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Abstract. We considered a kind of singular integral equation with Hilbert kernel on open arcs lying in a
period strip. By regularization method, we transformed the equation into Fredholm equation and then
obtained the solvable Noether theorem for this kind of complete singular integral equations with Hilbert
kernel on open arcs.

1. Introduction
In [1,2,3,4,5], the authors discussed the singular integral equation with Cauchy kernel on the real

half-line on the real line, or on a complicated contour. In [6], the authors discussed Numerical
solution of a singular integral equation with Cauchy kernel in the plane contact problem. While the
solvable Noether theorem for complete singular integral equations with Hilbert kernel on open arcs,
has few been discussed. Here we study a kind of complete singular integral equation with Hilbert
kernel on open arcs, by using the regularization method for this kind of singular integral equation,
we transform the equation into Fredholm equation and give the solvable Noether theorem for the
singular integral equation.

2. The complete singular integral equation with Hilbert kernel on open arcs

Suppose that jj
L L is a finite set of nonintersecting open arcs, with period a lying

entirely in the in the same periodic region :| Re | 2S z a , and being positively oriented. We
consider the following the singular integral equation with Hilbert kernel for a Hölder continuous
function ( )t on L
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where ( ), ( ), ( ) ( )A t B t f t H L , 0 0( , ) ( )K t t H L L  are given functions with 0)()( 22  tBtA .We
assume the different points nccc ,,, 21  are the all nodes on L (including the end-points of jL
and the discontinuity points of ( ), ( )A t B t and ( )f t ). Without loss of generality, no special
condition is needed except for the requirement that 1 2( , , , )qh h c c c    ( )q n , that is  is
bounded near 1 2, ,c c and qc , while  has a singularity of order less than 1 at any other nodes.
For L , we permit it to arrive at the boundary of the region S , and in this case we regarded c and
c a as the same one.

If we let ),()( ttKtB  , then (1) can be rewritten as followed
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where
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Since HttK ),( 0 ( 10   ), we have
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When ),( 0 ttk satisfies (4), 0( , ) ( )
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is actually the characteristic operator of operator K . Therefore, Eq.(1) can be rewritten as
fkK  )( 0 , (6)
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is the associative equation of Eq. (1). Setting
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thus the index of Eq. (1) is 
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3. Regularization for the singular integral equation with Hilbert kernel on open arcs
We may rewrite (2) as follows

 ktfK  )( 0
0 , (10)

when 0t and 1t are on the same smooth arc ( including endpoints), we have
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If 0 , then  must satisfies
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that is
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Obviously, htf  )( 0 . On the contrary, if h (for some )P satisfies (13)′, then it must
satisfy (13), that is  is the solution for (2).

If 0 , if and only if
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Eq.(13) has solution in class h , and its unique solution is )()( 0  kfKt   , that is (13)′
with 0P .

Since k is a Fredholm operator, we have
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where ( )( 0,1, , 1)jP t j   are the known functions in class 0H , and when 0  the Eq. (2) in class
h is equivalent to Eq. (13) ′ in class h (with 0P in (14)) and the additive condition (15) or
(15)′ by the same reason to the case that when 0 .

Now, Let us demonstrate kK  is a weak Fredholm operator. Because
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Since the order of Hilbert integral and common integral can be exchanged, we obtain
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has at the most less than one order singularity at the node 0t and so that it is a weak Fredholm
kernel.

Applying Fredholm Theorem, we obtain the following results.
Theorem 3.1 Equation
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When the solvable condition (19) is satisfied, the solution of (18) in class h can be written as
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where 1, , vC C are arbitrary complex constants, v
j t 1)}({ is the set of linearly independent solutions

of the homogeneous equation of Eq.(18), while
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and ),( 0 tt is the generalized resolvent kernel.

4. Noether theorem of a kind of singular integral equation with Hilbert kernel on open arcs
Applying the results above and following [1], we may obtain the following result.
Theorem 4.1 (Noether Theorem)
(a) The number of the linearly independent solutions of the homogeneous equation for (2)

( 0f  ) in class ),,( 1 qcchh  is finite, denoted by l .
(b) Eq.(2) is solvable in class ),,( 1 qcchh  if and only if
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j
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(c) If  is the index of Eq.(2) in class 1 2( , , , )qh h c c c  , then  ll .
Proof

(a) is true because that the Fredholm Eq. regularized from 0K has only a finite number of
linearly independent solutions and the solutions of the latter must be the solutions of
Eq. 0K .And (c) is clearly true.Now we aim to prove (b).

Case 1. 0  . Eq. (2) in class h is equivalent to Eq. (13)′, where
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Without loss of generality, we let 1 2, ,...,A A A are arbitrary constants, then 0A is determined by
(22). On the other hand, the solvable conditions for Eq.(13 ) are given by (19), we put (14)
for )( 0tf  into (19), and introduce the note
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where )( jka is constant matrix independent to )(tf .
Put (25) for j into (2 )7  , we obtain the solvable conditions for Eq. (13 ) as follows
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Suppose that the solvable conditions are satisfied, then Eq.(13) is solvable and（27） is also
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definite functions, independent to f and belonging to the class h , and for the sake of consistency,
we have rewritten 1A , 2A … A as 1 2, , ,v vC C    vC respectively, and have put the terms
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Case 2. 0  . At this time, 0P and the solvable conditions for Eq.(13 ) is
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Eq.(13 ) is solvable in class h if and only if the solvable condition
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Combining (34) and (35), we obtain the following solvable condition for Eq.(2) in class h .
Now we come to the result Ⅱ. hh   , , we see  
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By arbitrariness of ( )g t , we see 0 jK  , that is, hj  is a solution for 0K . So every
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