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Abstract 

Gross Domestic Product is an essential indicator of economic activity, and is usually used by 

decision makers to plan economic policy. This paper aims at modeling and forecasting the real 

Gross Domestic Product rate in Vietnam. For this purpose, using the Box- Jenkins 

methodology with the data covering the period between 1985 and 2018. The optimal model is 

ARIMA(0,1,2) model. Thanks to this model, the author forecasts the values of real Gross 

Domestic Product rate for some incoming years of 2019, 2020 and 2021. Statistical results 

show that the real Gross Domestic Product rate of Vietnam is steadily improving. 
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1. Introduction 

Gross Domestic Product (GDP) of a country is the money value of all final goods and services 

produced by all the enterprises within the borders of a country in a year. It represents the aggregate 

statistic of all economic activity. The performance of economy can be measured with the help of 

GDP. According to Eurostat (1996) there are three ways in which the GDP of a country can be 

measured. 

a) GDP is the sum of gross value added of the various institutional sectors or the various industries 

plus taxes and less subsidies on products (which are not allocated to sectors and industries) - 

production approach, 

b) GDP is the sum of final uses of goods and services by resident institutional units (actual final 

consumption and gross capital formation), plus exports and minus imports of goods and services - 

expenditure approach, 

c) GDP is the sum of uses in the total economy generation of income account (compensation of 

employees, taxes on production and imports less subsidies, gross operating surplus and mixed 

income of the total economy) - income approach.(see The European System of Accounts ESA 

1995, Eurostat, 1996). 

Forecasting future economic outcomes is a vital component of the decision-making process in 
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central banks for all countries. Monetary policy decisions affect the economy with a delay, so, 

monetary policy authorities must be forward looking, i.e. must know what is likely to happen in the 

future. Gross Domestic Product is one of the most important indicators of national economic 

activities for countries. Scientific prediction of the indicator has important theoretical and practical 

significance on the development of economic development goals. For the forecasting of time series 

we use models that are based on a methodology that was first developed in Box and Jenkins (1976), 

known as ARIMA (Auto-Regressive-Integrated-Moving-Average) methodology. This approach was 

based on the World representation theorem, which states that every stationary time series has an 

infinite moving average (MA) representation, which actually means that its evolution can be 

expressed as a function of its past developments (Jovanovic and Petrovska, 2010). The rest of the 

paper is organized as follows: Section 2 describes literature review while in Section 3, theoretical 

background is given. In Section 4, the empirical results are presented. Section 5 is the forecasting and 

finally, conclusions are provided in Section 6. 

 

2. Literature Review 

Box and Jenkins (1976) methodology has been used extensively by many researchers in order 

to highlight the future rates of GDP. Wei et. al. (2010) used data from Shaanxi GDP for 1952-2007 to 

forecast country’s GDP for the following 6 years. Applying the ARIMA(1,2,1) model, the author 

found that GDP of Shaanxi presented an impressive increasing trend. Maity and Chatterjee (2012) 

examined the forecasting of GDP growth rate for India using ARIMA(1,2,2) model and a time period 

of 60 years. The results of their study showed that predicted values follow an increasing trend for the 

following years. Zhang Haonan (2013) used three models ARIMA, VAR, AR(1) to examine the 

forecasting of per capita GDP for five regions of Sweden for the years 1993 - 2009. The results of the 

study showed all three models can be used for forecasting in the short run. However, the 

autoregressive first order model is the best for forecasting the per capita GDP of five regions of 

Sweden. Shahini and Haderi (2013) tested GDP forecasting for Albania using quarterly data from the 

first quarter of 2003 until the second quarter of 2013. For the forecasting, they used two model types 

ARIMA and VAR. Their results showed that the group of VAR model gave better results on GDP’s 

forecasting rather than ARIMA model. Zakai (2014) investigated forecasting of Gross Domestic 

Product (GDP) for Pakistan using quarterly data from 1953 until 2012. Choosing a ARIMA(1,1,0) 

model, the author found out the size of the increase for Pakistan’s GDP for the years 2013- 2025. 

Chaido (2015) also used the ARIMA(1, 1, 1) model for data from 1980-2013 to forecast the real GDP 

growth rate of Greece in 2015, 2016 and 2017. 

 

3. Theoretical Background 

The Box-Jenkins ARMA model is a combination of the AR (Autoregressive) and MA (Moving 

Average) models as follows: 
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The Box-Jenkins methodology consists of the following phases: 

 Establishment of the stationarity of time series. The autocorrelation function (ACF) as well as 

Augmented Dickey- Fuller test (ADF) (1979) and Phillips-Perron (1988) test (PP) are used for 

stationarity testing of time-series. 

 Model Identification of the model ARMA(p,q). To determine the order of ARMA(p,q), we use the 

sample of the autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

stationary series. These two plots are suggesting the model we should build. The parameter p of 

autoregressive operator is determined by the partial autocorrelation coefficient and the parameter 

q of the moving average operator is specified by the autocorrelation coefficient. In fact we use the 

limits 
2

n
  for the non-significance of the two functions, so we will have a number ARMA 

models (a, b), where 0 p, 0 b qa    . For the optimum model we are using the criteria of 

Akaike (AIC) and Schwartz (SIC). 

 Model Estimation. The involvement of the white noise terms in an ARIMA model entails a 

nonlinear iterative process in the estimation of the parameters. maximum likelihood estimation is 

generally the preferred technique. 

 Diagnostic checking of the model. With diagnostic checking we investigate whether the estimated 

model is acceptable and statistically significant, i.e. if it fits well to the data. Box and Jenkins for 

the adequacy of estimated ARIMA model suggested checking the randomness of the residuals, i.e. 

whether the residuals from the estimated ARIMA model is white noise, and are not serially 

correlated. 

 Forecasting. One of the main reasons of the analysis of time series models is forecasting. The 

accuracy of the forecasts depends on the forecasting error. Moreover, a number of statistical 

measures are employed for this aim, such as root mean squared error (RMSE), mean absolute 

error (MAE), mean absolute percentage error (MAPE) and the inequality coefficient of Theil (U). 

Then the forecast value one period ahead conditional on all information up to time, t, given at time t 

+ k, as: 

   1 1 1 2 1 3 1 12 1 2t k t k t k t k t k ty y y y                     (3.2) 

 

4. Empirical Results 

The variable used in the analysis is the GDP growth (annual %) that span from 1985 to 2018. 

The source of data is the World Bank. The ARIMA approach is an iterative four-stage process of 

stationary, identification, estimation and testing. 

 

4.1 Testing for Stationarity 



Figures 1 and 2 represent the correlogram of the real GDP rate series with a pattern of up to 

the 16 lags in level and for first differences. 

 

Figure 1: Correlogram of Real GDP Rate Series (Level) 

 
 

From the above figure we can conclude that the coefficients of autocorrelation (ACF) starts 

with a high value and declines slowly, indicating that the series is non-stationary. Also the Q-statistic 

of Ljung-Box (1978) at the 16th lag has a probability value of 0.000 which is smaller than 0.05, so we 

cannot reject the null hypothesis that the real GDP rate series is non-stationary. Thus, the series must 

be configured in first differences. 

 

Figure 2: Correlogram of Real GDP Rate Series (First Differences) 

 

 

From the figure 2 we can conclude that the Q-statistic of Ljung-Box at the 16th lag has a 

probability value larger than 0.05, so we cannot reject the null hypothesis that the real GDP rate series 

is stationary. The results of Augmented Dickey-Fuller (ADF) test and Phillips-Perron (PP) test on real 

GDP rate series are representing on Table 1. 
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Table 1: ADF and Phillip-Perron’s Test 

 Chuỗi tỷ lệ tăng trưởng GDP Chuỗi sai phân của chuỗi tỷ lệ tăng trưởng GDP 

C C, T C C, T 

ADF -2,627521 (3) -2,541152 (3) -5,625594 (0) *** -5,664354 (0) *** 

PP -2,553543 [3] -2,433494 [3] -5,625357 [1] *** -5,664222 [1] *** 

Note: 

1. Lag length in ( ) and Newey-West value using Bartlett kernel in [ ] 

2. Asterisks (***) denote statistically significant at 1% significance levels. 

 

The results in Table 1 indicate that real GDP rate is stationary in first differences. Therefore, 

for our model ARIMA (p,d,q), we will have the value d = 1. 

 

4.2  Identification of the Model 

We can use the correlogram of figure 1 to determine the model ARMA (p,q), i.e. the values of 

parameters p and q. As already mentioned above, an AR(p) model has a PACF that truncates at lag p 

and an MA(q)) has an ACF that truncates at lag q. In practice 
2

n
  are the nonsignificance limits 

for both functions. We shall explore the range of models ARMA(a,b), 0 p, 0 b qa     for an 

optimum one. To do this we shall use the automatic model determination criteria AIC and SIC. The 

limits for both functions (ACF, PACF) are 
2

0,343.
34

   From figure 1, the ACF cuts off at lag 

2 (q = 2) and the PACF at lag 1 (p = 1). Exploring the range of models {ARMA(p,q): 

0 1, 0 b 2a    } for the optimal on the basis of AIC and SIC. Thereafter we create Table 2 with 

the values of p and q as follows: 

 

Table 2: Comparison of Models within the Range of Exploration Using AIC and SIC 

p q AIC SIC 

0 1 3,21 3,31 

0 2 2,90 3,00 

1 0 3,22 3,31 

1 1 3,11 3,25 

1 2 2,92 3,06 

 

The results from table 2 indicate that according to the criteria of Akaike (AIC), and Schwartz 

(SIC) the model ARMA is formulated to ARMA(0,2). As the model is stationary on first differences, 

i.e. (d = 1) our ARIMA model will be ARIMA (0,1,2). 



 

4.3  Estimation of the Model 

Thereafter we can proceed to estimating the above model. The following table 3 presents the 

results of this model.  

Table 3: Estimation Model ARIMA (0,1,2) 

Dependent Variable: D(GDP_RATE)  

Method: Least Squares   

Sample (adjusted): 1986 2018   

Included observations: 33 after adjustments  

Convergence achieved after 12 iterations  

MA Backcast: 1984 1985   

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C -0.007689 0.036841 -0.208712 0.8360 

MA(2) -0.953165 0.034221 -27.85325 0.0000 

     
     R-squared 0.262889     Mean dependent var 0.099089 

Adjusted R-squared 0.239111     S.D. dependent var 1.154087 

S.E. of regression 1.006698     Akaike info criterion 2.909921 

Sum squared resid 31.41669     Schwarz criterion 3.000618 

Log likelihood -46.01369     Hannan-Quinn criter. 2.940438 

F-statistic 11.05606     Durbin-Watson stat 1.970160 

Prob(F-statistic) 0.002281    

     
     Inverted MA Roots       .98          -.98  

     
 

The results in table 3 indicate that both coefficients are statistically significant at 1% level of 

significance. The non-linear techniques used by Eviews involved an iterative process that is 

converged after 12 iterations. The roots are ± 0.98, both inside the unit circle indicating stationarity 

and invertibility respectively. The chosen model as summarized in Table 3 is ARIMA(0,1,2) and is 

given by 

D(GDP_RATEt) = - 0.953165 εt-2 + et 

t-stat.                         (-27.85325) 

         prob.                              [0.000] 

         s.e                      {0.034221} 

 

On the following diagram the inverse roots of AR and MA characteristic polynomials for the 

stability of ARIMA model are presented. 
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Figure 3: Inverse Roots of AR and MA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From diagram 3 we can see that the ARIMA model is stable since the corresponding inverse 

roots of the characteristic polynomials are in the unit circle. 

 

4.4 Diagnostic Checking of the Model 

Diagnostic checking of the model, help us to check if the estimated model is acceptable and 

statistical significant that means that the residuals are not auto correlated and follow normal 

distribution. For checking autocorrelation we use Q statistic of Ljung-Box (1978) and normality test 

using Jarque-Bera (JB) test (1980). The figures below represents the tests of the autocorrelation and 

normality of the residuals of the model ARIMA(0,1,2). 

Figure 4: Histogram of the residuals of model ARIMA (0,1,2) 
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Figure 5: Correlogram Residuals of Model ARIMA (0,1,2) 

 

 

The results of figure 4 indicate that the residuals of ARIMA(0,1,2) model follow normal 

distribution. Moreover, the results of figure 5 indicate that the Q statistic of Ljung-Box for all the 16 

lags has values greater than 0.05 thus the null hypothesis cannot be rejected i.e. there is no 

autocorrelation for the examined residuals of the series. 

 

5. Forecasting 

In figure 6 we represent the criteria for the evaluation of the forecasts of the model 

ARIMA(0,1,2) 

Figure 6: Forecast Accuracy Test on the Model ARIMA (0,1,2) 

 

 

The results in figure 6 indicate that the inequality coefficient of Theil has a high value U = 

0.295 which means that our model does have a good forecasting ability. Table 6 below summarizes 

the forecasting results of the real GDP rate over the period 2019 to 2021. 

Table 6: The Real GDP Rate Forecasts 

Year 2019 2020 2021 

The Real GDP Rate Forecasts 6,41% 6,57% 6,6% 
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Root Mean Squared Error 3.101513
Mean Absolute Error      2.802805
Mean Abs. Percent Error 40.51945
Theil Inequality Coefficient  0.295267
     Bias Proportion         0.773484
     Variance Proportion  0.226516
     Covariance Proportion  0.000000
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6. Conclusion 
In this paper, using Box - Jenkins technique, we are trying to forecast the real GDP rate in 

Vietnam for the next three years with an ARIMA model. After checking for the stationarity of the 

data series, we find the appropriate ARIMA (p, d, q) process. The corresponding correlogram helped 

in choosing the appropriate p and q for the data series. An ARIMA(0,1,2) model was created through 

the data used and estimating this model we found that the real GDP rate for the years 2019, 2020 and 

2021 is forecast to be 6.41%, 6.57% and 6.6% respectively. Results of the study will be helpful for 

the policy makers to formulate effective policies for attracting foreign direct investment. 

Furthermore, the findings of the study will also help the managerial business executives for 

implementing the new project ideas or taking decisions concerned with the expansion of the existing 

business. 
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