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Abstract In this paper, a second-order smoothing approximation to the l1 exac-
t penalty function for nonlinear constrained optimization problems is presented. Error
estimations are obtained among the optimal objective function values of the smoothed
penalty problem, of the nonsmooth penalty problem and of the original optimization
problem. Based on the smoothed penalty problem, an algorithm that has better con-
vergence is presented. Numerical examples illustrate that this algorithm is efficient in
solving nonlinear constrained optimization problems.
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1 Introduction

Consider the nonlinear inequality constrained optimization problem:

(P) min f (x)

s.t. gi(x)≤ 0, i = 1,2, . . . ,m,

where f ,gi : Rn → R, i∈ I = {1,2, . . . ,m} are twice continuously differentiable func-
tions and X0 = {x ∈ Rn | gi(x)≤ 0, i = 1,2, . . . ,m} is the feasible set to (P).

To solve (P), many exact penalty function methods have been introduced in lit-
eratures, see, [1,3,4,5,7,13,24]. In 1967, Zangwill [24] first the classical l1 exact
penalty function as follows:

F(x,ρ) = f (x)+ρ
m

∑
i=1

max{gi(x),0}, (1)
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where ρ > 0 is a penalty parameter.
Note that penalty function (1) is not a smooth function. The obvious difficulty

with the exact penalty function is that it is non-differentiable, which prevents the
use of efficient minimization algorithms and may cause some numerical instability
problems in its implementation. In order to avoid the drawback related to the non-
differentiability, the smoothing methods of the exact penalty functions attracts much
attention, see, [2,8,9,10,11,12,17,18,19,20,21,23,25]. Chen et al. [2] introduced a
smooth function to approximate the classical l1 penalty function by integrating the
sigmoid function 1/(1+ e−αt). Lian [8] and Wu et al. [18] proposed a smoothing
approximation to l1 exact penalty function for inequality constrained optimization.
Pinar et al. [12] also proposed a smoothing approximation to l1 exact penalty func-
tion and an ε-optimal minimum can be obtained by solving the smoothed penalty
problem. Xu et al. [20] discussed a second-order differentiability smoothing to the
classical l1 exact penalty function for constrained optimization problems. Meng et al.
[10] introduced a smoothing of the square-root exact penalty function for inequality
constrained optimization. However, little attention has been paid to smoothing the
exact penalty function in terms of second-order differentiability. So, here we present
a second-order smoothing approximation to the l1 exact penalty function (1), and
based on the smoothed penalty function obtained thereafter an algorithm for solving
nonlinear constrained optimization problems is given in this paper.

The rest of this paper is organized as follows. In Section 2, we introduce a s-
moothing function for the classical l1 exact penalty function and some fundamental
properties of the smoothing function. In Section 3, the algorithm based on the s-
moothed penalty function is proposed and its global convergence is presented, with
some numerical examples given. Finally, conclusions are given in Section 4.

2 Second-order smoothing penalty function

Let q(t) = max{t,0}. Then, the penalty function (1) is turned into

G(x,ρ) = f (x)+ρ
m

∑
i=1

q(gi(x)) , (2)

where ρ > 0. The corresponding penalty optimization problem to G(x,ρ) is defined
as

(Pρ) min G(x,ρ), s.t. x ∈ Rn.

In order to q(t), we define function qε(t) : R1 → R1 as

qε(t) =


0 if t < 0,
t3

9ε2 if 0 ≤ t < ε,

t +
2
3

εe−
t
ε +1 − 14ε

9
if t ≥ ε,

where ε > 0 is a smoothing parameter.
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Remark 1 Obviously, qε(t) has the following attractive properties:
(i) For any ε > 0, qε(t) is twice continuously differentiable on R, where

q′ε(t) =


0 if t < 0,
t2

3ε2 if 0 ≤ t < ε,

1− 2
3

e−
t
ε +1 if t ≥ ε,

and

q′′ε(t) =


0 if t < 0,
2t

3ε2 if 0 ≤ t < ε,
2

3ε
e−

t
ε +1 if t ≥ ε.

(ii) lim
ε→0

qε(t) = q(t).

(iii) qε(t) is convex and monotonically increasing in t for any given ε > 0. Prop-
erty (iii) follow from (i) immediately.

Suppose that f and gi(i = 1,2, . . . ,m) are second-order continuously differen-
tiable. Consider the penalty function for (P) given by

Gε(x,ρ) = f (x)+ρ
m

∑
i=1

qε (gi(x)) . (3)

Clearly, Gε(x,ρ) is second-order continuously differentiable on Rn. Applying (3), the
following penalty problem for (P) is obtained

(SPρ,ε) min Gε(x,ρ), s.t. x ∈ Rn.

Now, the relationship between (Pρ) and (SPρ,ε) is studied.

Lemma 1 For any given x ∈ Rn, ε > 0 and ρ > 0, we have

0 ≤ G(x,ρ)−Gε(x,ρ)≤
14mρε

9
. (4)

Proof For x ∈ Rn and i ∈ I, by the definition of qε(t), we have

q(gi(x))−qε (gi(x)) =


0 if gi(x)< 0,

gi(x)−
gi(x)3

9ε2 if 0 ≤ gi(x)< ε,
14ε

9
− 2

3
εe−

gi(x)
ε +1 if gi(x)≥ ε.

That is,

0 ≤ q(gi(x))−qε (gi(x))≤
14ε

9
, i = 1,2, . . . ,m.

Thus,

0 ≤
m

∑
i=1

q(gi(x))−
m

∑
i=1

qε (gi(x))≤
14mε

9
,
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which implies

0 ≤ ρ
m

∑
i=1

q(gi(x))−ρ
m

∑
i=1

qε (gi(x))≤
14mρε

9
.

Therefore,

0 ≤

{
f (x)+ρ

m

∑
i=1

q(gi(x))

}
−

{
f (x)+ρ

m

∑
i=1

qε (gi(x))

}
≤ 14mρε

9
,

that is,

0 ≤ G(x,ρ)−Gε(x,ρ)≤
14mρε

9
.

The proof completes. ⊓⊔

A direct result of Lemma 1 is given as follows.

Corollary 1 Let {ε j} → 0 be a sequence of positive numbers and assume x j is a
solution to (SPρ,ε) for some given ρ > 0. Let x′ be an accumulation point of the
sequence {x j}. Then x′ is an optimal solution to (Pρ).

Definition 1 For ε > 0, a point xε ∈ Rn is called ε-feasible solution to (P) if gi(xε)≤
ε, ∀i ∈ I.

Definition 2 For ε > 0, a point xε ∈ X0 is called ε-approximate optimal solution to
(P) if

| f ∗− f (xε)| ≤ ε,

where f ∗ is the optimal objective value of (P).

Theorem 1 Let x∗ be an optimal solution of problem (Pρ) and x′ be an optimal solu-
tion to (SPρ,ε) for some ρ > 0 and ε > 0. Then,

0 ≤ G(x∗,ρ)−Gε(x′,ρ)≤
14mρε

9
. (5)

Proof From Lemma 1, for ρ > 0, we have that

0 ≤ G(x∗,ρ)−Gε(x∗,ρ)≤
14mρε

9
,

0 ≤ G(x′,ρ)−Gε(x′,ρ)≤
14mρε

9
.

Under the assumption that x∗ is an optimal solution to (Pρ) and x′ is an optimal
solution to (SPρ,ε), we get

G(x∗,ρ)≤ G(x′,ρ),
Gε(x′,ρ)≤ Gε(x∗,ρ).
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Therefore, we obtain that

0 ≤ G(x∗,ρ)−Gε(x∗,ρ)≤ G(x∗,ρ)−Gε(x′,ρ)

≤ G(x′,ρ)−Gε(x′,ρ)≤
14mρε

9
.

That is,

0 ≤ G(x∗,ρ)−Gε(x′,ρ)≤
14mρε

9
.

This completes the proof. ⊓⊔

Lemma 2 ([19]) Suppose that x∗ is an optimal solution to (Pρ). If x∗ is feasible to
(P), then it is an optimal solution to (P).

Theorem 2 Suppose that x∗ satisfies the conditions in Lemma 2 and x′ be an optimal
solution to (SPρ,ε) for some ρ > 0 and ε > 0. If x′ is ε-feasible to (P). Then,

0 ≤ f (x∗)− f (x′)≤ 5mρε
3

, (6)

that is, x′ is an approximate optimal solution to (P).

Proof Since x′ is ε-feasible to (P), it follows that

m

∑
i=1

qε
(
gi(x′)

)
≤ mε

9
.

As x∗ is a feasible solution to (P), we have

m

∑
i=1

q(gi(x∗)) = 0.

By Theorem 1, we get

0 ≤

{
f (x∗)+ρ

m

∑
i=1

q(gi(x∗))

}
−

{
f (x′)+ρ

m

∑
i=1

qε
(
gi(x′)

)}
≤ 14mρε

9
.

Thus,

ρ
m

∑
i=1

qε
(
gi(x′)

)
≤ f (x∗)− f (x′)≤ ρ

m

∑
i=1

qε
(
gi(x′)

)
+

14mρε
9

.

That is,

0 ≤ f (x∗)− f (x′)≤ 5mρε
3

.

By Lemma 2, x∗ is actually an optimal solution to (P). Thus x′ is an approximate
optimal solution to (P). This completes the proof. ⊓⊔

Theorem 1 show that an approximate solution to (SPρ,ε) is also an approximate
solution to (Pρ) when the error ε is sufficiently small. By Theorem 2, an optimal
solution to (SPρ,ε) is an approximate optimal solution to (P) if it is ε-feasible to (P).
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Definition 3 For x∗ ∈Rn, we call y∗ ∈Rm a Lagrange multiplier vector corresponding
to x∗ if and only if x∗ and y∗ satisfy that

∇ f (x∗)+
m

∑
i=1

y∗i ∇gi(x∗) = 0, (7)

y∗i gi(x∗) = 0, gi(x∗)≤ 0, y∗i ≥ 0, i ∈ I. (8)

Theorem 3 Let f and gi, i ∈ I in (P) are convex. Let x∗ be an optimal solution of (P)
and y∗ ∈ Rm a Lagrange multiplier vector corresponding to x∗. Then for some ε > 0,

G(x∗,ρ)−Gε(x,ρ)≤
14mρε

9
, ∀x ∈ Rn, (9)

provided that ρ ≥ y∗i , i = 1,2, . . . ,m.

Proof By the convexity of f and gi, i = 1,2, . . . ,m, we have

f (x)≥ f (x∗)+∇ f (x∗)T (x− x∗), ∀x ∈ Rn,

gi(x)≥ gi(x∗)+∇gi(x∗)T (x− x∗), ∀x ∈ Rn. (10)

Since x∗ is an optimal solution of (P) and y∗ is a Lagrange multiplier vector corre-
sponding to x∗, by (7), (8), (9) and (10), we have

f (x)≥ f (x∗)+∇ f (x∗)T (x− x∗)

= f (x∗)−
m

∑
i=1

y∗i ∇gi(x∗)T (x− x∗)

≥ f (x∗)−
m

∑
i=1

y∗i (gi(x)−gi(x∗))

= f (x∗)−
m

∑
i=1

y∗i gi(x).

Since gi(x)≤ g+i (x) (g
+
i (x) = max{0,gi(x)}, i ∈ I), we have

G(x,ρ) = f (x)+ρ
m

∑
i=1

g+i (x)≥ f (x∗)−
m

∑
i=1

y∗i gi(x)+ρ
m

∑
i=1

g+i (x)

≥ f (x∗)+
m

∑
i=1

(ρ − y∗i )g
+
i (x).

Thus, for ρ ≥ y∗i , i = 1,2, . . . ,m, we get G(x,ρ) ≥ f (x∗). Since x∗ is feasible, then
f (x∗) = G(x∗,ρ) and by Lemma 1, we have

G(x∗,ρ)−Gε(x,ρ) = G(x∗,ρ)−G(x,ρ)+G(x,ρ)−Gε(x,ρ)
= f (x∗)−G(x,ρ)+G(x,ρ)−Gε(x,ρ)

≤ G(x,ρ)−Gε(x,ρ)≤
14mρε

9
.

This completes the proof. ⊓⊔
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By Theorem 3, when the parameter ρ is sufficiently large, an approximate op-
timal solution to (SPρ,ε) is an approximate optimal solution to (P), where (P) is a
convex problem. Therefore, we may obtain an approximate optimal solution to (P)
by computing an approximate optimal solution to (SPρ,ε).

3 Algorithm and numerical examples

In this section, using the smoothed penalty function Gε(x,ρ), we propose an algo-
rithm to solve nonlinear constrained optimization problems, defined as Algorithm I

Algorithm I
Step 1: Choose x0, ε > 0, ε0 > 0, ρ0 > 0, 0 < η < 1 and N > 1, let j = 0 and go to

Step 2.
Step 2: Use x j as the starting point to solve

(SPρ j ,ε j) min
x∈Rn

Gε j(x,ρ j) = f (x)+ρ j

m

∑
i=1

qε j (gi(x)) .

Let x j+1 be the optimal solution obtained (x j+1 is obtained by a quasi
-Newton method).

Step 3: If x j+1 is ε-feasible to (P), then stop and we have obtained an approximate
solution x j+1 of (P). Otherwise, let ρ j+1 = Nρ j, ε j+1 = ηε j and j = j+1,
then go to Step 2.

Remark 2 In this Algorithm I, as N > 1 and 0 < η < 1, the sequence {ε j} → 0
( j →+∞) and the sequence {ρ j}→+∞ ( j →+∞).

In practice, it is difficult to compute x j+1 ∈ arg min
x∈Rn

Gε j(x,ρ j). We generally look

for the local minimizer or stationary point of G(x,ρ j,ε j) by computing x j+1 such that
∇Gε j(x,ρ j) = 0.

For x ∈ Rn, we define

I0(x) = {i | gi(x)< 0, i ∈ I},
I+ε (x) = {i | gi(x)≥ ε, i ∈ I},
I−ε (x) = {i | 0 ≤ gi(x)< ε, i ∈ I}.

Then, the following result is obtained.

Theorem 4 Assume that lim
∥x∥→+∞

f (x) = +∞. Let {x j} be the sequence generated

by Algorithm I. Suppose that the sequence {Gε j(x
j,ρ j)} is bounded. Then {x j} is

bounded and any limit point x∗ of {x j} is feasible to (P), and satisfies

λ∇ f (x∗)+∑
i∈I

µi∇gi(x∗) = 0, (11)

where λ ≥ 0 and µi ≥ 0, i = 1,2, . . . ,m.
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Proof First, we will prove that {x j} is bounded. Note that

Gε j(x
j,ρ j) = f (x j)+ρ j

m

∑
i=1

qε j

(
gi(x j)

)
, j = 0,1,2, . . . , (12)

and by the definition of qε(t), we have

m

∑
i=1

qε j

(
gi(x j)

)
≥ 0. (13)

Suppose to the contrary that {x j} is unbounded. Without loss of generality, we as-
sume that ∥x j∥ → +∞ as j → +∞. Then, lim

j→+∞
f (x j) = +∞ and from (12) and (13),

we have
Gε j(x

j,ρ j)≥ f (x j)→+∞, ρ j > 0, j = 0,1,2, . . . ,

which results in a contradiction since the sequence {Gε j(x
j,ρ j)} is bounded. Thus

{x j} is bounded.
We show next that any limit point x∗ of {x j} is feasible to (P). Without loss of

generality, we assume that lim
j→+∞

x j = x∗. Suppose that x∗ is not feasible to (P). Then

there exits some i ∈ I such that gi(x∗)≥ α > 0. Note that

Gε j(x
j,ρ j) = f (x j)+ρ j ∑

i∈I+ε j (x
j)

(
gi(x j)+

2
3

ε je
− gi(x

j)
ε j

+1 −
14ε j

9

)

+ρ j ∑
i∈I−ε j (x

j)

gi(x j)3

9ε2
j

. (14)

If j → +∞, then for any sufficiently large j, the set {i | gi(x j) ≥ α} is not emp-
ty. Because I is finite, then there exists an i0 ∈ I that satisfies gi0(x

j) ≥ α . If j →
+∞,ρ j →+∞,ε j → 0, it follows from (14) that Gε j(x

j,ρ j)→+∞, which contradicts
the assumption that {Gε j(x

j,ρ j)} is bounded. Therefore, x∗ is feasible to (P).
Finally, we show that (11) holds. By Step 2 in Algorithm I, ∇Gε j(x

j,ρ j) = 0, that
is

∇ f (x j)+ρ j ∑
i∈I+ε j (x

j)

(
1− 2

3
e
− gi(x

j)
ε j

+1
)

∇gi(x j)

+ρ j ∑
i∈I−ε j (x

j)

1
3ε2

j
gi(x j)2∇gi(x j) = 0. (15)

For j = 1,2, . . . , let

γ j = 1+ ∑
i∈I+ε j (x

j)

ρ j

(
1− 2

3
e
− gi(x

j)
ε j

+1
)
+ ∑

i∈I−ε j (x
j)

ρ j

3ε2
j

gi(x j)2. (16)
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Then γ j > 1. From (15), we have

1
γ j

∇ f (x j)+ ∑
i∈I+ε j (x

j)

ρ j

(
1− 2

3 e
− gi(x

j)
ε j

+1
)

γ j
∇gi(x j)

+ ∑
i∈I−ε j (x

j)

ρ jε−2
j

3γ j
gi(x j)2∇gi(x j) = 0. (17)

Let

λ j =
1
γ j
,

µ j
i =

ρ j

(
1− 2

3 e
− gi(x

j)
ε j

+1
)

γ j
, i ∈ I+ε j

(x j),

µ j
i =

ρ jε−2
j

3γ j
gi(x j)2, i ∈ I−ε j

(x j),

µ j
i = 0, i ∈ I \

(
I+ε j

(x j)∪ I−ε j
(x j)

)
.

Then we have

λ j +∑
i∈I

µ j
i = 1, ∀ j, (18)

µ j
i ≥ 0, i ∈ I, ∀ j.

When j → ∞, we have that λ j → λ ≥ 0, µ j
i → µi ≥ 0, ∀i ∈ I. By (17) and (18), as

j →+∞, we have

λ∇ f (x∗)+∑
i∈I

µi∇gi(x∗) = 0,

λ +∑
i∈I

µi = 1.

For i ∈ I0(x∗), as j → +∞, we get µ j
i → 0. Therefore, µi = 0, ∀i ∈ I0(x∗). So, (11)

holds, and this completes the proof. ⊓⊔

Now, we will solve some nonlinear constrained optimization problems with Algo-
rithm I on MATLAB. In each of the following examples, the MATLAB 7.12 subrou-
tine fmincon is used to obtain the local minima of problem (SPρ j ,ε j). The numerical
results of each example are presented in the following tables. It is shown that Algo-
rithm I yield some approximate solutions that have a better objective function value
in comparison with some other algorithms.

Note: j is the number of iteration in the Algorithm I.
ρ j is constrain penalty parameter at the j′th iteration.
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Table 1 Numerical results of Algorithm I with x0 = (0,0,0,0), ρ0 = 10, N = 4

j ρ j ε j f (x j) g1(x j) g2(x j) g3(x j) x j

1 10 0.02 -44.271512 0.009467 0.0015424 -1.866763 (0.170216,0.836027,
2.010594,-0.966369)

2 40 0.0002 -44.234025 0.000047 0.000077 -1.883044 (0.169563,0.835533,
2.008644,-0.964884)

3 160 0.000002 -44.233662 -0.000000 -0.000072 -1.888579 (0.168232,0.834156,
2.010050,-0.963345)

x j is a solution at the j′th iteration in the Algorithm I.
f (x j) is an objective value at x j.
gi(x j) (i = 1, . . . ,m) is a constrain value at x j.

Example 1 Consider the example in [8],

(P3.1) min f (x) = x2
1 + x2

2 +2x2
3 + x2

4 −5x1 −5x2 −21x3 +7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 +2x1 + x2 + x4 −5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 −8 ≤ 0,

g3(x) = x2
1 +2x2

2 + x2
3 +2x2

4 − x1 − x4 −10 ≤ 0.

Let x0 = (0,0,0,0), ρ0 = 10, N = 4, ε0 = 0.02, η = 0.01 and ε = 10−6. Numer-
ical results of Algorithm I for solving (P3.1) are given in Table 1.

From Table 1, it is said that an approximate ε-feasible solution to (P3.1) is ob-
tained at the 3’th iteration, that is x3 = (0.168232,0.834156,2.010050,−0.963345)
with corresponding objective function value f (x3) =−44.233662. It is easy to check
that the x3 is feasible solution to (P3.1). The solution we obtained is slightly bet-
ter than the solution obtained in the 4’th iteration by method in [8] (the objective
function value f (x∗) = −44.23040) for this example. Further, with the same pa-
rameters ρ0, N, ε0, η as above, we change the starting point to x0 = (1,1,1,1) or
x0 = (6,6,6,6). New numerical results by Algorithm I are given in Table 2 and Table
3.

It is easy to see from Tables 2 and 3 that the convergence of Algorithm I is the
same and the objective function values are almost the same. That is to say, the effi-
ciency of Algorithm I does not completely depend on the starting point x0. Then, we
can choose any starting point for Algorithm I.

Example 2 Consider the example in [18],

(P3.2) min f (x) =−2x1 −6x2 + x2
1 −2x1x2 +2x2

2

s.t. x1 + x2 ≤ 2,
− x1 +2x2 ≤ 2,
x1, x2 ≥ 0.
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Table 2 Numerical results of Algorithm I with x0 = (1,1,1,1), ρ0 = 10, N = 4

j ρ j ε j f (x j) g1(x j) g2(x j) g3(x j) x j

1 10 0.02 -44.271512 0.009467 0.0015424 -1.866763 (0.170216,0.836027,
2.010594,-0.966369)

2 40 0.0002 -44.234025 0.000047 0.000077 -1.883044 (0.169563,0.835533,
2.008644,-0.964884)

3 160 0.000002 -44.233355 -0.000113 -0.000079 -1.900244 (0.166329,0.831255,
2.012529,-0.960615)

Table 3 Numerical results of Algorithm I with x0 = (6,6,6,6), ρ0 = 10, N = 4

j ρ j ε j f (x j) g1(x j) g2(x j) g3(x j) x j

1 10 0.02 -44.271512 0.009467 0.0015424 -1.866763 (0.170216,0.836027,
2.010594,-0.966369)

2 40 0.0002 -44.234025 0.000047 0.000077 -1.883044 (0.169563,0.835533,
2.008644,-0.964884)

3 160 0.000002 -44.232449 -0.000613 -0.000188 -1.856917 (0.159767,0.840231,
2.011450,-0.963346)

Let

g1(x) = x1 + x2 −2, g2(x) =−x1 +2x2 −2,
g3(x) =−x1, g4(x) =−x2.

Thus problem (P3.2) is equivalent to the following problem:

(P3.2’) min f (x) =−2x1 −6x2 + x2
1 −2x1x2 +2x2

2

s.t. g1(x) = x1 + x2 −2 ≤ 0,
g2(x) =−x1 +2x2 −2 ≤ 0,
g3(x) =−x1 ≤ 0,
g4(x) =−x2 ≤ 0.

Let x0 = (0,0), ρ0 = 8, N = 10, ε0 = 0.01, η = 0.01 and ε = 10−6. Numerical
results of Algorithm I for solving (P3.2’) are given in Table 4.

By Table 4, an approximate optimal solution to (P3.2’) is obtained at the 3’th iter-
ation, that is x∗ = (0.800000,1.200000) with corresponding objective function value
f (x∗) =−7.200000. The solution we obtained is similar with the solution obtained in
the 4’th iteration by method in [18] (the objective function value f (x∗) = −7.2000)
for this example.

4 Conclusions

This paper has presented a second-order smoothing approximation to the l1 exac-
t penalty function and an algorithm based on this smoothed penalty problem. It is
shown that the optimal solution to the (SPρ,ε) is an approximate optimal solution
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Table 4 Numerical results of Algorithm I with x0 = (0,0), ρ0 = 8, N = 10

j ρ j ε j f (x j) g1(x j) g2(x j) x j

1 8 0.01 -7.228666 0.010245 -0.397951 (0.806147,1.204098)
2 80 0.0001 -7.200091 0.000032 -0.399994 (0.800019,1.200013)
3 800 0.000001 -7.200000 0.000000 -0.400000 (0.800000,1.200000)

to the original optimization problem under some mild conditions. Numerical results
show that the Algorithm I has a better convergence for a global approximate solution.
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