
Noname manuscript No.
(will be inserted by the editor)

Smoothing approximation to the k-th power nonlinear
penalty function for constrained optimization problems

Nguyen Thanh Binh · Wenli Yan

Received: date / Accepted: date

Abstract In this paper, a new smoothing approximation to the k-th power nonlin-
ear penalty function for constrained optimization problems is presented. We prove
that this type of the smoothing penalty functions has good properties in solving con-
strained optimization problems. Furthermore, based on the smoothed penalty prob-
lem, an algorithm is presented to solve the constrained optimization problems, with
its convergence under some conditions proved. Some numerical examples are given
to illustrate the applicability of the present smoothing method, which show that the
algorithm seems efficient.
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1 Introduction

We consider the following constrained optimization problem:

(P)
min f (x)
s.t. gi(x)≤ 0, i = 1,2, . . . ,m,
x ∈ Rn,

where f ,gi : Rn → R, i ∈ I = {1,2, . . . ,m} are continuously differentiable functions
and F0 = {x ∈ Rn | gi(x) ≤ 0, i = 1,2, . . . ,m} is the feasible set to (P). The penalty
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function methods based on various penalty functions have been proposed to solve
problem (P) in literatures. The classic l1 exact penalty function [18] for problem (P)
is first proposed by Zangwill as follows:

F1(x,ρ) = f (x)+ρ
m

∑
i=1

max{gi(x),0}, (1)

where ρ > 0 is a penalty parameter.
In many studies, one of the popular penalty functions is the twice penalty func-

tion, which has the following form:

F2(x,ρ) = f (x)+ρ
m

∑
i=1

max{gi(x),0}2, (2)

where ρ > 0 is a penalty parameter. It is called an l2 penalty function. This penalty
function is smooth, it is not necessarily exact penalty function. Recently, Meng et al.
[8] and Wu et al. [13] discussed a lower-order penalty function of the following form:

Fk(x,ρ) = f (x)+ρ
m

∑
i=1

[max{gi(x),0}]k, (3)

where k ∈ (0,1), which is not smooth either. Huang and Yang et al. [15,16,17] and
Rubinov et al. [11] discussed a nonlinear Lagrangian penalty function,

Fk(x,ρ) =

[
f (x)k +ρ

m

∑
i=1

(max{gi(x),0})k

] 1
k

, (4)

for some k ∈ (0,+∞), which is called a k-th power penalty function in [15,17]. A
promising feature of the k-th power nonlinear penalty function is that a smaller ex-
act penalty parameter than that of the classical penalty function (i.e., k = 1) can be
guaranted when k is sufficiently small. Obviously, when k = 1, the k-th power penalty
function is reduced to the classical l1 exact penalty function. This penalty function is
smooth for k > 1 while it is not smooth for 0 < k ≤ 1. Thus the minimization of the
k-th power nonlinear penalty function is not an easy job. However, smoothing meth-
ods have been investigated for minimizing nonsmooth penalty function in e.g., [6,7,
8,9,13,14,15,17]. Lian [6] and Wu et al. [14] proposed a smoothing approximation
to the classical l1 exact penalty function and an ε-optimal minimum can be obtained
by solving the smoothed penalty problem. Meng et al. [8] introduced a smoothing
method of lower order penalty function and gave a robust SQP method for nonlinear
programming problem by integrating the smoothed penalty function with the SQP
method. Wu et al. [13] considered the ε-smoothing of lower order penalty function
and got a modified exact penalty function under some mild assumptions. Yang et al.
[15,17] developed some smoothing approximations to k-th power penalty function.
Pinar et al. [9] proposed a smoothing method of penalty functions for solving convex
network optimization problems. Error estimates of the optimal value of the original
penalty function and that of the smoothed penalty function are obained.
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In this paper, we first construct a new smoothing function pk
ε(t) as follows:

pk
ε(t) =


0 if t ≤ 0,(

1+
1

kεk−1

)
t2k

2εk if 0 ≤ t ≤ ε,

tk + ε ln t − 1
2

(
1− 1

kεk−1 +
2lnε
εk−1

)
εk if t ≥ ε,

where 0 < k < +∞ and ε > 0. It is easy to prove that pk
ε(t) is C1 at any t ∈ R1 for

k >
1
2

and ε > 0. Using pk
ε(t) as the smoothing function, a new nonlinear penalty

function is obtained, based on which an algorithm for solving (P) is proposed herein.
The rest of this article is organized as follows. In Section 2, we introduce a s-

moothing approximation to the k-th power nonlinear penalty function and the s-
moothing technique. In Section 3, the algorithm based on the smoothed nonlinear
penalty problem is proposed and the convergence of the algorithm is proved. In Sec-
tion 4, we give some numerical examples and compare the efficiency of the proposed
method with other methods. Finally, conclusions are given in Section 5.

2 Smoothing nonlinear penalty function

Let pk(t) : R1 → R1 :

pk(t) =
{

0 if t ≤ 0,
tk if t ≥ 0,

(5)

where 0 < k < +∞. Obviously, pk(t) is not C1 on R1 for 0 < k ≤ 1, but it is C1 for
k > 1. The function pk(t) is useful in defining exact penalty function for nonlinear
programming, see, [1,9,17]. In order to smooth the function pk(t), we define function
pk

ε(t) : R1 → R1 as

pk
ε(t) =


0 if t ≤ 0,(

1+
1

kεk−1

)
t2k

2εk if 0 ≤ t ≤ ε,

tk + ε ln t − 1
2

(
1− 1

kεk−1 +
2lnε
εk−1

)
εk if t ≥ ε,

(6)

where 0 < k <+∞ and ε > 0.

Lemma 1 For any ε > 0, 0 < k <+∞, we have lim
ε→0

pk
ε(t) = pk(t).

Proof For any ε > 0, 0 < k <+∞, by the definition of pk(t) and pk
ε(t), we have

pk(t)− pk
ε(t) =


0 if t ≤ 0,

tk −
(

1+
1

kεk−1

)
t2k

2εk if 0 ≤ t ≤ ε,

1
2

(
1− 1

kεk−1 +
2lnε
εk−1

)
εk − ε ln t if t ≥ ε.
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When 0 ≤ t ≤ ε , we obtain

tk −
(

1+
1

kεk−1

)
t2k

2εk ≤ tk ≤ εk.

On the other hand, when t ≥ ε , we have

1
2

(
1− 1

kεk−1 +
2lnε
εk−1

)
εk − ε ln t

≤ 1
2

(
1− 1

kεk−1 +
2lnε
εk−1

)
εk − ε lnε

=
1
2

εk − 1
2k

ε ≤ 1
2

εk.

So, we have

0 ≤ pk(t)− pk
ε(t)≤

1
2

εk.

That is
lim
ε→0

pk
ε(t) = pk(t).

This completes the proof. ⊓⊔

Lemma 2 Let
1
2
< k <+∞ and ε > 0. Then pk

ε(t) is C1.

Proof Let p1(t) = 0 if t ≤ 0, p2(t) =
(

1+
1

kεk−1

)
t2k

2εk if 0 ≤ t ≤ ε and

p3(t) = tk + ε ln t − 1
2

(
1− 1

kεk−1 +
2lnε
εk−1

)
εk if t ≥ ε .

We have

pk
ε(t) =

 p1(t) if t ≤ 0,
p2(t) if 0 ≤ t ≤ ε,
p3(t) if t ≥ ε.

Then, for
1
2
< k <+∞ we have

∇pk
ε(t) =


∇p1(t) = 0 if t ≤ 0,

∇p2(t) =
k
εk

(
1+

1
kεk−1

)
t2k−1 if 0 ≤ t ≤ ε,

∇p3(t) = ktk−1 +
ε
t

if t ≥ ε .

(7)

In particular, ∇p1(0) = 0 = ∇p2(0) and ∇p2(ε) = kεk−1 +1 = ∇p3(ε).
Therefore, pk

ε(t) is C1 at any t ∈ R1 by (7). This completes the proof. ⊓⊔

Remark 1 If 0 < k <
1
2
, pk

ε(t) is differentiable when t ̸= 0.
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Suppose that f and gi, i ∈ I are C1, by Lemma 2, pk
ε(t) is C1 for

1
2
< k <+∞. In

this paper, we always assume that f (x)≥ 0 (x ∈ Rn).
Consider the following optimization problem:

(P) : min f (x) s.t. x ∈ Rn,

and the nonlinear penalty functions for (P):

F(x,ρ) = f k(x)+ρ
m

∑
i=1

pk(gi(x)),

Fε(x,ρ) = f k(x)+ρ
m

∑
i=1

pk
ε(gi(x)),

where ρ > 0 and 0 < k < +∞. Hence, the following two penalty problems can be
denoted as:

(Pρ) : min F(x,ρ) s.t. x ∈ Rn,

(NPρ,ε) : min Fε(x,ρ) s.t. x ∈ Rn.

Now, the relationship between (Pρ) and (NPρ,ε) is studied.

Lemma 3 For any given x ∈ Rn, ε > 0 and ρ > 0, we have

lim
ε→0

Fε(x,ρ) = F(x,ρ).

Proof For any x ∈ Rn, by the definition of pk(t) and pk
ε(t), we have

pk (gi(x))− pk
ε (gi(x))=


0 if gi(x)≤ 0,

gi(x)k −
(

1+
1

kεk−1

)
gi(x)2k

2εk if 0 ≤ gi(x)≤ ε,

1
2

(
1− 1

kεk−1 +
2lnε
εk−1

)
εk − ε ln(gi(x)) if gi(x)≥ ε.

That is
0 ≤ pk(gi(x))− pk

ε(gi(x))≤
1
2

εk, i = 1,2, . . . ,m.

Adding up for all i, we obtain

0 ≤
m

∑
i=1

pk(gi(x))−
m

∑
i=1

pk
ε(gi(x))≤

1
2

mεk.

Therefore,

0 ≤ F(x,ρ)−Fε(x,ρ)≤
1
2

mρεk,

which implies

F(x,ρ)− 1
2

mρεk ≤ Fε(x,ρ)≤ F(x,ρ).

That is
lim
ε→0

Fε(x,ρ) = F(x,ρ).

This completes the proof. ⊓⊔
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A direct result of Lemma 3 is given as follows.

Corollary 1 Let {ε j} → 0 be a sequence of positive numbers and assume x j is a
solution to (NPρ,ε) for some given ρ > 0. Let x be an accumulation point of the
sequence {x j}. Then x is an optimal solution to (Pρ).

Theorem 1 Let x∗ be an optimal solution of (Pρ) and x ∈ Rn an optimal solution of
(NPρ,ε) for some ρ > 0 and ε > 0. Then,

lim
ε→0

Fε(x,ρ) = F(x∗,ρ).

Proof From Lemma 3, for ρ > 0, we have that

0 ≤ F(x∗,ρ)−Fε(x∗,ρ)≤
1
2

mρεk,

0 ≤ F(x,ρ)−Fε(x,ρ)≤
1
2

mρεk, 0 < k <+∞.

From the assumption that x∗ and x are optimal solution of (Pρ) and (NPρ,ε), respec-
tively, we get

Fε(x,ρ)≤ Fε(x∗,ρ),
F(x∗,ρ)≤ F(x,ρ).

Therefore, we obtain that

0 ≤ F(x∗,ρ)−Fε(x∗,ρ)≤ F(x∗,ρ)−Fε(x,ρ)

≤ F(x,ρ)−Fε(x,ρ)≤
1
2

mρεk.

It follows

F(x∗,ρ)− 1
2

mρεk ≤ Fε(x,ρ)≤ F(x∗,ρ).

That is
lim
ε→0

Fε(x,ρ) = F(x∗,ρ).

This completes the proof. ⊓⊔

Theorem 1 show that an approximate solution to (NPρ,ε) is also an approximate
solution to (Pρ) when the error ε is sufficiently small.

Definition 1 For ε > 0, a point xε ∈ Rn is an ε-feasible solution or an ε-solution of
problem (P), if

gi(xε)≤ ε, i = 1,2, . . . ,m.

Under this definition, we get the following result.
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Theorem 2 Let x∗ be an optimal solution of (Pρ) and x ∈ Rn an optimal solution of
(NPρ,ε) for some ρ > 0 and ε > 0. Furthermore, let x∗ be feasible to (P) and x be
ε-feasible to (P). Then,

0 ≤ f (x∗)k − f (x)k ≤
(

1+
1

2kεk−1

)
mρεk, 0 < k <+∞. (8)

Proof Since x is ε-feasible to (P), hence

∑
i∈I

pk
ε(gi(x))≤

(
1
2
+

1
2kεk−1

)
mεk, 0 < k <+∞.

Because x∗ is an optimal solution to (P), we have

∑
i∈I

pk(gi(x∗)) = 0.

Then, by Theorem 1, we have

0 ≤ F(x∗,ρ)−Fε(x,ρ) = f (x∗)k +ρ ∑
i∈I

pk(gi(x∗))−

(
f (x)k +ρ ∑

i∈I
pk

ε(gi(x))

)

≤ 1
2

mρεk.

Thus,

ρ ∑
i∈I

pk
ε(gi(x))≤ f (x∗)k − f (x)k ≤ ρ ∑

i∈I
pk

ε(gi(x))+
1
2

mρεk.

Therefore,

0 ≤ f (x∗)k − f (x)k ≤
(

1+
1

2kεk−1

)
mρεk.

This completes the proof. ⊓⊔

By Theorem 2, an approximate optimal solution to (NPρ,ε) becomes an approxi-
mate optimal solution to (P) if the solution to (NPρ,ε) is ε-feasible to (P). Therefore,
we can obtain an approximate optimal solution to (P) by solving (NPρ,ε) under some
mild conditions.

3 A smoothing nonlinear penalty function algorithm

In this section, we give a nonlinear penalty function algorithm for the problem (P).
In order to solve (P), we attempt to solve its smoothed penalty problem given by
min
x∈Rn

Fε(x,ρ).

Algorithm 3.1
Step 1: Given x0, ε > 0, ε0 > 0, ρ0 > 0, 0 < η < 1, k > 0 and N > 1, let j = 0 and
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go to Step 2.
Step 2: Use x j as the starting point to solve

(NPρ j ,ε j) min
x∈Rn

Fε j(x,ρ j) = f (x)k +ρ j

m

∑
i=1

pk
ε j
(gi(x)).

Let x j+1 be the optimal solution obtained (x j+1 is obtained by a quasi-
Newton method).

Step 3: If x j+1 is ε-feasible to (P), then stop and we have obtained an approximate
solution x j+1 of (P). Otherwise, let ρ j+1 = Nρ j, ε j+1 = ηε j and j = j+1,
then go to Step 2.

Remark 2 By Theorem 2 and Step 3 of Algorithm 3.1, x j+1 is an approximate optimal
solution to (P).

In practice, it is difficult to compute x j+1 ∈ arg min
x∈Rn

Fε j(x,ρ j). We generally look

for the local minimizer or stationary point of Fε j(x,ρ j) by computing x j+1 such that
∇Fε j(x,ρ j) = 0.

For x ∈ Rn,ε > 0, let us define

I0(x) = {i | gi(x) = 0, i ∈ I},
I−(x) = {i | gi(x)< 0, i ∈ I},
I−ε (x) = {i | 0 ≤ gi(x)< ε, i ∈ I},
I+ε (x) = {i | gi(x)≥ ε, i ∈ I}.

The convergence of the Algorithm 3.1 is proved in the following theorem.

Theorem 3 Let k >
1
2

. Assume that lim
∥x∥→+∞, x∈Rn

f (x) = +∞. Let {x j} be the se-

quence generated by Algorithm 3.1. Suppose that the sequence {Fε j(x
j,ρ j)} is bound-

ed. Then, {x j} is bounded and any limit point x∗ of {x j} is feasible to (P), and there
exists λ ≥ 0 and µi ≥ 0, i = 1,2, . . . ,m, such that

λ∇ f (x∗)+ ∑
i∈I0(x∗)

µi∇gi(x∗) = 0. (9)

Proof First, we will prove that {x j} is bounded. Note that

Fε j(x
j,ρ j) = f (x j)k +ρ j

m

∑
i=1

pk
ε j

(
gi(x j)

)
, j = 0,1,2, . . . , (10)

From (6), we have
m

∑
i=1

pk
ε j

(
gi(x j)

)
≥ 0. (11)



Title Suppressed Due to Excessive Length 9

Suppose to the contrary that {x j} is unbounded. Without loss of generality, we as-

sume that ∥x j∥→+∞ as j →+∞. Then lim
j→+∞

f k(x j) = +∞ for k >
1
2

and from (10)

and (11), we have

Fε j(x
j,ρ j)≥ f k(x j)→+∞, ρ j > 0, j = 0,1,2, . . . ,

which results in a contradiction since the sequence {Fε j(x
j,ρ j)} is bounded. Thus

{x j} is bounded.

We now show that any limit point of {x j} belongs to F0. Without loss of gener-
ality, we assume lim

j→+∞
x j = x∗. Suppose to the contrary that x∗ /∈ F0, then there exits

some i ∈ I such that gi(x∗)> α > 0. As gi (i ∈ I) are continuous, so Fε j(x
j,ρ j) ( j =

1,2, . . .) are continuous. Note that

Fε j(x
j,ρ j) = f (x j)k +ρ j ∑

i∈I−ε j (x
j)

(
1+

1
kεk−1

j

)
gi(x j)2k

2εk
j

(12)

+ρ j ∑
i∈I+ε j (x

j)

(
gi(x j)k + ε j ln(gi(x j))− 1

2

(
1− 1

kεk−1
j

+
2lnε j

εk−1
j

)
εk

j

)
.

Then, ρ j → +∞ and ε j → 0 as j → +∞, Fε j(x
j,ρ j) → +∞, which contradicts the

assumption that {Fε j(x
j,ρ j)} is bounded. Therefore, x∗ is feasible to (P).

Finally, we show that (9) holds. By Lemma 3 and Step 2 in Algorithm 3.1, we
have ∇Fε j(x

j,ρ j) = 0, that is

k f (x j)k−1∇ f (x j)+ρ j ∑
i∈I+ε j (x

j)

(
kgi(x j)k−1 +

ε j

gi(x j)

)
∇gi(x j)

+ρ j ∑
i∈I−ε j (x

j)

k
εk

j

(
1+

1
kεk−1

j

)
gi(x j)2k−1∇gi(x j) = 0. (13)

For j = 1,2, . . . , let

γ j = k f (x j)k−1 + ∑
i∈I+ε j (x

j)

ρ j

(
kgi(x j)k−1 +

ε j

gi(x j)

)

+ ∑
i∈I−ε j (x

j)

ρ jk
εk

j

(
1+

1
kεk−1

j

)
gi(x j)2k−1.
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Then γ j > 0, j = 1,2, . . .. From (13), we have

k f (x j)k−1

γ j
∇ f (x j)+ ∑

i∈I+ε j (x
j)

ρ j

(
kgi(x j)k−1 +

ε j

gi(x j)

)
γ j

∇gi(x j)

+ ∑
i∈I−ε j (x

j)

ρ jk
εk

j

(
1+

1
kεk−1

j

)
gi(x j)2k−1

γ j
∇gi(x j) = 0. (14)

Let

λ j =
k f (x j)k−1

γ j
,

µ j
i =

ρ j

(
kgi(x j)k−1 +

ε j

gi(x j)

)
γ j

, i ∈ I+ε j
(x j),

µ j
i =

ρ jk
εk

j

(
1+

1
kεk−1

j

)
gi(x j)2k−1

γ j
, i ∈ I−ε j

(x j),

µ j
i = 0, i ∈ I \

(
I+ε j

(x j)∪ I−ε j
(x j)

)
.

Then we have

λ j +∑
i∈I

µ j
i = 1, ∀ j, (15)

µ j
i ≥ 0, i ∈ I, ∀ j.

Obviously, we can assume without loss of generality that λ j → λ ≥ 0, µ j
i → µi ≥

0, ∀i ∈ I. By (14) and (15), as j →+∞, we have

λ∇ f (x∗)+∑
i∈I

µi∇gi(x∗) = 0,

λ +∑
i∈I

µi = 1.

For i ∈ I−(x∗), as j → ∞, we get µ j
i → 0. Therefore, µi = 0, ∀i ∈ I−(x∗), so, (9)

holds, and this completes the proof. ⊓⊔

The speed of convergence of Algorithm 3.1 depends on the speed of convergence
of the algorithm employed in Step 2 to solve the unconstrained optimization problem
min
x∈Rn

Fε j(x,ρ j).
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Table 1 Results for Example 1 with k = 2/3, x0 = (−1,1), ρ0 = 1, N = 3

j ρ j ε j f (x j) g1(x j) g2(x j) x j

1 1 0.01 3.517837 8.117813 -2.498812 (-1.078642,1.095343)
2 3 0.0005 2.859830 1.084860 -3.381246 (0.417153,1.067453)
3 9 0.000025 1.837548 -0.775885 -0.000000 (0.725360,0.399259)

4 Numerical examples

In this section, we solve some constrained optimization problems with Algorithm
3.1 on MATLAB. In each of the following examples, the MATLAB 7.12 subroutine
fmincon is used to obtain the local minima of problem (NPρ j ,ε j). The numerical re-
sults of each example are presented in the following tables. It is shown that Algorithm
3.1 yield some approximate solutions that have a better objective function value in
comparison with some other algorithms.

Example 1 Consider the example in [6],

(P4.1) min f (x) = x2
1 + x2

2 − cos(17x1)− cos(17x2)+3

s.t. g1(x) = (x1 −2)2 + x2
2 −1.62 ≤ 0,

g2(x) = x2
1 +(x2 −3)2 −2.72 ≤ 0,

0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2.

Let k = 2/3, x0 = (−1,1), ε0 = 0.01, η = 0.05, ρ0 = 1, N = 3 and ε = 10−6.
Numerical results of Algorithm 3.1 for solving (P4.1) are given in Table 1.

Therefore, we get an approximate solution

x3 = (0.725360,0.399259)

at the 3’th iteration. The objective function value is given by f (x3) = 1.837548. One
can easily check that x3 is a feasible solution since the constraints of (P4.1) at x3 are
as follows:

g1(x3) = (0.725360−2)2 +0.3992592 −1.62 =−0.775885121319001,

g2(x3) = 0.7253602 +(0.399259−3)2 −2.72 =−0.000000878680999,
0 ≤ x1 = 0.725360 ≤ 2, 0 ≤ x2 = 0.399259 ≤ 2.

The solution we obtained is slightly better than the solution obtained in the 3’th
iteration by method in [6] (the objective function value f (x∗) = 1.837623) for this
example.

Note: j is the number of iteration in the Algorithm 3.1.
ρ j is constrain penalty parameter at the j′th iteration.
x j is a solution at the j′th iteration in the Algorithm 3.1.
f (x j) is an objective value at x j.
gi(x j) (i = 1, . . . ,m) is a constrain value at x j.
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Table 2 Results for Example 2 with k = 2, x0 = (0,0,0,0,0,0), ρ0 = 1000 and N = 10

j ρ j f (x j) x j

1 1000 92.073639 (1.916631,6.794338,-0.002734,-0.003214,1.554299,4.869011)
2 10000 114.371962 (1.658223,8.181657,0.080941,0.528827,1.002706,7.214142)
3 100000 116.801239 (1.665206,8.318518,0.138232,0.527605,0.994833,7.456874)

Table 3 Results for Example 2 with k = 2, x0 = (0,0,0,0,0,0), ρ0 = 1000 and N = 10 (Continued)

j ε j g1(x j) g2(x j) g3(x j) g4(x j) g5(x j)

1 0.1 -1.289031 -0.368279 -0.368295 0.053538 -6.540004
2 0.005 -0.160121 -0.045749 -0.045749 0.001415 -7.015308
3 0.00025 -0.016276 -0.004536 -0.005043 -0.031255 -6.787033

Example 2 Consider the example in [7],

(P4.2) min f (x) =10x2 +2x3 + x4 +3x5 +4x6

s.t. g1(x) =x1 + x2 −10 = 0,
g2(x) =− x1 + x3 + x4 + x5 = 0,
g3(x) =− x2 − x3 + x5 + x6 = 0,
g4(x) =10x1 −2x3 +3x4 −2x5 −16 ≤ 0,
g5(x) =x1 +4x3 + x5 −10 ≤ 0,

0 ≤x1 ≤ 12,
0 ≤x2 ≤ 18,
0 ≤x3 ≤ 5,
0 ≤x4 ≤ 12,
0 ≤x5 ≤ 1,
0 ≤x6 ≤ 16.

Let k = 2, x0 = (0,0,0,0,0,0), ε0 = 0.1, η = 0.05, ρ0 = 1000, N = 10 and
ε = 10−6. Numerical results of Algorithm 3.1 for solving (P4.2) are given in Table 2
and Table 3.

From Tables 2 and 3, it is said that an approximate ε-feasible solution to (P4.2) is
obtained at the 3’th iteration, that is

x3 = (1.665206,8.318518,0.138232,0.527605,0.994833,7.456874)

with corresponding objective function value f (x3) = 116.801239. It is easy to check
that the x3 is feasible solution to (P3.1). The solution we obtained is slightly better
than the solution obtained in the 3’th iteration by method in [7] (the objective function
value f (x∗) = 117.010399) for this example.
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Table 4 Results for Example 3 with k = 1, x0 = (1,1,1), ρ0 = 10, N = 1.4

j ε j f (x j) x j

1 0.01 944.213296 (2.500102,4.221422,0.964456)
2 0.0002 944.215618 (2.500001,4.221362,0.964423)
3 0.000004 944.215655 (2.500000,4.220569,0.967885)
4 0.00000008 944.215652 (2.500000,4.221237,0.964966)

Table 5 Results for Example 3 with k = 1, x0 = (1,1,1) (Continued)

j ρ j g1(x j) g2(x j) g3(x j)

1 10 0.001083 0.000065 -1.858705
2 14 0.000015 0.000001 -1.857845
3 19.6 0.000005 0.000005 -1.884536
4 27.44 -0.000000 -0.000000 -1.862025

Example 3 Consider the example in [7],

(P4.3) min f (x) =1000− x2
1 −2x2

2 − x2
3 − x1x2 − x1x3

s.t. g1(x) =x2
1 + x2

2 + x2
3 −25 = 0,

g2(x) =(x1 −5)2 + x2
2 + x2

3 −25 = 0,

g3(x) =(x1 −5)2 +(x2 −5)2 +(x3 −5)2 −25 ≤ 0.

Let k = 1, x0 = (1,1,1), ε0 = 0.01, η = 0.02, ρ0 = 10, N = 1.4 and ε = 10−6.
Numerical results of Algorithm 3.1 for solving (P4.3) are given in Table 4 and Table
5.

By Tables 4 and 5, an approximate optimal solution to (P4.3) is obtained at the
4’th iteration, that is x∗ = (2.500000,4.221237,0.964966) with corresponding objec-
tive function value f (x∗) = 944.215652. The solution we obtained is slightly better
than the solution obtained in the 4’th iteration by method in [7] (the objective function
value f (x∗) = 944.215662) for this example.

Now we change the initial parameters. Let k = 1, x0 = (1,1,1), ε0 = 0.01, η =
0.01, ρ0 = 10, N = 1.5 and ε = 10−6. Numerical results of Algorithm 3.1 for solving
(P4.3) are given in Table 6 and Table 7. Further, with the same parameters k, ρ0, N, ε0,
η as above, we change the starting point to x0 = (2,4,1). New numerical results are
given in Table 8 and Table 9.

It is easy to see from Tables 6-9 that the convergence of Algorithm 3.1 is the same
and the objective function values are almost the same. That is to say, the efficiency of
Algorithm 3.1 does not completely depend on how to choose a starting point in this
example.

5 Conclusions

This paper has presented a smoothing approximation to the k-th power nonlinear
penalty function and an algorithm based on this smoothed nonlinear penalty prob-
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Table 6 Results for Example 3 with k = 1, x0 = (1,1,1), ρ0 = 10, N = 1.5

j ε j f (x j) x j

1 0.01 944.213296 (2.500102,4.221422,0.964456)
2 0.0001 944.215636 (2.500001,4.221362,0.964422)
3 0.000001 944.215649 (2.500000,4.221301,0.964684)
4 0.00000001 944.215691 (2.500000,4.222596,0.959002)

Table 7 Results for Example 3 with k = 1, x0 = (1,1,1) (Continued)

j ρ j g1(x j) g2(x j) g3(x j)

1 10 0.001083 0.000065 -1.858705
2 15 0.000007 0.000004 -1.857838
3 22.5 0.000001 0.000001 -1.859853
4 33.75 -0.000000 -0.000002 -1.815976

Table 8 Results for Example 3 with k = 1, x0 = (2,4,1), ρ0 = 10, N = 1.5

j ε j f (x j) x j

1 0.01 944.213296 (2.500102,4.221422,0.964456)
2 0.0001 944.215636 (2.500001,4.221362,0.964422)
3 0.000001 944.215650 (2.500000,4.221422,0.964155)
4 0.00000001 944.215692 (2.500000,4.222568,0.959122)

Table 9 Results for Example 3 with k = 1, x0 = (2,4,1) (Continued)

j ρ j g1(x j) g2(x j) g3(x j)

1 10 0.001083 0.000065 -1.858705
2 15 0.000007 0.000004 -1.857838
3 22.5 0.000001 0.000001 -1.855774
4 33.75 -0.000002 -0.000002 -1.816903

lem. It is shown that an optimal solution to the (NPρ,ε) is an approximate optimal
solution to the original optimization problem under some mild conditions. Numer-
ical experiments show that the Algorithm 3.1 has a good convergence for a global
approximate solution.
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