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1. Introduction   
    Non-standard finite difference schemes (NSFD) have emerged as an alternative method for solving a wide range of problems whose mathematical models involve algebraic, differential and biological models as well as chaotic systems (Mickens 2005) [5] . Furthermore, Mickens (1999,2000,2005) introduced certain rules for obtaining the best difference equations, one of the most important of
which is that the nonlinear terms of f (t, y(t)) are approximated in a non-local form[1]. During the past decades fractional calculus has become a powerful tool to describe the dynamics of complex systems which appear frequently in several branches of science and engineering. Fractional differential equations, therefore find numerous applications in the field of visco-elasticity, control and robotics, feedback amplifiers, electrical circuits, electro-analytical chemistry, fractional multipoles and chemistry [7]. Mathematical models have become important tools in analyzing the spread and control of infectious diseases. Under-standing the transmission characteristics of infectious diseases in communities, regions and countries can lead to better approaches to decrease the transmission of these diseases. Influenza is transmitted by a virus that can be of three different types, namely 
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, and 
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 [7]. Among these, the virus 
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 is epidemiologically the most important one for human beings, because it can recombine its genes with those of strains circulating in animal populations such as birds, swine, horses and so forth. Over the last two decades, a number of epidemic models for
(1)
 predicting the spread of influenza through human population have been proposed based on either the classical susceptible-infected-removed 
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 model developed. In this paper, we use the collocation spectral method to study the behavior of the approximate solution of the following fractional model of SIRC [5] :- 
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 with the following initial conditions 
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 Where 
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 is the Caputo fractional derivative, with respect to time 
[image: image11.wmf]t

. In which 
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 represent the proportions of susceptible, infectious, recovered and cross-immune, respectively, and a prime denotes differentiation with respect to time, 
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. The model assumes a population of constant size, 
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, so that 
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, where provides an interpretation of the model parameters, 
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 is the mortality rate, 
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 is rate of progression from infective to recovered per year, 
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 is rate of progression from recovered to cross-immune per year, 
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 is rate of progression from recovered to susceptible per year, 
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 is the recruitment rate of cross-immune into the infective 
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 and 
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 is contact rate per year. Because model (1) monitors the dynamics of human populations, all the parameters are assumed to be nonnegative. Furthermore, it can be shown that all state variables of the model are nonnegative for all time 
[image: image26.wmf]0

t

³

 (see [6,7]).
2. Preliminaries and notations 
         In this section we give some basic definitions and properties of the Grünwald–Letnikov approximation and the nonstandard finite difference method which are used further in this paper.
1. Grünwald–Letnikov approximation [4]
          We will begin with the single fractional differential equation, 
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where  α > 0 and  
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  denote the fractional derivative, defined by,                                                                                                 
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where   n − 1 < α ≤ n,  n ∈ N  and 
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   in the n th-order Riemann–Liouville integral operator defined as            
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To apply Mickens’ scheme, we have chosen the Grünwald–Letnikov method approximation for the one - dimensional fractional derivative as follows  :-   
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where N = t/h  , [t] denotes the integer part of t and h is the step size.
 Then  
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  where 
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 are the Grünwald–Letnikov coefficients defined as   
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2.2. Non-standard finite difference method [3,5]  

We seek to obtain the solution for a system of differential equations of the form     
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where f (t, 
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) is the nonlinear term in the differential equation. Using the finite difference method ( FDM ) we have :-            
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where  
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 is a function of the step size 
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 . The function  
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  has the following properties:     
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Examples of functions 
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(h)   that satisfy     h,  sin(h),   sinh(h),   
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3. Application

       In order to demonstrate the performance and efficiency of the non-standard finite difference method for solving nonlinear fractional-order equations, we have applied the 
(3)
to SIRC system as following :-
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                                       (2)
with the following initial conditions 
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We apply the Grünwald–Letnikov method approximation for the one - dimensional fractional derivative as follows  
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At j=0, We find 
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Then we get,     
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Then           
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We replace  the step size  h  by a function 
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(h)    according Micken's Scheme ,
(4)

Then     
[image: image66.wmf]1

1

1

1

1

1

1

(1S(t))()S(t)I(t)(t)

()

()

n

njnjnnn

j

n

cStC

St

h

a

a

mbg

f

+

+-

=

+

-

---+

=

å


And similarly we obtain the following non – standard finite difference based on Grünwald–Letnikov for SIRC system as :- 
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And 
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Where
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 are constants (given values) . 
The function   are chosen according to diagonal elements of Jacobin matrix 
of the original system of  SIRC as :-
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Where
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 are known.
 (5)
4. Conclusions
                    In this paper , a non – standard finite difference scheme given by Micken has been successfully applied to find the numerical solutions of SIRC system . 
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