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Abstract

This paper,we introduce measure-theoretic for Borel probability
measures to characterize upper and lower Katok measure-theoretic
entropies in discrete type and the measure-theoretic entropy for ar-
bitrary Borel probability measure in nonautonomous case. Then we
establish new variational principles for Bowen topological entropy for
nonautonomous dynamical systems.

Keywords: Nonautonomous ; Measure-theoretical entropies ; Variational
principles

1 Introduction

As an important invariant of topological conjugacy, the notion of topo-
logical entropy was introduced by Adler, Konheim and McAndrew [1] in
1965 [3]. Topological entropy is a key tool to measure the complexity of a
classical dynamical system, i.e. the exponential growth rate of the number of
distinguishable orbits of the iterates of an endomorphism of a compact met-
ric space.In 1973,Bowen [2] introduced the topological entropy hBtop(T, Z) for
any set Z in a topological dynamical system X,in a way resembling Haus-
dorff dimension, where X is a compact metric space and T : X → X is
a continuous selfmap. Bowen topological entropy plays a key role in topo-
logical dynamics and dimension theory [2]. In 2012, Feng and Huang [6]
showed that there is certain variational relation between Bowen topological
entropy and measure-theoretic entropy for arbitrary non-invariant compact
set of a topological dynamical system (X,T ). Following the idea of Brin and
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Katok [8], they defined the measure-theoretic entropy for Borel probability
measure on X for their results.

In contrast with the autonomous discrete, in contrast with the autonomous
discrete case [13], the properties of the entropies for the nonautonomous dy-
namical systems have not been fully investigated. In order to have a good
understanding of the topological entropy of a skew product of dynamical
systems (as we know that the calculation of its topological entropy can be
transformed into that of its fibers), Kolyada and Snoha [4] proposed the con-
cept of topological entropy in 1996 for a nonautonomous dynamical system
determined by a sequence of maps.A nonautonomous discrete dynamical
systems (in short: NADDS) is a natural generalization of a classical dy-
namical systems, its dynamics is determined by a sequence of continuous
self-maps fn : X → X where n ∈ N, defined on a compact metric space X.

By a nonautonomous dynamical system(NADDS for short) we under-
stand a pair (X, {fn}∞n=1), where X is a compact metric space endowed with
a metric d and {fn}∞n=1, is a sequence of continuous maps from X to X. In
2013, Kawan [11] generalized the classical notion of measure-theoretical en-
tropy established by Kolomogorov and Sinai to NADSs, and proved that the
measure-theoretical entropy can be estimated from above by its topological
entropy. Following the idea of Brin and Katok [8] and Zhou [7] introduced
the measure-theoretical entropy in nouautonomous case and established a
variational principle for the first time. More results related to entropy for
NADSs were developed in [12]. In this paper, We introduce ideas of Wang
[9] to nonautonomous systems to establish new variational principles for
Bowen topological entropy for nonautonomous dynamical systems.

Give a NADDS (X,{fn}∞n=1).For each n ∈ N+,the Bowen metric dn on x
is defined by dn(x, y) = max

0≤i≤n−1
d(f i1(x), f i1(y)). For every ε> 0, we denote by

Bn(x, ε) the open ball of radius ε in the metric dn around x, i.e., Bn(x, ε) =

{y ∈ X : dn(x, y) < ε}.
We also consider a nonautonomous dynamical system (for short NADS)

(X,φ) where (X, d) is a compact metric space and φ : [0,+∞)×X → X is
a continuous map with φ(0, x) = x for x ∈ X. We want to know whether
there is certain variational relation of entropy for nonautonomous dynamical
systems. For our study, we need to define the measure-theoretic entropy for
arbitrary Borel probability measure in nonautonomous case.

Given a NADS (X,φ). For any t ∈ [0,+∞), the tth Bowen metric dφt on
X is defined by

dφt (x, y) = max
0≤s≤t

{d(φ(s, x), φ(s, x))}
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For every ε > 0, we denote by Bφ
t (x, ε) the open ball of radius ε in the

metric dφt around x, i.e.,

Bφ
t (x, ε) = {y ∈ X : dφt (x, y) < ε

.
Write φi(x) := φ(i, x) for i = 1, 2, · · · and x ∈ X. In this case ,we take

fn(x) = φn(x), then {φn}∞n=1 is a NADDS.
LetM(X) denote the set of all Borel probability measures on X, Z ⊂ X

and µ ∈M(X),(X, {fn}∞n=1) is a NADDS.
(1) A set E ⊂ Z is said to be an (n, ε, Z)-separated set if x, y ∈ E with

x 6= y implies dφn(x, y) > ε. Let rn(ε, Z) denote the maximum cardinality of
(n, ε, Z)-separated set.

(2)A set F ⊂ Z is said to be an (n, ε, Z)-spanning set if for any x ∈ X,
there exists y ∈ F with dφn(x, y) ≤ ε . Let sn(ε, Z) denote the minimum
cardinality of (n, ε, Z)-spanning sets.

(3) A set F ⊂ X is said to be a (µ, n, ε, δ)-spanning set if the union⋃
x∈F

Bn(x, ε) has µ-measure more than or equal to 1−δ. Let rn(µ, ε, δ) denote

the minimum cardinality of (µ, n, ε, δ)-spanning sets.
(4) We introduce a useful set:Xµ,δ = {Z ⊂ X : µ(Z) ≥ 1 − δ}. Then it

is clear that
rn(µ, ε, δ) = inf

Z∈Xµ,δ
rn(ε, Z)

An open cover of X is a family of open subsets of X, whose union is X.
For two covers U and V we say that U is a refinement of V if for each U ∈ U
there is V ∈ V with U ∈ V . Forn ∈ N and open covers U1,U2, · · · ,Un of X
we denote

n∨
i=1

Ui = {A1 ∩ A2 ∩ · · · ∩ An : A1 ∈ U1, A2 ∈ U2, · · · , An ∈ Un}

.
Note that

n∨
i=1

Ui is also an open cover of X. We denote by N (U) the

minimal cardinality of all subcovers chosen from U . Set

f 0
i = idX , f

n
i = fi+(n−1) ◦ fi+(n−2) ◦ · · · ◦ fi+1 ◦ fi, f−ni = (fni )−1

for all i, n ∈ N, where idX is the identity map on X. Let

htop({fn}∞n=1 ,U) = lim sup
n→∞

logN (
n∨
i=0

f−i1 U)

n
.
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The topological entropy is defined by

htop(X, {fn}∞n=1) = {htop({fn}∞n=1 ,U) : U is an open cover of X}.

It was proved in [1] that for every NADS, we have

htop(X, {fn}∞n=1) = lim
ε→0

lim sup
n→∞

log sn(ε,X)

n
= lim

ε→0
lim sup
n→∞

log rn(ε,X)

n
.

Following the idea of Katok [1],we give the following.

Definition 1.1. Let µ ∈ M(X). The NADDS Katok measure-theoretical
lower and upper entropies of µ are defined respectively by

hKµ ({fn}∞n=1) = lim
δ→0

lim
ε→0

lim
n→∞

inf
1

n
log rn(µ, ε, δ),

h
K

µ ({fn}∞n=1) = lim
δ→0

lim
ε→0

lim
n→∞

sup
1

n
log rn(µ, ε, δ)

In this paper, we introduce many quantities for Borel probability measure
µ ∈M(X), respectively denoted by eµ({fn}∞n=1),eµ({fn}∞n=1),eµ({fn}∞n=1),
e∗µ({fn}∞n=1), and so on. According to the relations of the several types of
NADS topological entropies, it is natural to consider relationship of some
new quantities and Katok measure-theoretical lower and upper entropies.
Therefore, we have the first main result.

Our main result is as follows.

Theorem 1.2. Let (X,{fn}∞n=1) be a NADDS,µ ∈ M(X). Then following
statements hold.

(i) For any Z ⊆ X, hBtop({fn}
∞
n=1 , Z) ≤ hPtop({fn}

∞
n=1 , Z).

(ii) hKµ ({fn}∞n=1) = ēµ({fn}∞n=1).

(iii) hKµ ({fn}∞n=1) = eµ({fn}∞n=1).

(iv) eµ({fn}∞n=1) ≤ eµ({fn}∞n=1) ≤ ēµ({fn}∞n=1).

(v) eµ({fn}∞n=1) ≤ e∗µ({fn}∞n=1) = lim
ε→0

lim
δ→0

inf
Z∈Xε,δ

hPtop({fn}
∞
n=1 , Z, ε).

where the definitions of these notions will be given in Section 2.

Theorem 1.3. Let (X,{fn}∞n=1) be a NADDS. If K ⊂ X is a non-empty
and compact, then

hBtop({fn}
∞
n=1 , K) = sup{eµ({fn}∞n=1) : µ ∈M(X), µ(K) = 1}.
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Theorem 1.4. Let (X,φ) be a NADS,µ ∈ M(X). Then following state-
ments hold.

(i) For any Z ⊆ X, hBtop(φ, Z) ≤ hPtop(φ, Z).

(ii) eµ(φ) ≤ eµ(φ) ≤ ēµ(φ).

(iii) eµ(φ) ≤ e∗µ(φ) = lim
ε→0

lim
δ→0

inf
Z∈Xε,δ

hPtop(φ, Z, ε).

Theorem 1.5. Let (X,φ) be a NADS. If K ⊂ X is a non-empty and
compact, then

hBtop(φ,K) = sup{eµ(φ) : µ ∈M(X), µ(K) = 1}.

2 Preliminaries

2.1 NADDS

In this subsection, let (X, {fn}∞n=1) be a NADDS, next we introduced NADDS’s
entropies. Following, we give some definitions of several NADDS topological
entropies of subsets.

Definition 2.1. Let Z ⊂ X, s ≥ 0, N ∈ N and ε > 0, define

M s
N,ε({fn}

∞
n=1 , Z) = inf

∑
i

exp(−sni),

where the infimum is taken over all finite or countable families {Bni(xi, ε)}
such that xi ∈ X, ni ≥ N and

⋃
i

Bni(xi, ε) ⊇ Z. The quantityM s
N,ε({fn}

∞
n=1 , Z)

does not decrease as N increase and ε decreases, hence the following limits
exist:

M s
ε ({fn}∞n=1 , Z) = lim

N→∞
M s

N,ε({fn}
∞
n=1 , Z),

M s({fn}∞n=1 , Z) = lim
ε→0

M s
ε ({fn}∞n=1 , Z).

Bowen’s topological entropy hBtop({fn}
∞
n=1 , Z) is defined as a critical value of

the parameters s, where M s({fn}∞n=1 , Z) jumps from ∞ to 0, i.e.

M s({fn}∞n=1 , Z) =

{
0, s > hBtop({fn}

∞
n=1 , Z),

∞, s < hBtop({fn}
∞
n=1 , Z).

Definition 2.2. Let Z ⊆ X. For s ≥ 0,N ∈ N and ε > 0, define

P s
N,ε({fn}

∞
n=1 , Z) = sup

∑
i

exp(−sni),
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where the supremum is taken over all finite or countable pairwise disjoint
families{Bni(xi, ε)} such that xi ∈ Z, ni ≥ N for all i, where {Bni(xi, ε)} :=

{y ∈ X : dn(x, y) ≤ ε}.
The quantity P s

N,ε({fn}
∞
n=1 , Z) does not decrease as N ,ε decrease, hence the

following limit exists:

P s
ε ({fn}∞n=1 , Z) = lim

N→∞
P s
N,ε({fn}

∞
n=1 , Z).

Define

Psε ({fn}
∞
n=1 , Z) = inf{

∞∑
i=1

P s
ε ({fn}∞n=1 , Zi) :

∞⋃
i=1

Zi ⊇ Z}.

There exists a critical value of the parameters s, which we will denote by
hPtop({fn}

∞
n=1 , Z, ε), where P

s
ε ({fn}∞n=1 , Z) jumps from ∞ to 0, i.e.

Ps({fn}∞n=1 , Z) =

{
0, s > hPtop({fn}

∞
n=1 , Z, ε),

∞, s < hPtop({fn}
∞
n=1 , Z, ε).

Note that hPtop({fn}
∞
n=1 , Z, ε) increases when ε decreases. We call

hPtop({fn}
∞
n=1 , Z) := lim

ε→0
hPtop({fn}

∞
n=1 , Z, ε)

the packing topological entropy of Z.

Definition 2.3. Let Z ⊆ X. For s ≥ 0,N ∈ N and ε > 0, define

Rs
N,ε({fn}

∞
n=1 , Z) = inf

∑
i

exp(−sN),

where the infimum is taken over all finite or countable families {BN(xi, ε)}
such that xi ∈ X, and

⋃
i

BN(xi, ε) ⊇ Z. Let

Rs
ε({fn}

∞
n=1 , Z) = lim inf

N→∞
Rs
N,ε({fn}

∞
n=1 , Z),

R
s

ε({fn}
∞
n=1 , Z) = lim sup

N→∞
Rs
N,ε({fn}

∞
n=1 , Z)

and

ChZ({fn}∞n=1 , ε) = inf{s : Rs
ε({fn}

∞
n=1 , Z) = 0} = sup{s : Rs

ε({fn}
∞
n=1 , Z) = +∞},

ChZ({fn}∞n=1 , ε) = inf{s : R
s

ε({fn}
∞
n=1 , Z) = 0} = sup{s : Rs

ε({fn}
∞
n=1 , Z) = +∞}.

The lower and upper capacity topological entropies of {fn}∞n=1 restricted to
Z are defined respectively by

ChZ({fn}∞n=1) = lim
ε→0

ChZ({fn}∞n=1 , ε),

ChZ({fn}∞n=1) = lim
ε→0

ChZ({fn}∞n=1 , ε).
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Following we introduce several measure-theoretic definition.

Definition 2.4. Let µ ∈M(X), s ≥ 0, N ∈ N ε > 0 and 0 < δ < 1, define

M s
N,ε({fn}

∞
n=1 , µ, δ) = inf

∑
i

exp(−sni),

where the infimum is taken over all finite or countable families {Bni(xi, ε)}
such that xi ∈ X, ni ≥ N and µ(

⋃
i

Bni(xi, ε)) ≥ 1 − δ. The quantity

M s
N,ε({fn}

∞
n=1 , µ, δ) does not decrease as N increase, hence the following

limit exist:

M s
ε ({fn}∞n=1 , µ, δ) = lim

N→∞
M s

N,ε({fn}
∞
n=1 , µ, δ).

Using standard method, we have following is well- defined:

eµ({fn}∞n=1 , ε, δ) = inf{s : M s
ε ({fn}∞n=1 , µ, δ) = 0}

= sup{s : M s
ε ({fn}∞n=1 , µ, δ) = +∞},

defined
eµ({fn}∞n=1) = lim

δ→0
lim
ε→0

eµ({fn}∞n=1 , ε, δ).

Definition 2.5. Let µ ∈M(X), s ≥ 0, N ∈ N, ε > 0 and 0 < δ < 1, put

Rs
N,ε({fn}

∞
n=1 , µ, δ) = inf

∑
i

exp(−sN),

where the infimum is taken over all finite or countable families {BN(xi, ε)}
such that xi ∈ X, and µ(

⋃
i

BN(xi, ε)) ≥ 1− δ. Let

Rs
ε({fn}

∞
n=1 , µ, δ) = lim inf

N→∞
Rs
N,ε({fn}

∞
n=1 , µ, δ),

R
s

ε({fn}
∞
n=1 , µ, δ) = lim sup

N→∞
Rs
N,ε({fn}

∞
n=1 , µ, δ).

Using standard method, we have following is well- defined:

eµ({fn}∞n=1 , ε, δ) = inf{s : Rs
ε({fn}

∞
n=1 , µ, δ) = 0}

= sup{s : Rs
ε({fn}

∞
n=1 , µ, δ) = +∞}

eµ({fn}∞n=1 , ε, δ) = inf{s : R
s

ε({fn}
∞
n=1 , µ, δ) = 0}

= sup{s : R
s

ε({fn}
∞
n=1 , µ, δ) = +∞},

define
eµ({fn}∞n=1) = lim

δ→0
lim
ε→0

eµ({fn}∞n=1 , ε, δ),

eµ({fn}∞n=1) = lim
δ→0

lim
ε→0

eµ({fn}∞n=1 , ε, δ).
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Definition 2.6. Let µ ∈M(X), s ≥ 0, N ∈ N ε > 0 and 0 < δ < 1, put

Psε ({fn}
∞
n=1 , µ, δ) = inf{

∞∑
i=1

P s
ε ({fn}∞n=1 , Zi) : µ(

∞⋃
i=1

Zi) ≥ 1− δ},

where P s
ε ({fn}∞n=1 , Zi) is defined in Definition 2.2. There exists a critical

value of s such that

e∗µ({fn}∞n=1 , ε, δ) = inf{s : Psε ({fn}
∞
n=1 , µ, δ) = 0}

= sup{s : Psε ({fn}
∞
n=1 , µ, δ) = +∞}.

Define
e∗µ({fn}∞n=1) = lim

δ→0
lim
ε→0

e∗µ({fn}∞n=1 , ε, δ).

2.2 NADS

In this subsection, let (X,φ) be a NADS, next we introduced NADS’s en-
tropies.

Definition 2.7. Let Z ⊂ X, s ≥ 0, N ∈ N and ε > 0, define

M s
N,ε(φ, Z) = inf

∑
i

exp(−sti),

where the infimum is taken over all finite or countable families {Bφ
ti(xi, ε)}

such that xi ∈ X, ti ≥ N and
⋃
i

Bφ
ti(xi, ε) ⊇ Z. The quantity M s

N,ε(φ, Z)

does not decrease as N increase and ε decreases, hence the following limits
exist:

M s
ε (φ, Z) = lim

N→∞
M s

N,ε(φ, Z),

M s(φ, Z) = lim
ε→0

M s
ε (φ, Z).

Bowen’s topological entropy hBtop(φ, Z) is defined as a critical value of the
parameters s, where M s(φ, Z) jumps from ∞ to 0, i.e.

M s(φ, Z) =

{
0, s > hBtop(φ, Z),

∞, s < hBtop(φ, Z).

Other topological entropy definitions are similar to the discrete case def-
inition.

Definition 2.8. Let µ ∈M(X), s ≥ 0, N ∈ N ε > 0 and 0 < δ < 1, define

M s
N,ε(φ, µ, δ) = inf

∑
i

exp(−sti),
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where the infimum is taken over all finite or countable families {Bφ
ti(xi, ε)}

such that xi ∈ X, ti ≥ N and µ(
⋃
i

Bφ
ti(xi, ε)) ≥ 1 − δ. The quantity

M s
N,ε(φ, µ, δ) does not decrease as N increase, hence the following limit

exist:
M s

ε (φ, µ, δ) = lim
N→∞

M s
N,ε(φ, µ, δ).

Using standard method, we have following is well- defined:

eµ(φ, ε, δ) = inf{s : M s
ε (φ, µ, δ) = 0} = sup{s : M s

ε (φ, µ, δ) = +∞},

defined
eµ(φ) = lim

δ→0
lim
ε→0

eµ(φ, ε, δ).

Other measure-theoretic entropy definitions are similar to the discrete
case definition.

3 Proof of Theorem

3.1 Proof of Theorem 1.2

Proposition 3.1. Let 0 < δ < 1, µ ∈ M(X), {Zi}∞i=1 be a family of Borel

subsets of X with µ(
∞⋃
i=1

Zi) ≥ 1− δ. For any ε > 0, M s
ε ({fn}∞n=1 , µ, δ) ≤

∞∑
i=1

M s
ε ({fn}∞n=1 , Zi).

Proof. For any ε > 0,N ,i ∈ N, there exists Ni > N such that

M s
Ni,ε

({fn}∞n=1 , Zi) < M s
ε ({fn}∞n=1 , Zi) +

ε

2i
.

Hence, there exists a countable family {Bnij
(xij, ε)}∞j=1 such that nij ≥ Ni,

xij ∈ X, {Bnij
(xij, ε)} ⊇ Zi,

∞∑
j=1

e−sn
i
j < M s

ε ({fn}∞n=1 , Zi) +
ε

2i
.

Since µ(
∞⋃
i=1

) ≥ 1− δ, we have µ(
⋃
i≥1

⋃
j≥1

(Bnij
(xij, ε))) ≥ 1− δ. Hence

M s
ε ({fn}∞n=1 , µ, δ) ≤

∑
i≥1

∑
j≥1

e−sn
i
j <

∞∑
i=1

M s
ε ({fn}∞n=1 , Zi).
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Now we are ready to prove the main result.

Proof. (i) Let Z ⊆ x and assume be 0 < s < hBtop({fn}
∞
n=1 , Z). For any

n ∈ N and ε > 0, let R = Rn({fn}∞n=1 , Z, ε) be the largest number so that
there is a disjoint family {Bn(xi, ε)}Ri=1 with xi ∈ Z. Then it is easy to see
that for any δ > 0,

R⋃
i=1

Bn(xi, 2ε+ δ) ⊇ Z,

which implies that

M s
n,2ε+δ({fn}

∞
n=1 , Z) ≤ Re−ns ≤ P s

n,ε({fn}
∞
n=1 , Z)

for any s ≥ 0, and hence M s
2ε+δ({fn}

∞
n=1 , Z) ≤ P s

ε ({fn}∞n=1 , Z), we have
M s

2ε+δ({fn}
∞
n=1 , Z) ≤ Psε ({fn}

∞
n=1 , Z). Since 0 < s < hBtop({fn}

∞
n=1 , Z), we

have M s({fn}∞n=1 , Z) = ∞ and thus M s
2ε+δ({fn}

∞
n=1 , Z) ≥ 1 when ε and δ

are small enough. Hence Psε ({fn}
∞
n=1 , Z) ≥ 1 and hPtop({fn}

∞
n=1 , Z, ε) ≥ s

when ε is small. Therefore hPtop({fn}
∞
n=1 , Z) = lim

ε→0
hPtop({fn}

∞
n=1 , Z, ε) ≥ s.

This implies that hBtop({fn}
∞
n=1 , Z) ≤ hPtop({fn}

∞
n=1 , Z).

(ii) Denote

h
K

µ ({fn}∞n=1 , ε, δ) = lim sup
n→∞

1

n
log rn(µ, ε, δ)

then hKµ ({fn}∞n=1) = lim
δ→0

lim
ε→0

h
K

µ ({fn}∞n=1 , ε, δ). We first prove that

eµ({fn}∞n=1 , ε, δ) ≤ h
K

µ ({fn}∞n=1 , ε, δ)

for any 0 < δ < 1 and ε > 0, using like-Huasdorff dimension method. For
any s > h

K

µ ({fn}∞n=1 , ε, δ) and Z ∈ Xµ,δ, let F is a (n, ε, Z)-spanning set,
then

Rs
n,ε({fn}

∞
n=1 , µ, δ) ≤

∑
x∈F

exp(−sn) = ]F · e−sn

which follows that

Rs
n,ε({fn}

∞
n=1 , µ, δ) ≤ e−sn · inf

Z∈Xµ,δ
rn(ε, Z).

Hence

Rs
n,ε({fn}

∞
n=1 , µ, δ) ≤ e−sn · rn(µ, ε, δ) = e−n(s−

1
n
log rn(µ,ε,δ)).

Since h
K

µ ({fn}∞n=1 , ε, δ) = lim sup
n→∞

1
n

log rn(µ, ε, δ) < s, we have

lim sup
n→∞

Rs
n,ε({fn}

∞
n=1 , µ, δ) = 0.
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For s > h
K

µ ({fn}∞n=1 , ε, δ) we getR
s

n,ε({fn}
∞
n=1 , µ, δ) = 0 and eµ({fn}∞n=1 , ε, δ) ≤

s. Hence eµ({fn}∞n=1 , ε, δ) ≤ h̄Kµ ({fn}∞n=1 , ε, δ).
Next we prove eµ({fn}∞n=1 , ε, δ) ≥ h̄Kµ ({fn}∞n=1 , ε, δ) for any 0 < δ < 1 and
ε > 0 by showing hKµ ({fn}∞n=1 , ε, δ) ≤ s whenever s > ēµ({fn}∞n=1 , ε, δ). For
such a s, we have Rs

n,ε({fn}
∞
n=1 , µ, δ) = 0. Then there exists N ∈ N such

that Rs
n,ε({fn}

∞
n=1 , µ, δ) < 1 for any n ≥ N . Fixn ≥ N , we can find a finite

family {Bn(xi, ε)}i∈I such that xi ∈ X,

µ(
⋃
i∈I

Bn(xi, ε)) ≥ 1− δ and ]I · e−sn < 1

So rn(µ, ε, δ) ≤ esn for any n ≥ N . Hence h̄Kµ ({fn}∞n=1 , ε, δ) ≤ s.
(iii) The proof of (iii) is similar to (ii).
(iv) The proof of (iv) is a consequence of definition.
(v) We first show that eµ({fn}∞n=1) ≤ e∗µ({fn}∞n=1). Let s < eµ({fn}∞n=1),

0 < δ < 1 and {Zi}∞i=1 be a family of Borel subsets of X with µ(
∞⋃
i=1

Zi) ≥

1− δ. For any i, n ∈ N and ε > 0, let Ri
n = Rn(Zi, ε) be the largest number

such that there is a disjoint family {Bn(xij, ε)}Rnj=1 with xij ∈ Zi. Then we
can verify that for any θ > 0,

{Bnij
(xij, 2ε+ θ)} ⊇ Zi.

It following that M s
n,2ε+θ({fn}

∞
n=1 , Zi) ≤ e−sn · Ri

n ≤ P s
n,ε({fn}

∞
n=1 , Zi) and

M s
2ε+θ({fn}

∞
n=1 , Zi) ≤ P s

ε ({fn}∞n=1 , Zi). Therefore, by the Proposition3.1,
we have M s

2ε+θ({fn}
∞
n=1 , µ, δ) ≤ Psε ({fn}

∞
n=1 , µ, δ). As s < eµ({fn}∞n=1), we

can get < eµ({fn}∞n=1 , 2ε+ θ, δ) when ε, θ, δ are small enough. This implies
that M s

2ε+θ({fn}
∞
n=1 , µ, δ) =∞ and thus Psε ({fn}

∞
n=1 , µ, δ) =∞. Therefore,

it can be deduced that e∗µ({fn}∞n=1) ≥ s. So the desired inequality holds.
Now we proved that e∗µ({fn}∞n=1) = lim

ε→0
lim
δ→0

inf
Z∈Xε,δ

hPtop({fn}
∞
n=1 , Z, ε) . Let

e∗µ({fn}∞n=1) > s, then there exists ε′ , δ′ > 0 such that e∗µ({fn}∞n=1 , ε, δ) ≥ s

for any ε ∈ (0, ε
′
) and δ ∈ (0, δ

′
). Thus, Psε ({fn}

∞
n=1 , µ, δ) = ∞. For any

Z ∈ Xµ,δ and any {Zi}i≥1 with
∞⋃
i=1

Zi ⊇ Z, we have µ(
∞⋃
i=1

Zi) ≥ 1 − δ.

It follows from Psε ({fn}
∞
n=1 , µ, δ) = ∞ that

∞∑
i=1

P s
ε ({fn}∞n=1 , Zi) = ∞. So

Psε ({fn}
∞
n=1 , Z) =∞, which gives that hPtop({fn}

∞
n=1 , Z, ε) ≥ s.

On the other hand, let s < lim
ε→0

lim
δ→0

inf
Z∈Xε,δ

hPtop({fn}
∞
n=1 , Z, ε). Then there ex-

ist ε′ , δ′ > 0 such thathPtop({fn}
∞
n=1 , Z, ε) > s for any ε ∈ (0, ε

′
) , δ ∈ (0, δ

′
)

and Z ∈ Xµ,δ. Thus, we have Psε ({fn}
∞
n=1 , Z) = ∞. Fix {Zi}i≥1 with

µ(
∞⋃
i=1

Zi) ≥ 1−δ and write Z =
∞⋃
i=1

Zi, then Z ∈ Xµ,δ. So,
∞∑
i=1

P s
ε ({fn}∞n=1 , Zi) =
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∞, which yields that Psε ({fn}
∞
n=1 , µ, δ) = ∞. Furthermore, we can get

e∗µ({fn}∞n=1 , ε, δ) ≥ s and e∗µ({fn}∞n=1) ≥ s.

3.2 Proof of Theorem 1.3

Proposition 3.2. For µ ∈M(X), it holds that

hµ({fn}∞n=1) ≤ eµ({fn}∞n=1) ≤ inf{hBtop({fn}
∞
n=1 , K) : µ(K) = 1}.

Proof. The second inequality is a direct consequence of the definition and
we only deduce the first one. For s > 0 with hµ({fn}∞n=1) > s. By a standard
procedure, there exist A ⊂ X with µ(A) > 0 and N ∈ N such that

µ(Bn(x, ε)) < e−ns, ∀x ∈ A, n ≥ N

Pick δ ∈ (0, µ(A)). Let {Bni(xi,
ε
2
)}i∈I be a countable family such that

ni ≥ N, xi ∈ X and µ(
⋃
i∈I
Bni(xi,

ε
2
)) ≥ 1 − δ that intersects A, if taking

yi ∈ Bni(xi,
ε
2
) ∩ A, then one has Bni(xi,

ε
2
) ⊆ Bni(yi, ε) and thus

µ(Bni(xi,
ε

2
)) ≤ Bni(yi, ε) ≤ e−nis

Then we have∑
i∈I

e−nis ≥
∑
i∈I

µ(Bni(yi, ε) ∩ A) ≥
∑
i∈I

µ(Bni(xi,
ε

2
) ∩ A)

≥ µ(
⋃
i

Bni(xi,
ε

2
) ∩ A) = µ(A) > 0

Hence M s
ε
2
({fn}∞n=1 , µ, δ) ≥ M s

N, ε
2
({fn}∞n=1 , µ, δ) ≥ µ(A). By Bowen’s defi-

nition, we can derive that eµ({fn}∞n=1 ,
ε
2
, δ) ≥ s and moreover hµ({fn}∞n=1) ≤

eµ({fn}∞n=1).

Definition 3.3. Let µ ∈M(X). The NADS (x, φ) measure-theoretical lower
entropies of µ is defined by

hµ(φ, ) =

∫
hµ(φ, x)dµ(x)

where
hµ(φ, x) = lim

ε→0
lim inf
t→∞

−1

t
log µ(Bφ

t (x, ε)).

Lemma 3.4 ([5, Theorem 1.4]). Let (X, {fn}∞n=1) be a NADDS. If K ⊆ X

is non-empty and compact,then

hBtop({fn}
∞
n=1 , K) = sup{hµ({fn}∞n=1) : µ ∈M(X), µ(K) = 1}.



13

Next we prove Theorem 1.3.

Proof. By the Proposition, we have

sup{hµ({fn}∞n=1) : µ ∈M(X), µ(K) = 1} ≤ sup{eµ({fn}∞n=1) : µ ∈M(X), µ(K) = 1}
≤ inf{hBtop({fn}

∞
n=1 , K) : µ ∈M(X)µ(K) = 1}.

Combining with lemma,

hBtop({fn}
∞
n=1 , K) = sup{hµ({fn}∞n=1) : µ ∈M(X), µ(K) = 1}.

the conclusion can be proved.

Using the same proof method of Theorem 1.2 and, Theorem 1.3, we have
result of Theorem 1.4 and Theorem 1.5.
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