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Abstract: In this paper, we present and describe a new version of the Minimum Cost 

Flow Problem (MCFP). This version is a Fuzzy Minimum Cost Fuzzy Flow Problem 

with Fuzzy Time-Windows and Fuzzy Interval Bounds (FMCFFPFTWFIB). The 

FMCFFPFTWFIB is a combinatorial optimization and an NP-hard problem. The 

FMCFFPFTWFIB of fuzzy interval data can be using two a fuzzy minimum cost fuzzy 

flow of a fuzzy time-windows problems with a fuzzy crisp data. In this paper, the idea of 

Ghiyasvand was extended a fuzzy minimum cost fuzzy flow of a fuzzy time-windows 

problem with fuzzy interval-valued lower, upper bounds and fuzzy flows. Also, this work 

is extended to the network with fuzzy lower, upper bounds and fuzzy flows. An 

application example network is given. 
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1. Introduction 

Consider a fuzzy directed network �̃� = (𝑉, 𝐴, �̃�𝑣𝑖𝑣𝑗
, 𝑙𝑣𝑖𝑣𝑗

, �̃�𝑣𝑖𝑣𝑗
) where 𝑉 is a set of 𝑛 

vertices and 𝐴 is a set of 𝑛 arcs. We associate with each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝑉, 𝑖 ≠ 𝑗; 𝑖, 𝑗 =

1, … , 𝑛 the fuzzy upper bound �̃�𝑣𝑖𝑣𝑗
 that denotes the maximum amount that can the fuzzy 

flow on the arc and a fuzzy lower bound 𝑙𝑣𝑖𝑣𝑗
 that denotes the minimum amount that must 

fuzzy flow on the arc. Each arc has a non-negative fuzzy transit time �̃�𝑣𝑖𝑣𝑗
,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉. 

Each vertex 𝑣𝑖 ∈ 𝑉, has a fuzzy time-windows [�̃�𝑣𝑖
, �̃�𝑣𝑖

], within which the vertex may be 

served, i.e.,
 
�̃�𝑣𝑖

∈ [�̃�𝑣𝑖
, �̃�𝑣𝑖

], �̃�𝑣𝑖𝑣𝑗
∈ �̃�, is a non-negative fuzzy service and leaving for that 

vertex. To define the Minimum Cost Flow Time-Windows Problem (MCFTWP), we 

distinguish two special vertices in the network, namely a source vertex 𝑠 and a sink 

vertex 𝜏 with fuzzy time- windows [𝑎𝑠, 𝑏𝑠] and [𝑎𝜏 , 𝑏𝜏] respectively, see, (Diamond [14], 

El-Sherbeny [16], El-Sherbeny [17], El-Sherbeny [18], and Tuyttens, Teghem and El-

Sherbeny [24]). The problem is to find a minimum cost flow with time-windows from the 

source vertex 𝑠 to the sink vertex 𝜏 that satisfy the lower, upper bounds and balance 

constraints at all vertices. The decision variables in the minimum cost flow time-windows 

problem are the arc flows,
 
𝑓𝑣𝑖𝑣𝑗

 on an arc (𝑣𝑖, 𝑣𝑗) ∈ 𝑉, see, (Hanss [20], Moore [21], 

Nguyen [22], and Nguyen [23]). 

There are several approaches to solve the Minimum Flow Problem (MFP). For 

decreasing path algorithms by Ciupala and Ciurea [4], Ciupala and Ciurea [5] and 

Ciupala and Ciurea [7], pre-flow algorithms by Ciupala [3], Ciurea [10], Ciupala and 

Ciurea [6], and Ciupala and Ciurea [8]. For minimax which consists of finding a 

maximum flow from the sink vertex to the source vertex in the residual network by Bang-

jenson and Gutin [1], and Ciupala and Ciurea [5], using dynamic tree implementations by 

Ciupala and Ciurea [9]. Also, Ciurea, Georgescu and Marinescu [13], solved the 

minimum flow problem for bipartite networks. Ciurea and Deaconu [11], and Ciurea and 

Deaconu [12], solved the inverse minimum flow problem. 

In Ghiyasvand [19], a new method to solve the minimum cost flow problem with 

interval data is presented. First, it solves a minimum cost flow problem with lower 

bounds, flows, and costs, second it, shows a minimum cost flow problem with upper 



bounds, flows, and costs. Then, the method combines these two solutions to form an 

interval solution. Ghiyasvand [19], also proved that is the interval solution is optimal for 

the minimum cost flow problem with interval bounds, flows, and costs. Here, we extend 

their idea to present and describe the minimum cost flow time-windows problem with 

interval bounds and flows. We show that the minimum cost flow time-windows problem 

can be using two minimum flow time-windows problems with crisp data. 

The reminder of this paper consists of five sections including Introduction. 

Section 2 presents the basic concepts of a time-windows and fuzzy time-windows. In 

section 3, we presented, described the mathematical model of FMCFFPFTWFIB and 

presented the relationship between the minimum fuzzy cost fuzzy flow of fuzzy time-

windows problems with fuzzy interval data and crisp data. In section 4, we presented a 

fuzzy minimum cost fuzzy flow of fuzzy time-windows problem with fuzzy data 

according with Zadeh's extension principle and given an application network instance. 

Finally, the conclusion is given in Section 5. 

 

2. Basic Concepts and Definitions 

Consider a fuzzy directed network �̃� = (𝑉, 𝐴, �̃�𝑣𝑖𝑣𝑗
, 𝑙𝑣𝑖𝑣𝑗

, �̃�𝑣𝑖𝑣𝑗
), where 𝑉 is a set of 𝑛 

vertices, 𝐴 is a set of 𝑛 arcs with a non-negative fuzzy transit time �̃�𝑣𝑖𝑣𝑗
,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 

; 𝑖, 𝑗 = 1, … , 𝑛. For each vertex 𝑣𝑖 ∈ 𝑉 a fuzzy time-windows [�̃�𝑣𝑖
, �̃�𝑣𝑖

] within which the 

vertex may be served with �̃�𝑣𝑖
∈ [�̃�𝑣𝑖

, �̃�𝑣𝑖
], �̃�𝑣𝑖𝑣𝑗

∈ �̃�, is a non-negative fuzzy service and 

fuzzy leaving time of the 𝑣𝑖 ∈ 𝑉. A source vertex 𝑠, a sink vertex 𝜏 with fuzzy time-

windows [�̃�𝑠, �̃�𝑠] and [�̃�𝜏 , �̃�𝜏] respectively. We also associate with each arc (𝑣𝑖, 𝑣𝑗) ∈

𝑉, 𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, … , 𝑛 a fuzzy upper bound �̃�𝑣𝑖𝑣𝑗
 that denotes the fuzzy maximum amount 

that can a fuzzy flow on the arc and a fuzzy lower bound 𝑙𝑣𝑖𝑣𝑗
 that denotes the minimum 

fuzzy amount that must a fuzzy flow on the arc. The decision variables in the minimum 

fuzzy cost fuzzy flow of a fuzzy time-windows problem are the arc fuzzy flows and we 

represent the fuzzy flow on the arc (𝑣𝑖, 𝑣𝑗) ∈ 𝑉 by 𝑓𝑣𝑖𝑣𝑗
. A Fuzzy Minimum Cost Fuzzy 

Flow Problem with Fuzzy Time-Windows and Fuzzy Interval Bounds (FMCFFPFTWIB) 

can be state formally as follows: 



𝑚𝑖𝑛�̃�                                                                                                                     

subject to:  ∑ 𝑓𝑣𝑖𝑣𝑗
− ∑ 𝑓𝑣𝑗𝑣𝑖

={𝑣𝑗:(𝑣𝑗,𝑣𝑖)}∈𝐴{𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴 {

�̃�,                  𝑣𝑖 = 𝑠
−�̃�,               𝑣𝑖 = 𝜏

0, ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}
}         (1) 

𝑙𝑣𝑖𝑣𝑗
≤ 𝑓𝑣𝑖𝑣𝑗

≤ �̃�𝑣𝑖𝑣𝑗
, ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                                                       (2) 

�̃�𝑣𝑖
+ �̃�𝑣𝑖𝑣𝑗

≤ �̃�𝑣𝑗
, ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴; �̃�𝑣𝑖

, �̃�𝑣𝑖𝑣𝑗
∈ �̃�; �̃�𝑣𝑖

∈ [�̃�𝑣𝑖
, �̃�𝑣𝑖

]; �̃�𝑣𝑗
∈ [�̃�𝑣𝑗

, �̃�𝑣𝑗
]     (3) 

The FMCFFPFTWIB is one of the network with fuzzy flow that computes the 

fuzzy minimum cost fuzzy flow with fuzzy time-windows and fuzzy interval bounds 

between two given vertices, called source and sink vertices.  

Definition 2.1 A time-windows constraint is defined by, for each vertex, (𝑣𝑖 , 𝑣𝑗) ∈ 𝐴  

then, a time-windows [𝑎𝑣𝑖
, 𝑏𝑣𝑖

] and [𝑎𝑣𝑗
, 𝑏𝑣𝑗

]  respectively. Each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴  has a 

non-negative transit time 𝑡𝑣𝑖𝑣𝑗
; 𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, … , 𝑛 where  𝑡𝑣𝑖

∈ [𝑎𝑣𝑖
, 𝑏𝑣𝑖

]; 𝑡𝑣𝑗
∈ [𝑎𝑣𝑗

, 𝑏𝑣𝑗
] 

 

𝑡𝑣𝑖
, 𝑡𝑣𝑗

∈ 𝑇 ∈ 𝑅+, see Figure 1. 

𝑣𝑖                             𝑡𝑣𝑖𝑣𝑗
  

                           
𝑣𝑗 

 

 
[𝑎𝑣𝑖

, 𝑏𝑣𝑖
]
                                                            

[𝑎𝑣𝑗
, 𝑏𝑣𝑗

]
                                    

 

Figure 1: A vertex service time-windows constraints of each arc. 

Let 𝐼 denote the class of non-empty compact fuzzy intervals [�̃�, �̃̅�] on [0, ∞). If �̃̅� = �̃� =

�̃�, identity the fuzzy interval with a fuzzy real number �̃�. 

Definition 2.2 Let [�̃�1, �̃̅�1]  and [�̃�2, �̃̅�2] be two compact fuzzy intervals, then 

[�̃�1, �̃̅�1]+ [�̃�2, �̃̅�2] =  [�̃�1 + �̃�2, �̃̅�1 + �̃̅�2]                                                                (4) 

[�̃�1, �̃̅�1][�̃�2, �̃̅�2] = [min (�̃�1�̃�2, �̃�1�̃̅�2, �̃̅�1�̃�2, �̃̅�1�̃̅�2), max (�̃�1�̃�2, �̃�1�̃̅�2, �̃̅�1�̃�2, �̃̅�1�̃̅�2)](5) 

[�̃�1, �̃̅�1] ≤ [�̃�2, �̃̅�2] if  �̃�1 ≤ �̃�2; �̃̅�1 ≤ �̃̅�2.                                                               (6)         

The fuzzy infimum and supremum of  [�̃�1, �̃̅�1] and [�̃�2, �̃̅�2], respectively, are defined by:  

[�̃�1, �̃̅�1]˄[�̃�2, �̃̅�2] = [min {�̃�1, �̃�2}, min {�̃̅�1, �̃̅�2}]                                                   (7) 

[�̃�1, �̃̅�1]˅[�̃�2, �̃̅�2] = [max{�̃�1, �̃�2} , max{�̃̅�1, �̃̅�2}]                                                   (8) 

If [�̃�1, �̃̅�1], … , [�̃�𝑛 , �̃̅�𝑛] ∈ 𝐼, then the fuzzy infimum ˄𝑖[�̃�𝑖, �̃̅�𝑖], fuzzy supremum ˅𝑖[�̃�𝑖, �̃̅�𝑖] 

are well-defined and 

∑ [�̃�𝑖, �̃̅�𝑖]{𝑖:𝑖=1,…,𝑛} =[∑ �̃�𝑖,{𝑖:𝑖=1,…,𝑛} ∑ �̃̅�𝑖]{𝑖:𝑖=1,…,𝑛}                                                    (9)                                                               



▪ Fuzzy Time-Windows (El-Sherbeny, [15]) 

Let 𝑋 = ℛ𝑛 be a non-empty set, �̃� ⊆ 𝑋. The fuzzy set �̃� = {(𝑥, 𝜇�̃�(𝑥)): 𝑥 ∈ 𝑋} is the set 

of ordered pairs where 𝜇�̃�: 𝑋 → [0,1] is the membership function of the fuzzy set �̃�. The 

fuzzy constraint is a fuzzy set �̃� = (𝑡1, 𝑡2, 𝑡3, 𝑡4) with flexible time-windows where 

(𝑡1, 𝑡4) is the interval of non-zero satisfaction level and (𝑡2, 𝑡3) is the interval of non-zero 

satisfaction level equal to 1 see, Figure 2.  

The first step is to ask the expert to give a range for travel time between two 

places along with the most likely time; For example, the time �̃� to travel from point 𝐴 to 

point 𝐵 is between 𝑡1 and 𝑡3, but must possibly it is 𝑡2. This sort of knowledge lets us 

construct 3-point fuzzy travel times see Figure 3. 
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Figure 2: 4-Points representation of fuzzy interval        Figure 3: Fuzzy travel time 

Similarly obtain a fuzzy time-windows. Every vertex 𝑣𝑖 ∈ 𝑉 is assigned by the 

expert to one of two predetermined groups; a classical fuzzy time-windows and fuzzy 

time-windows of a normal vertex. In an extreme case, fuzzy time-windows are tighter 

than the classical counterpart see, Figure 4 and 5. The shown characteristics of fuzzy 

time-windows are suggested to the shipper who can modify them. 
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Figure 4: Classical fuzzy time-windows Figure 5:Fuzzy time-windows of a normal vertex 
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3. A Fuzzy Minimum Cost Fuzzy Flow Problem with Fuzzy Time-Windows and 

Fuzzy Interval Bounds (FMCFFPFTWFIB) 

We describe the mathematical model of FMCFFPFTWFIB and presented the relationship 

between the fuzzy minimum cost fuzzy flow of a fuzzy time-windows problems with 

fuzzy interval data and crisp data. Consider a directed fuzzy network �̃� =

(𝑉, 𝐴, �̃�𝑣𝑖𝑣𝑗
, 𝑙𝑣𝑖𝑣𝑗

, �̃�𝑣𝑖𝑣𝑗
), where 𝑉 is a set of  𝑛 vertices, 𝐴 is a set of 𝑛 arcs such that the 

fuzzy time-windows, fuzzy lower bound, fuzzy upper bound, and fuzzy flow of each arc 

are known to fall within specific ranges expressed as compact fuzzy intervals �̃̅�, 𝑙 ̅̃, �̃̅� and 

𝑓̅̃ respectively. Thus, for each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴, we have  

�̃�𝑣𝑖𝑣𝑗
∈ �̃̅�𝑣𝑖𝑣𝑗

= [𝑙�̃�(𝑣𝑖, 𝑣𝑗), �̃��̃�(𝑣𝑖, 𝑣𝑗)],                                                             (10) 

𝑙𝑣𝑖𝑣𝑗
∈ 𝑙 ̅̃

𝑣𝑖𝑣𝑗
= [𝑙𝑙(𝑣𝑖, 𝑣𝑗), �̃�𝑙(𝑣𝑖 , 𝑣𝑗)],                                                                   (11) 

�̃�𝑣𝑖𝑣𝑗
∈ �̃̅�𝑣𝑖𝑣𝑗

= [𝑙𝑢(𝑣𝑖, 𝑣𝑗), �̃�𝑢(𝑣𝑖, 𝑣𝑗)],                                                               (12) 

𝑓𝑣𝑖𝑣𝑗
∈ 𝑓̅̃

𝑣𝑖𝑣𝑗
= [𝑙𝑓(𝑣𝑖 , 𝑣𝑗), �̃�𝑓(𝑣𝑖, 𝑣𝑗)]                                                                  (13)   

Where,  𝑙�̃�(𝑣𝑖 , 𝑣𝑗), �̃��̃�(𝑣𝑖, 𝑣𝑗), 𝑙𝑙(𝑣𝑖, 𝑣𝑗), �̃�𝑙(𝑣𝑖 , 𝑣𝑗), 𝑙𝑢(𝑣𝑖 , 𝑣𝑗), �̃�𝑢(𝑣𝑖, 𝑣𝑗), 𝑙𝑓(𝑣𝑖, 𝑣𝑗) and  

 �̃�𝑓(𝑣𝑖, 𝑣𝑗) are non-negative fuzzy values. A minimum fuzzy cost fuzzy flow problem 

with fuzzy time-windows with fuzzy compact interval-valued lower and upper bounds 

and a fuzzy flow can be state as follows: 

  min [�̃�𝑙, �̃��̃�]                                                                                               

subject to:       ∑ 𝑓̅̃
𝑣𝑖𝑣𝑗{𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} − ∑ 𝑓̅̃

𝑣𝑗𝑣𝑖
={𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} {

 [�̃�𝑙, �̃��̃�],               𝑣𝑖 = 𝑠

− [�̃�𝑙 , �̃��̃�],           𝑣𝑖 = 𝜏
[0,0], ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}

}     (14)               

𝑙 ̅̃
𝑣𝑖𝑣𝑗

≤ 𝑓̅̃
𝑣𝑖𝑣𝑗

≤ �̃̅�𝑣𝑖𝑣𝑗
, ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                                          (15)     

                        𝑙 ̅̃
�̃�(𝑣𝑖 , 𝑣𝑗) ≤ �̃̅�𝑣𝑖𝑣𝑗

≤ �̃̅��̃�(𝑣𝑖, 𝑣𝑗), ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐴                                       (16) 

   𝑡̅̃
𝑣𝑖

+ 𝑡̅̃
𝑣𝑖𝑣𝑗

≤ 𝑡̅̃
𝑣𝑗

; �̃̅�𝑣𝑖
≤ 𝑡̅̃

𝑣𝑖
≤ �̃̅�𝑣𝑖

; 𝑡̅̃
𝑣𝑖

, 𝑡̅̃
𝑣𝑖𝑣𝑗

∈ �̃̅�; 𝑣𝑖 ≠ 𝑣𝑗; ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉     (17)                                   

We call this problem the fuzzy interval-minimum fuzzy cost fuzzy flow of fuzzy 

time-windows problem. Let 𝑓̅∗ be an answer of this problem. For each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴. 

we define any element of the interval 𝑓�̅�𝑖𝑣𝑗
∗  as an answer for the fuzzy interval-minimum 



fuzzy cost fuzzy flow of a fuzzy time-windows problem. From definition 2.2 conditions 

(14), (15), (16) and (17) can be written by the following:  

[∑ 𝑙𝑓({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖 , 𝑣𝑗), ∑ �̃�𝑓({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖, 𝑣𝑗)] −

[∑ 𝑙𝑓({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖) , ∑ �̃�𝑓({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖)] =  {

 [�̃�𝑙 , �̃��̃�],               𝑣𝑖 = 𝑠

− [�̃�𝑙 , �̃��̃�],           𝑣𝑖 = 𝜏
[0,0], ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}

}          (18)                                                                                                                                                      

                        𝑙𝑙(𝑣𝑖, 𝑣𝑗) ≤ 𝑙𝑓(𝑣𝑖, 𝑣𝑗) ≤ 𝑙𝑢(𝑣𝑖 , 𝑣𝑗), ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                   (19) 

                        �̃�𝑙(𝑣𝑖, 𝑣𝑗) ≤ �̃�𝑓(𝑣𝑖, 𝑣𝑗) ≤ �̃�𝑢(𝑣𝑖, 𝑣𝑗), ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                  (20) 

                        𝑙�̃�(𝑣𝑖 , 𝑣𝑗) ≤ �̃�(𝑣𝑖, 𝑣𝑗) ≤ �̃��̃�(𝑣𝑖, 𝑣𝑗), ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                (21) 

  �̃�𝑣𝑖
+ �̃�𝑣𝑖𝑣𝑗

≤ �̃�𝑣𝑗
; �̃�𝑣𝑖

≤ �̃�𝑣𝑖
≤ �̃�𝑣𝑖

; �̃�𝑣𝑖
, �̃�𝑣𝑖𝑣𝑗

∈ �̃�; 𝑣𝑖 ≠ 𝑣𝑗; ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉     (22)   

There for, a fuzzy flow 𝑓̅̃ is feasible for the fuzzy interval-minimum fuzzy cost 

fuzzy flow of the fuzzy time-windows problem if it satisfies the conditions (19), (20), 

(21), and (22). Thus, the fuzzy interval-minimum fuzzy cost fuzzy flow of the fuzzy 

time-windows problem can be written by the following: 

˄[�̃�𝑙, �̃��̃�]: 𝑓 satisfies the conditions (18), (19), (20), (21) and (1)                         (*)          

We define the fuzzy 𝑙–minimum fuzzy cost fuzzy flow of the fuzzy time-windows 

problem by the following: 

𝑚𝑖𝑛�̃�𝑙 

subject to:  

∑ 𝑙𝑓({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑗, 𝑣𝑖) − ∑ 𝑙𝑓({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖) =  {

�̃�𝑙,                 𝑣𝑖 = 𝑠
−�̃�𝑙 ,              𝑣𝑖 = 𝜏

0, ∀𝑣𝑖 ∈ 𝑉 − {𝑠. 𝜏}
}      (23) 

            𝑙𝑙(𝑣𝑖, 𝑣𝑗) ≤ 𝑙𝑓(𝑣𝑖, 𝑣𝑗) ≤ 𝑙𝑢(𝑣𝑖 , 𝑣𝑗), ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                               (24) 

�̃�𝑣𝑖
+ �̃�𝑣𝑖𝑣𝑗

≤ �̃�𝑣𝑗
; �̃�𝑣𝑖

≤ �̃�𝑣𝑖
≤ �̃�𝑣𝑖

; �̃�𝑣𝑖
, �̃�𝑣𝑖𝑣𝑗

∈ �̃�; 𝑣𝑖 ≠ 𝑣𝑗; ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉                 (25)   

We also define the �̃�-minimum fuzzy cost fuzzy flow of the fuzzy time-windows problem 

by the following:  

𝑚𝑖𝑛�̃��̃� 

subject to: 

 ∑ �̃�𝑓({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑗, 𝑣𝑖) − ∑ �̃�𝑓({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗 , 𝑣𝑖)] =  {

�̃��̃�,                𝑣𝑖 = 𝑠
−�̃��̃� ,             𝑣𝑖 = 𝜏

0, ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}
}   (26)  



�̃�𝑙(𝑣𝑖, 𝑣𝑗) ≤ �̃�𝑓(𝑣𝑖, 𝑣𝑗) ≤ �̃�𝑢(𝑣𝑖, 𝑣𝑗), ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                              (27) 

�̃�𝑣𝑖
+ �̃�𝑣𝑖𝑣𝑗

≤ �̃�𝑣𝑗
; �̃�𝑣𝑖

≤ �̃�𝑣𝑖
≤ �̃�𝑣𝑖

; �̃�𝑣𝑖
, �̃�𝑣𝑖𝑣𝑗

∈ �̃�; 𝑣𝑖 ≠ 𝑣𝑗; ∀𝑣𝑖 , 𝑣𝑗 ∈ 𝑉                 (28)   

The relationship among the fuzzy 𝑙-minimum fuzzy cost fuzzy flow of the fuzzy 

time-windows problem and the fuzzy interval minimum fuzzy cost fuzzy flow of the 

fuzzy time-windows problem is shown by the next theorem. 

Theorem 3.1 Let  𝑙𝑓1
∗  (resp, �̃�𝑓2

∗) is an optimal fuzzy flow for the fuzzy 𝑙-minimum fuzzy 

cost fuzzy flow of the fuzzy time-windows problem (resp, fuzzy �̃�-minimum fuzzy cost 

fuzzy flow of the fuzzy time-windows problem). Then 𝑓̅̃∗=[𝑙𝑓1
∗, �̃�𝑓2

∗] is an optimal fuzzy 

flow for the fuzzy interval-minimum fuzzy cost fuzzy flow of the fuzzy time-windows 

problem. 

Proof: We first show that the fuzzy flow 𝑙𝑓1
∗  is a feasible fuzzy flow for the fuzzy 

interval-minimum fuzzy cost fuzzy flow of the fuzzy time-windows problem. By the 

feasibility of 𝑙𝑓1
∗  in the fuzzy 𝑙-minimum fuzzy cost fuzzy flow of the fuzzy time-

windows problem, we get 

 𝑙𝑙(𝑣𝑖, 𝑣𝑗) ≤ 𝑙𝑓1
∗(𝑣𝑖 , 𝑣𝑗) ≤ 𝑙𝑢(𝑣𝑖, 𝑣𝑗), ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                             (29) 

∑ 𝑙𝑓1
∗({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖 , 𝑣𝑗) − ∑ 𝑙𝑓1

∗({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖) = 0, ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}         (30) 

By satisfying a fuzzy time-windows constraint, �̃�𝑣𝑖
+ �̃�𝑣𝑖𝑣𝑗

≤ �̃�𝑣𝑗
; �̃�𝑣𝑖

≤ �̃�𝑣𝑖
≤

�̃�𝑣𝑖
; �̃�𝑣𝑖

, �̃�𝑣𝑖𝑣𝑗
∈ �̃�; 𝑣𝑖 ≠ 𝑣𝑗; ∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉. In the same way, �̃�𝑓2

∗  is a feasible fuzzy flow for 

the fuzzy 𝑙-minimum fuzzy cost fuzzy flow of the fuzzy time-windows problem, so we 

have: 

�̃�𝑙(𝑣𝑖, 𝑣𝑗) ≤ �̃�𝑓2
∗(𝑣𝑖 , 𝑣𝑗) ≤ �̃�𝑢(𝑣𝑖, 𝑣𝑗), ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                                            (31) 

∑ �̃�𝑓1
∗({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖 , 𝑣𝑗) − ∑ �̃�𝑓1

∗({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖) = 0, ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}       (32) 

also, by satisfying a fuzzy time-windows constraint. By (18), (30) and (32), 𝑓̅̃∗ satisfies in 

(14) and by (19), (20), (21), (22) and (31), it satisfies in (17). Thus, 𝑓̅̃∗ is a feasible fuzzy 

flow for the fuzzy interval-minimum fuzzy cost fuzzy flow of the fuzzy time-windows 

problem. The fuzzy flow �̃�1
∗ (resp. �̃�2

∗) is optimal for the fuzzy 𝑙-minimum fuzzy cost 

fuzzy flow of the fuzzy time-windows problem (resp. the fuzzy �̃�-minimum fuzzy cost 

fuzzy flow of the fuzzy time-windows problem), so by (*) and definition 2.1, we yield 



that [ �̃�𝑙
∗, �̃��̃�

∗] is an optimal fuzzy flow for the fuzzy interval-minimum fuzzy cost fuzzy 

flow of the fuzzy time-windows problem. 

There for, by theorem 3.1, for solving the fuzzy interval-minimum fuzzy cost 

fuzzy flow of the fuzzy time-windows problem, it is enough that we solve the fuzzy 𝑙-

minimum fuzzy cost fuzzy flow of the fuzzy time-windows problems, which yields the 

following theorem. 

Theorem 3.2 The minimum fuzzy cost fuzzy flow of the fuzzy time-windows problem 

with the fuzzy interval-valued fuzzy lower bound, fuzzy upper bounds and fuzzy flows is 

solved using two fuzzy minimum cost fuzzy flow of the fuzzy time-windows problem 

with the crisp data.  

 

4.  The Fuzzy Minimum Cost Fuzzy Flow of the Fuzzy Time-Windows Problem 

According with Zadeh's Extension Principle 

In this section, the minimum fuzzy cost fuzzy flow of the fuzzy time-windows problem 

with fuzzy lower, upper bounds and fuzzy flows is solved using Theorem 3.2. Consider a 

fuzzy directed network �̃� = (𝑉, 𝐴, �̃�𝑣𝑖𝑣𝑗
, 𝑙𝑣𝑖𝑣𝑗

, �̃�𝑣𝑖𝑣𝑗
), where 𝑉 is a set of  𝑛 vertices, 𝐴 is a 

set of 𝑛 arcs such that the fuzzy time-windows, fuzzy lower bound, fuzzy upper bound, 

and fuzzy flow of each arc are known to fall within specific ranges expressed as compact 

fuzzy intervals �̃�, 𝑙, 𝑙 ̅̃  and 𝑓, respectively. We call the minimum fuzzy cost fuzzy flow of 

the fuzzy time-windows problem with fuzzy data as the minimum fuzzy cost fuzzy flow 

of the fuzzy time-windows problem. As it was mentioned in the above of the application 

of the minimum fuzzy flow problem, the fuzzy interval representation of the fuzzy �̃�-

level allows extending classical interval arithmetic to the case of fuzzy numbers. Interval 

arithmetic can be directly applied to every �̃�-level to obtain the resulting fuzzy set. For 

each �̃� ∈ [0,1] and each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴, we define the �̃�-level sets corresponding to 

�̃�, 𝑙, �̃� and 𝑓 as follows: 

[𝑓𝑣𝑖𝑣𝑗
]�̃� = 𝑓𝑣𝑖𝑣𝑗

(�̃�) = [𝑓𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) , 𝑓�̃� ((𝑣𝑖, 𝑣𝑗), �̃�)]                                    (33)                    

[�̃�𝑣𝑖𝑣𝑗
]�̃� = �̃�𝑣𝑖𝑣𝑗

(�̃�) = [�̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) , �̃��̃� ((𝑣𝑖 , 𝑣𝑗), �̃�)]                                  (34) 

[𝑙𝑣𝑖𝑣𝑗
]�̃� = 𝑙𝑣𝑖𝑣𝑗

(�̃�) = [𝑙𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) , 𝑙�̃� ((𝑣𝑖, 𝑣𝑗), �̃�)]                                      (35) 



[�̃�𝑣𝑖𝑣𝑗
]�̃� = �̃�𝑣𝑖𝑣𝑗

(�̃�) = [�̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) , �̃��̃� ((𝑣𝑖 , 𝑣𝑗), �̃�)]                                (36) 

The minimum fuzzy cost fuzzy flow of the fuzzy time-windows problem with 

compact fuzzy interval-valued lower, upper bounds, and fuzzy flows given by the 

following: 

𝑚𝑖𝑛[�̃�𝑙(�̃�), �̃��̃�(�̃�)]                                                                                                

subject to: 

                           [∑ 𝑙𝑓(({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖 , 𝑣𝑗) , �̃�)), ∑ �̃�𝑓(({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖 , 𝑣𝑗), �̃�))] −

                              [∑ 𝑙𝑓(({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖) , �̃�)), ∑ �̃�𝑓(({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖), �̃�))] =

                              {

[�̃�𝑙(�̃�), �̃��̃�(�̃�)],    𝑣𝑖 = 𝑠

−[�̃�𝑙(�̃�), �̃��̃�(�̃�)], 𝑣𝑖 = 𝜏

[0,0],     ∀𝑣𝑖 ∈ 𝑉 − {𝑠. 𝜏}

}                                                                 (37) 

�̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑓 ((𝑣𝑖 , 𝑣𝑗), �̃�) ≤ �̃�𝑢 ((𝑣𝑖 , 𝑣𝑗), �̃�) , ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                   (38)                

 𝑙𝑙 ((𝑣𝑖 , 𝑣𝑗), �̃�) ≤ 𝑙𝑓 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ 𝑙𝑢 ((𝑣𝑖 , 𝑣𝑗), �̃�) , ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                   (39)                     

�̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑓 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑢 ((𝑣𝑖, 𝑣𝑗), �̃�) , ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐴               (40)                

We call the fuzzy interval-valued fuzzy time-windows network with data (38), 

(39), (40) and (41) as the �̃�-fuzzy interval minimum fuzzy flow of fuzzy time-windows 

network. The interval fuzzy flow [𝑓]�̃� is feasible in the (�̃�, �̃�) network if it satisfies in 

(37), (38), (39) and (40). There for 𝑓 is a feasible fuzzy flow for the fuzzy-minimum flow 

of the fuzzy time-windows problem if, at each �̃�-level, [𝑓]�̃� is a feasible fuzzy flow in 

the �̃�-interval minimum fuzzy flow of the fuzzy time-windows problem. At each �̃�-level, 

we define the �̃�-interval minimum fuzzy flow of the fuzzy time-windows problem 

𝑚𝑖𝑛[�̃�𝑙(�̃�), �̃��̃�(�̃�)]                                                                                                

subject to:        𝑓̅̃(∙, �̃�) satisfies in (44), (45), (46) and (47).                                   

Hence, for each �̃� ∈ [0,1], a fuzzy interval-valued of minimum fuzzy flow 

𝑓̅̃∗ ((𝑣𝑖, 𝑣𝑗), �̃�) = [𝑙𝑓∗ ((𝑣𝑖 , 𝑣𝑗), �̃�) , �̃�𝑓∗ ((𝑣𝑖, 𝑣𝑗), �̃�)], for each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴, is found 

by solving the �̃�-interval minimum fuzzy flow of the fuzzy time-windows problem. By 

Theorem 3.2, 𝑙𝑓∗ ((𝑣𝑖 , 𝑣𝑗), �̃�)'s and �̃�𝑓∗ ((𝑣𝑖, 𝑣𝑗), �̃�)'s are computed using 𝑙 − �̃� −interval 



and �̃� − �̃� −interval minimum fuzzy cost fuzzy flow of the fuzzy time-windows 

problems defined by the following: 

• The 𝑙 − �̃� −interval minimum fuzzy cost fuzzy flow of the fuzzy time-windows 

problem: 

𝑚𝑖𝑛�̃�𝑙(�̃�)  

subject to: 

∑ 𝑙𝑓(({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖 , 𝑣𝑗), �̃�) − ∑ 𝑙𝑓(({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖), �̃�) = {

�̃�𝑙(�̃�),           𝑣𝑖 = 𝑠

−�̃�𝑙(�̃�),        𝑣𝑖 = 𝜏

0, ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}

}   (41) 

                    𝑙𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ 𝑙𝑓 ((𝑣𝑖 , 𝑣𝑗), �̃�) ≤ 𝑙𝑢 ((𝑣𝑖, 𝑣𝑗), �̃�) , ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐴            (42) 

        �̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑓 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑢 ((𝑣𝑖, 𝑣𝑗), �̃�) , ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐴       (43) 

• The �̃� − �̃� − interval minimum fuzzy cost fuzzy flow of the fuzzy time-windows 

problem: 

𝑚𝑖𝑛�̃��̃�(�̃�)  

subject to: 

∑ �̃�𝑓(({𝑣𝑗:(𝑣𝑖,𝑣𝑗)∈𝐴} 𝑣𝑖 , 𝑣𝑗), �̃�) − ∑ �̃�𝑓(({𝑣𝑗:(𝑣𝑗,𝑣𝑖)∈𝐴} 𝑣𝑗, 𝑣𝑖), �̃�) = {

�̃��̃�(�̃�),          𝑣𝑖 = 𝑠

−�̃��̃�(�̃�),       𝑣𝑖 = 𝜏

0, ∀𝑣𝑖 ∈ 𝑉 − {𝑠, 𝜏}

} (44)    

�̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑓 ((𝑣𝑖 , 𝑣𝑗), �̃�) ≤ �̃�𝑢 ((𝑣𝑖 , 𝑣𝑗), �̃�) , ∀(𝑣𝑖, 𝑣𝑗) ∈ 𝐴                   (45)                

�̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑓 ((𝑣𝑖, 𝑣𝑗), �̃�) ≤ �̃�𝑢 ((𝑣𝑖, 𝑣𝑗), �̃�) , ∀(𝑣𝑖 , 𝑣𝑗) ∈ 𝐴               (46) 

Since the representation of the �̃� −levels are used instead of the fuzzy numbers, 

by Zadeh's extension, the result is accorded with Zadeh's extension principle. In general, 

any function of 𝑘 fuzzy intervals �̃�(�̃�1, �̃�2,…, �̃�𝑘) of 𝑘 fuzzy intervals �̃�1, �̃�2, …, �̃�𝑘 can 

be extended to fuzzy by defining [�̃�(�̃�1, �̃�2, … , �̃�𝑘)]�̃� = �̃�([�̃�1 ]
�̃�

, [�̃�2 ]
�̃�

, … , [�̃�𝑘 ]
�̃�

).  

However, unless �̃� preserves inclusion, to get a fuzzy number as the result, we 

must modify the definition so that the level set �̃� is a subset of �̃� > �̃�′. There for we 

define by Bondia, Sala and Sainz [2]: 

[�̃�(�̃�1, �̃�2, … , �̃�𝑘)]�̃� =∩0≤�̃�′≤�̃� �̃�([�̃�1 ]
�̃�′

, [�̃�2 ]
�̃�′

, … , [�̃�𝑘 ]
�̃�′

)                          (47)                            



For �̃� ∈ [0,1] and its (�̃�, �̃�) problem, consider the fuzzy interval-valued minimum 

fuzzy cost fuzzy flow of the fuzzy time-windows 𝑓̅̃∗ ((𝑣𝑖 , 𝑣𝑗), �̃�) =

[𝑙𝑓∗ ((𝑣𝑖, 𝑣𝑗), �̃�) , �̃�𝑓∗ ((𝑣𝑖, 𝑣𝑗), �̃�)], for each arc (𝑣𝑖, 𝑣𝑗) ∈ 𝐴. Let �̃�∗(�̃�) =

∑ 𝑐̅̃ ((𝑣𝑖 , 𝑣𝑗), �̃�) 𝑓̅̃∗ ((𝑣𝑖 , 𝑣𝑗), �̃�)(𝑣𝑖.𝑣𝑗)∈𝐴 . 

 

• Application Instance network: 

(i) The representation example of a fuzzy network with fuzzy time-widows, 

fuzzy bounds and fuzzy flows, for a given �̃�: 

                    
 

 

        
[�̃�𝑗𝑙

((𝑣𝑖 , 𝑣𝑗), �̃�) , �̃�𝑖𝑢
((𝑣𝑖 , 𝑣𝑗), �̃�)]                                                [�̃�𝑗𝑙

(… , �̃�), �̃�𝑗𝑢
(… , �̃�)] 

                               𝑠            𝑖                             �̃�𝑣𝑖𝑣𝑗                       
𝒋
 𝑗             𝜏        

 

                        
[𝑙𝑙 ((𝑣𝑖 , 𝑣𝑗), �̃�) , �̃�𝑙 ((𝑣𝑖, 𝑣𝑗), �̃�)] 

 
[𝑙𝑢 ((𝑣𝑖, 𝑣𝑗), �̃�) , �̃�𝑢 ((𝑣𝑖 , 𝑣𝑗), �̃�)]

 
 

             Figure 6: A network with fuzzy time-windows, fuzzy bounds and fuzzy flows 

 

(ii) The representation example of a fuzzy network corresponding to the 𝑙 − �̃� 

fuzzy interval minimum fuzzy cost fuzzy flow of the fuzzy time-windows 

problem: 

 

        [�̃�𝑖𝑙
((𝑣𝑖, 𝑣𝑗), �̃�) , �̃�𝑖𝑢

((𝑣𝑖, 𝑣𝑗), �̃�)]                                                [�̃�𝑗𝑙
(… , �̃�), �̃�𝑗𝑢

(… , �̃�)] 

                               𝑠            𝑖                             �̃�𝑣𝑖𝑣𝑗                       
𝒋
 𝑗             𝜏        

 

                           
                        

 
[𝑙𝑙 ((𝑣𝑖 , 𝑣𝑗), �̃�) , 𝑙𝑢 ((𝑣𝑖, 𝑣𝑗), �̃�)]

 
 

           Figure 7: A network of 𝑙 − �̃� fuzzy interval minimum fuzzy cost fuzzy flow of the 

fuzzy time-windows problem  

 

(iii) The representation example a fuzzy network corresponding �̃� − �̃� fuzzy 

interval minimum fuzzy cost fuzzy flow of the fuzzy time-windows problem: 

 

        [�̃�𝑖𝑙
((𝑣𝑖 , 𝑣𝑗), �̃�) , �̃�𝑖𝑢

((𝑣𝑖 , 𝑣𝑗), �̃�)]                                                [�̃�𝑗𝑙
(… , �̃�), �̃�𝑗𝑢

(… , �̃�)] 

                               𝑠            𝑖                             �̃�𝑣𝑖𝑣𝑗                       
𝒋
 𝑗             𝜏        

 

                        
                          

 
[�̃�𝑙 ((𝑣𝑖 , 𝑣𝑗), �̃�) , �̃�𝑢 ((𝑣𝑖 , 𝑣𝑗), �̃�)]

 



Figure 8: A fuzzy network of the �̃� − �̃� fuzzy interval minimum fuzzy cost fuzzy 

flow of the fuzzy time-windows problem 

  

5.    Conclusion 

In this paper, we present and described a new version of the Minimum Cost Flow 

Problem (MCFP), a new version is a FMCFFPFTWIB. Ghiyasvand [19], presented the 

method to solve the minimum cost flow problem with interval date, which solves the 

problem using two minimum cost flow problems with crisp data. This paper extended the 

method of Ghiyasvand [19], by using the two-minimum fuzzy cost fuzzy flow of the 

fuzzy time-windows problems with crisp data. Also, this method is extended to the 

minimum fuzzy cost fuzzy flow problem with fuzzy time-windows, fuzzy lower, fuzzy 

upper bounds and fuzzy flow. An application example of the fuzzy network is given. 
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