $s \geq 0$, and hence $M_{2\varepsilon+\delta}^s(\{f_n\}_{n=1}^{\infty}, Z) \leq P_{\varepsilon}^s(\{f_n\}_{n=1}^{\infty}, Z)$, we have $M_{2\varepsilon+\delta}^s(\{f_n\}_{n=1}^{\infty}, Z) \leq \mathcal{P}_{\varepsilon}^s(\{f_n\}_{n=1}^{\infty}, Z)$. Since $0 < s < h_{top}^B(\{f_n\}_{n=1}^{\infty}, Z)$, we have $M^s(\{f_n\}_{n=1}^{\infty}, Z) = \infty$ and thus $M_{2\varepsilon+\delta}^s(\{f_n\}_{n=1}^{\infty}, Z) \geq 1$ when ε and δ are small enough. Hence $\mathcal{P}_{\varepsilon}^s(\{f_n\}_{n=1}^{\infty}, Z) \geq 1$ and $h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) \geq s$ when ε is small. Therefore $h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z) = \lim_{\varepsilon \to 0} h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) \geq s$. This implies that $h_{top}^B(\{f_n\}_{n=1}^{\infty}, Z) \leq h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z)$. (ii) Denote

$$\overline{h}_{\mu}^{K}(\{f_{n}\}_{n=1}^{\infty},\varepsilon,\delta) = \limsup_{n \to \infty} \frac{1}{n} \log r_{n}(\mu,\varepsilon,\delta)$$

then $\overline{h}_{\mu}^{K}(\{f_{n}\}_{n=1}^{\infty}) = \lim_{\delta \to 0} \lim_{\varepsilon \to 0} \overline{h}_{\mu}^{K}(\{f_{n}\}_{n=1}^{\infty}, \varepsilon, \delta)$. We first prove that

$$\overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty},\varepsilon,\delta) \leq \overline{h}_{\mu}^{K}(\{f_n\}_{n=1}^{\infty},\varepsilon,\delta)$$

for any $0 < \delta < 1$ and $\varepsilon > 0$, using like-Huasdorff dimension method. For any $s > \overline{h}_{\mu}^{K}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta)$ and $Z \in X_{\mu,\delta}$, let F is a (n, ε, Z) -spanning set, then

$$R_{n,\varepsilon}^s(\{f_n\}_{n=1}^\infty,\mu,\delta) \le \sum_{x\in F} \exp(-sn) = \sharp F \cdot e^{-sn}$$

which follows that

$$R_{n,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) \le e^{-sn} \cdot \inf_{Z \in X_{\mu,\delta}} r_n(\varepsilon,Z).$$

Hence

$$R_{n,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty},\mu,\delta) \le e^{-sn} \cdot r_n(\mu,\varepsilon,\delta) = e^{-n(s-\frac{1}{n}\log r_n(\mu,\varepsilon,\delta))}.$$

Since $\overline{h}_{\mu}^{K}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta) = \limsup_{n \to \infty} \frac{1}{n} \log r_n(\mu, \varepsilon, \delta) < s$, we have

$$\limsup_{n \to \infty} R_{n,\varepsilon}^s(\{f_n\}_{n=1}^\infty, \mu, \delta) = 0.$$

For $s > \overline{h}_{\mu}^{K}(\{f_{n}\}_{n=1}^{\infty},\varepsilon,\delta)$ we get $\overline{R}_{n,\varepsilon}^{s}(\{f_{n}\}_{n=1}^{\infty},\mu,\delta) = 0$ and $\overline{e}_{\mu}(\{f_{n}\}_{n=1}^{\infty},\varepsilon,\delta) \leq s$. Hence $\overline{e}_{\mu}(\{f_{n}\}_{n=1}^{\infty},\varepsilon,\delta) \leq \overline{h}_{\mu}^{K}(\{f_{n}\}_{n=1}^{\infty},\varepsilon,\delta)$.

Next we prove $\overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta) \geq \overline{h}_{\mu}^{K}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta)$ for any $0 < \delta < 1$ and $\varepsilon > 0$ by showing $\overline{h}_{\mu}^{K}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta) \leq s$ whenever $s > \overline{e}_{\mu}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta)$. For such a s, we have $\overline{R}_{n,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty}, \mu, \delta) = 0$. Then there exists $N \in \mathbb{N}$ such that $R_{n,\varepsilon}^{s}(\{f_n\}_{n=1}^{\infty}, \mu, \delta) < 1$ for any $n \geq N$. Fix $n \geq N$, we can find a finite family $\{B_n(x_i, \varepsilon)\}_{i \in I}$ such that $x_i \in X$,

$$\mu(\bigcup_{i \in I} B_n(x_i, \varepsilon)) \ge 1 - \delta$$
 and $\sharp I \cdot e^{-sn} < 1$

So $r_n(\mu, \varepsilon, \delta) \leq e^{sn}$ for any $n \geq N$. Hence $\bar{h}^K_{\mu}(\{f_n\}_{n=1}^{\infty}, \varepsilon, \delta) \leq s$. (iii) The proof of (iii) is similar to (ii).

(iv) The proof of (iv) is a consequence of definition.

(v) We first show that $e_{\mu}(\{f_n\}_{n=1}^{\infty}) \leq e_{\mu}^*(\{f_n\}_{n=1}^{\infty})$. Let $s < e_{\mu}(\{f_n\}_{n=1}^{\infty})$, $0 < \delta < 1$ and $\{Z_i\}_{i=1}^{\infty}$ be a family of Borel subsets of X with $\mu(\bigcup_{i=1}^{\infty} Z_i) \geq 1 - \delta$. For any $i, n \in \mathbb{N}$ and $\epsilon > 0$, let $R_n^i = R_n(Z_i, \varepsilon)$ be the largest number such that there is a disjoint family $\{\overline{B}_n(x_j^i, \epsilon)\}_{j=1}^{R_n}$ with $x_j^i \in Z_i$. Then we can verify that for any $\theta > 0$,

$$\{B_{n_i^i}(x_j^i, 2\epsilon + \theta)\} \supseteq Z_i.$$

It following that $M_{n,2\epsilon+\theta}^s(\{f_n\}_{n=1}^{\infty}, Z_i) \leq e^{-sn} \cdot R_n^i \leq P_{n,\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z_i)$ and $M_{2\epsilon+\theta}^s(\{f_n\}_{n=1}^{\infty}, Z_i) \leq P_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z_i)$. Therefore, by the Proposition3.1, we have $M_{2\epsilon+\theta}^s(\{f_n\}_{n=1}^{\infty}, \mu, \delta) \leq \mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, \mu, \delta)$. As $s < e_{\mu}(\{f_n\}_{n=1}^{\infty})$, we can get $< e_{\mu}(\{f_n\}_{n=1}^{\infty}, \mu, \delta) = \infty$ and thus $\mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, \mu, \delta) = \infty$. Therefore, it can be deduced that $e_{\mu}^*(\{f_n\}_{n=1}^{\infty}) \geq s$. So the desired inequality holds. Now we proved that $e_{\mu}^*(\{f_n\}_{n=1}^{\infty}) = \liminf_{\epsilon \to 0} \lim_{\delta \to 0} \inf_{Z \in X_{\epsilon,\delta}} h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon)$. Let $e_{\mu}^*(\{f_n\}_{n=1}^{\infty}) > s$, then there exists $\epsilon', \delta' > 0$ such that $e_{\mu}^*(\{f_n\}_{n=1}^{\infty}, \epsilon, \delta) \geq s$ for any $\epsilon \in (0, \epsilon')$ and $\delta \in (0, \delta')$. Thus, $\mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, \mu, \delta) = \infty$. For any $Z \in X_{\mu,\delta}$ and any $\{Z_i\}_{i\geq 1}$ with $\bigcup_{i=1}^{\infty} Z_i \supseteq Z$, we have $\mu(\bigcup_{i=1}^{\infty} Z_i) \geq 1 - \delta$. It follows from $\mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, \mu, \delta) = \infty$ that $\sum_{i=1}^{\infty} \mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) > s$. On the other hand, let $s < \liminf_{\varepsilon \to 0} \lim_{\delta \to 0} \lim_{Z \in X_{\epsilon,\delta}} h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon)$. Then there exist $\epsilon', \delta' > 0$ such that $h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) > s$ for any $\epsilon \in (0, \epsilon')$, $\delta \in (0, \delta')$ and $Z \in X_{\mu,\delta}$. Thus, we have $\mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) > s$. So $\mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) > s$ for any $\epsilon \in (0, \epsilon')$, $\delta \in (0, \delta')$ and $Z \in X_{\mu,\delta}$. Thus, we have $\mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) > s$. Then there exist $\epsilon', \delta' > 0$ such that $h_{top}^P(\{f_n\}_{n=1}^{\infty}, Z, \varepsilon) > s$ for any $\epsilon \in (0, \epsilon')$, $\delta \in (0, \delta')$ and $Z \in X_{\mu,\delta}$. Thus, we have $\mathcal{P}_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z) = \infty$. Fix $\{Z_i\}_{i\geq 1}$ with $\mu(\bigcup_{i=1}^{\infty} Z_i) \geq 1-\delta$ and write $Z = \bigcup_{i=1}^{\infty} Z_i$, then $Z \in X_{\mu,\delta}$. So, $\sum_{i=1}^{\infty} P_{\epsilon}^s(\{f_n\}_{n=1}^{\infty}, Z_i) = 0$.

 ∞ , which yields that $\mathcal{P}_{\epsilon}^{s}(\{f_{n}\}_{n=1}^{\infty}, \mu, \delta) = \infty$. Furthermore, we can get $e_{\mu}^{*}(\{f_{n}\}_{n=1}^{\infty}, \epsilon, \delta) \geq s$ and $e_{\mu}^{*}(\{f_{n}\}_{n=1}^{\infty}) \geq s$.

3.2 Proof of Theorem 1.3

Proposition 3.2. For $\mu \in M(X)$, it holds that

$$\underline{h}_{\mu}(\{f_n\}_{n=1}^{\infty}) \le e_{\mu}(\{f_n\}_{n=1}^{\infty}) \le \inf\{h_{top}^B(\{f_n\}_{n=1}^{\infty}, K) : \mu(K) = 1\}.$$

Proof. The second inequality is a direct consequence of the definition and we only deduce the first one. For s > 0 with $\underline{h}_{\mu}(\{f_n\}_{n=1}^{\infty}) > s$. By a standard procedure, there exist $A \subset X$ with $\mu(A) > 0$ and $N \in \mathbb{N}$ such that

$$\mu(B_n(x,\varepsilon)) < e^{-ns}, \quad \forall x \in A, n \ge N$$

Pick $\delta \in (0, \mu(A))$. Let $\{B_{n_i}(x_i, \frac{\varepsilon}{2})\}_{i \in I}$ be a countable family such that $n_i \geq N, x_i \in X$ and $\mu(\bigcup_{i \in I} B_{n_i}(x_i, \frac{\varepsilon}{2})) \geq 1 - \delta$ that intersects A, if taking $y_i \in B_{n_i}(x_i, \frac{\varepsilon}{2}) \cap A$, then one has $B_{n_i}(x_i, \frac{\varepsilon}{2}) \subseteq B_{n_i}(y_i, \varepsilon)$ and thus

$$\mu(B_{n_i}(x_i,\frac{\varepsilon}{2})) \le B_{n_i}(y_i,\varepsilon) \le e^{-n_i s}$$

Then we have

$$\sum_{i \in I} e^{-n_i s} \ge \sum_{i \in I} \mu(B_{n_i}(y_i, \varepsilon) \cap A) \ge \sum_{i \in I} \mu(B_{n_i}(x_i, \frac{\varepsilon}{2}) \cap A)$$
$$\ge \mu(\bigcup_i B_{n_i}(x_i, \frac{\varepsilon}{2}) \cap A) = \mu(A) > 0$$

Hence $M^s_{\frac{\varepsilon}{2}}(\{f_n\}_{n=1}^{\infty}, \mu, \delta) \geq M^s_{N, \frac{\varepsilon}{2}}(\{f_n\}_{n=1}^{\infty}, \mu, \delta) \geq \mu(A)$. By Bowen's definition, we can derive that $e_{\mu}(\{f_n\}_{n=1}^{\infty}, \frac{\varepsilon}{2}, \delta) \geq s$ and moreover $\underline{h}_{\mu}(\{f_n\}_{n=1}^{\infty}) \leq e_{\mu}(\{f_n\}_{n=1}^{\infty})$.

Definition 3.3. Let $\mu \in M(X)$. The NADS (x, ϕ) measure-theoretical lower entropies of μ is defined by

$$\underline{h}_{\mu}(\phi,) = \int \underline{h}_{\mu}(\phi, x) d\mu(x)$$

where

$$\underline{h}_{\mu}(\phi, x) = \lim_{\varepsilon \to 0} \liminf_{t \to \infty} -\frac{1}{t} \log \mu(B_t^{\phi}(x, \varepsilon)).$$

Lemma 3.4 ([5, Theorem 1.4]). Let $(X, \{f_n\}_{n=1}^{\infty})$ be a NADDS. If $K \subseteq X$ is non-empty and compact, then

$$h_{top}^B(\{f_n\}_{n=1}^{\infty}, K) = \sup\{\underline{h}_{\mu}(\{f_n\}_{n=1}^{\infty}) \colon \mu \in M(X), \mu(K) = 1\}.$$

Next we prove Theorem 1.3.

Proof. By the Proposition, we have

$$\sup\{\underline{h}_{\mu}(\{f_n\}_{n=1}^{\infty}): \mu \in M(X), \mu(K) = 1\} \le \sup\{e_{\mu}(\{f_n\}_{n=1}^{\infty}): \mu \in M(X), \mu(K) = 1\} \le \inf\{h_{top}^B(\{f_n\}_{n=1}^{\infty}, K): \mu \in M(X)\mu(K) = 1\}.$$

Combining with lemma,

$$h_{top}^{B}(\{f_n\}_{n=1}^{\infty}, K) = \sup\{\underline{h}_{\mu}(\{f_n\}_{n=1}^{\infty}) \colon \mu \in M(X), \mu(K) = 1\}.$$

the conclusion can be proved.

Using the same proof method of Theorem 1.2 and, Theorem 1.3, we have result of Theorem 1.4 and Theorem 1.5.

References

- R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319.
- R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136.
- [3] P. Walters, An Introduction to Ergodic Theory, Springer, Berlin, 1981.
- [4] S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems, *Random. Dyn.* 4 (1996), 205-233.
- [5] L. Xu, X. Zhou, Variational principles for entropies of nonautonomous dynamical systems, J. Dyn. Differ. Equ. 30 (2018), 1053-1062.
- [6] D. Feng, W. Huang, Variational principle for topological entropies of subsets, J. Funct. Anal. 263 (2012), 2228-2254.
- [7] X. Zhou, A formula of conditional entropy and some applications, Discrete Contin. Dyn. Syst. 36 (2016), 4063-4075.
- [8] M. Brin, A. katok, On local entropy, I. Math. Phys. Anal. Geom. 2 (1999), 323-415.

- [9] T. Wang, Some note on tological and measure-theoretic entropy, Qual. Theory Dyn.Syst.20 (2021).
- [10] A. Bis, Topological and Measure-Theoretical Entropies of Nonautonomous Dynamical Systems, J. Dynam. Differential Equations, to appear
- [11] C. Kawan, Metric entropy of nonautonomous dynamical systems, Nonauton. Dyn. Syst. 1 (2013), 26-52.
- [12] S. Kolyada, M. Misiurewicz, L. Snoha, Topological entropy of nonautonomous piecewise monotone dynamical systems on the inteval, *Fund. Math.* **160**(1990), 161-181.
- [13] Y. Zhu, Z. Liu and W. Zhang, Entropy of nonautonomous dynamical systems, J. Korean Math. 49 (2012), 165-185.