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Abstract

Let M be a paracompact smooth manifold, A a Weil algebra and M4 the asso-
ciated Weil bundle. In this paper, we give another definition and characterization
of vector field on M4,
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1 Introduction

In what follows we denote A, a Weil algebra i.e a local algebra in the sense of André
Weil, M a smooth manifold, C*°(M) the algebra of smooth functions on M, M# the
manifold of infinitely near points of kind A and 7y, : M4 — M be the projection which
assigns every infinitely near point to x € M to its origin x. The triplet (M?, 7y, M)
defines a bundle called bundle of infinitely near points on M of kind A or simply weil
bundle[13],[7],[9],[5],[12].

If f: M — R is a smooth function, then the application

fAMA — A& ()

is also smooth. The set, C=(M#, A) of smooth functions on M# with values on A4, is a
commutative algebra over A with unit and the application

C®(M) — C®(M* A), f — f4
is an injective homomorphism of algebras. Then, we have:
(f+9* = 495
ANt = A
(f-9* = f4g"
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The map
Ax OC®(M?) — C®(M*,A), (a, F) —a-F:&—a- F(£)
is bilinear and induces one and only one linear map
0: AR C®(M*) — C®(M*, A).
When (G )a=12....dim 4 is & basis of A and when (a})a—12,. dima is a dual basis of the basis
(o )a=12.. dim A, the application

dim A
ot CR(MA, ) — A (M), o S a,® (af 0 )

a=1

is an isomorphism of A-algebras. That isomorphism does not depend of a choisen basis
and the application

7 C%(M) — A® C*(MY), f — o7 (f7),

is a homomorphism of algebras.
If (U, ) is a local chart of M with coordinate system (z1, ..., x,), the map

(pA : UA - An7£ — <£<x1)7 ) £<xn>>

is a bijection from U# onto an open set of A™. In addition, if (U;, ¢,)sc; is an atlas of M4,
then (U, ¢);c; is also an atlas of M4 [2].

2 Other defintion of a vector field on Weil bundles

Let M be a smooth manifold of dimension n, A a Weil algebra and M* a Weil bundle
associated. In this paper, we give another chatacterization of vector fields on M4. We
show that, the tangent bundle TM* is locally trivial with typical fiber A"; we also give a
writing of a vector field on M4, in coordinate neighborhood system. Moreover, we verify

easily that the O (M*, A)-module X(M*) of vector field on M* is a Lie algebra over A.

2.1 Tangent vectors at M4

.....

dim A

Y= ZGZO‘P'aa'

a=1
When ¢ € M4, the map
g: COO(MA’A) - A’ 2 90(5)7



is a homomorphism of A-algebras. B
We denote Der , [C>(M A" A), A] the set of £-derivations which are A-linear i.e. the set
of maps

v:C®(M*A A) — A

such that

1. v is A-linear;

2. v(p-h) = v(p)-E(W)+E()v() = V() P(E)+p(€)-v(v), for any v, € C=(MA, A).

Proposition 1. For any £ € M4, Dery [C’OO(MA, A), A] is a module over A.

Theorem 2. For any £ € M*, the following assertions are equivalent:
1. A tangent vector at & € M* is a R-linear map
w: C®(M*) — R
such that for any F,G € C®(M%),
u(F - G) = u(F) - G(E) + F(§) - u(G);
2. A tangent vector at £ € M is an A-linear map
v:C®(M*A) — A
such that for any ¢, € C®°(M4, A),
v(e-¥) =v(p) - () + ¢(§) - v(¥);
3. A tangent vector at £ € M is a R-linear map
w:C®(M)— A
such that for any f,g € C*(M),

w(f-g)=w(f) &{(g) +E&(f)-w(g).
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Proof. 1. (1) = (2)
Let u: C*®°(M) — A be a tangent vector at M* and

v CP(MAA) T AR O®(MA) " AgR = A.

For any ¢, € C®°(M4, A), and for a € A, we have:
v(p +9)

and

= [(ida®@u)oo ] (p+¢) =[(ida ®u)] (07 (¢ + 1))
= [(ida@w)] (7 (p) + 07 (¥))
= [(ida @ u)] (67 () + [(ida @ u)] (0" ()
= [(ida®@u)oo] (p) + [(ida ®u)oo™] (¢)
= v(p) +o(¥)
wa-@) = [(idr®u)oo](a-p)

= [(ida @ u)] (07 (a )

= [(ida@u)](a-07(p))

= a-[(ids @u)] (67 (p))

= a [(idA ®u) o 0_1] ()

= a-v(p)

o 1))
(ida @ u)] (0™ () - 07 (¥))
[(ida @ uw)] (07 () - ¥ () + ¢ (&) - [(ida @ u)] (7 (¥))
[(ida®@u) oo™ ] (p) -9 (&) + ¢ (&) - [(ida ®u)oo™] ()
v(e) - ¥ (&) + (&) - v(¥).

2. (2) = (3) Let v: C®°(M#, A) — A be a tangent vector at £ € M. Let
w: C%(M) — C%(MA, A), f — v(fY).

For any f,g € C*(M),

w(f+g) =
w(Af)
w(f-g) v[(f

and for A € R, we have:

v[(f + g))* = o(f* + g%) = v(f*) + w(g?)
w(f) +w(g),

v[(A- O =0 A =N u(fY
A-w(f).

Q) =u(fr gt = oY) g ) + FAE) - wlg?)
&(g) +&(f) - w(g).



3. (3) = (1) The implication holds from the following result: the map
Derg [C®(M™),R] — Dere [C®(M), A],v +— (ida ® v) 07,

is an isomorphism of vector spaces see [9].
[

In what follows, we denote Tz M* the set of A-linear maps v : C*®°(M*4, A) — A such
that for any ¢, € C®°(M4, A),

v(p-¥) =v(p) - ¥(&) +¢(§) - v(¥)

that is to say
TeM* = Der  £[C(M*, A), Al.

Remark 1. For v € TeM*, we have v [C*(M#)] C R.

2.2 Vector fields on M4
The set, Der,[C®(M*, A)], of derivations which are A-linear is a C*°(M#, A)-module.

Theorem 3. The following assertions are equivalent:

1. A vector field on M4 is a differentiable section of the tangent bundle (TM#, 75,4, M4).
2. A vector field on M* is a derivation of C°°(M4).
3. A vector field on M4 is a derivation of C*°(M#, A) which is A-linear.

4. A vector field on M# is a linear map X : C®°(M) — C=(M*, A) such that
X(f-9)=X(f)-g*+ f* X(g), foranyf,gec C®M).

Proof. (1) = (2) Let U : M* — TM* be a differential section of the tangent bundle
(TMA7 TAA, MA)

1. Let
W C®(M*) — C®(M™)
such that [W(F)] (€) = [U (&)] (F) for any F € C*°(M*) and £ € M4,
- For any F,G € C*°(M#), and for )\ € R, we have:

WE+GE) = UEOIF+G)=UEF) +[UEG)

9
= (W) + W(G)] ()
= W)+ W(G)](©)



for any ¢ € M4, then W (F + G) = W(F) + W(Q);

(WA F)](E) [U(OTA-F) = A-[W(F)](£)
[A- W(E)](E)
for any ¢ € M4, then W(\- F) = \- W(F);

[UOIF-G) =[U©I(F)-G &)+ F(&)-[UEG)

J(
(W) (©]-G (&) + F (&) - W(G)](E)
(W(F).G+ F-W(G) ()

(W(E-G)(&)

)
for any £ € M4, then W(F -G) = W(F).G + F - W(G).

. (2) = (3) Let W be a vector field on M considered as a derivation of C®(M%).
Let

ZdA(X)W

X0 C®(MA,A) T A 0®(MA) A® C®(MA) —Zs C=(MA, A).

For any ¢, € C®°(M%), we have:

X(p+v) = [oolida@W)oa | (p+1)=loo(ida@W)] (0™ (¢ +1))
= [oo(ida®@W)] (07 (p) + 07 (1))
= oo (ida@W)] (07 (¢)) + o0 (ida @ W)] (a7 (1))
= [Uo(idA®W)oa_1](go)+[ao(sz®W)oa ](¢)
= X(p)+X(¥)

XA-p) = [ao(idA@)W)oa*l} ()\‘(p):[ao(idA(X)W)](a*l(A-go))
= [oo(ida@W)](A-07(p)) =A-[o0(ida @ W)] (07 (p))
= )\'[UO(idA@W)OJ_l] ()
= A X(¢)

and

X(p-¢) = [oo(ida@W)oo ] (p-¢)
= [oo(ida@ W) (o7 (p-¥))
= [oo(ida@ W) (o7 (p) 0 ()
= [oo(ida@W)][ (o7 (¥) - ¥+ - [(ida @ W)] (o7 (¥))
= [ao idA®W)oa_1](<p)-¢+go-[ao(idA@)W)oa_l}(@/))



3. (3) = (4) Let X be a vector field on M# considered as a derivation of C*®°(M4, A)
which is A-linear. Let

Y : C®(M) — C®°(M4, A), f —s f2.
- For any f,g € C*°(M), we have:

Y(f+g9) = X [(f+g)A}
= X(f*+gY
= X(f*+X(g"
= Y(f)+Y(g9)
- For any f,g € C*(M), we have:
Y(f-9) = X [(f-g)A]
= X ("9
= X(fY-g*+ X" !
= Y(f) 9" +Y(9)f*
= Y(f)+Y(9).

4. (4) = (1) For that implication see, corollary 6 in [2].
Derg [C*®(M*),R] — Der¢ [C®(M), A] ,v — (ids ® v) 07,

is an isomorphism of vector spaces see [9].

Remark 2. For any X € X(M*), we have X [C*(M*)] C C~(M*).
Theorem 4. The map
X(MA) x (M) — X(MY),(X,Y)— [X,Y]=XoY -YoX
is skew-symmetric A-bilinear and defines a structure of A-Lie algebra over X(M4).
In all what follows, we denotes X(M*), the set of A-linear maps
X : C®(MA A) — C=°(M4, A)
such that
X(p-1) = X() -+ ¢ X(¢), foranyep, € C®(M*, A)

that is to say
X(M™?) = Der,[C®(M4, A)].



2.3 Prolongations to M4 of vector fields on M

Proposition 5. If §: C*°(M) — C*(M), is a vector field on M, then there exists one
and only one A-linear derivation

04 . C°(MA, A) — O=(M*, A),
such that
O =101
for any f € C°(M).
Proof. If 6 : C®(M) — C*(M),is a vector field on M, then the map
C=(M) — C=(M*, A), f— [0(/)"

is a vector field on M#. Thus, according to the equivalent (2) <= (3) of the theorem
2.1.2, there exists one and only one vector field on M4

04 . C° (M4, A) — C=(M*, A),

such that
o) = 100N
for any f € C*(M). O

Proposition 6. If 0,0, 05 are vector fields on M and if f € C*(M), then we have:
L (01 +05)" = 05 + 05
2. (f-0)" = f*-0%
3. 01,0.]" = [07,605].
Corollary 7. The map
X(M) — Dera[C®(M*, A)], 0 — 64
is an injective homomorphism of R-Lie algebras.

Proposition 8. If 4 : A — A, is a R-endomorphism, and ¢ : C*°(M) — C>®(M) a
vector field on M, then
04 (o f4) = po 00N,

for any f € C*(M).



2.3.1 Vector fields on M* deduced from derivations of A

Proposition 9. If d is a derivation of A, then there exists one and only, one A-linear
derivation

d*: C®°(M*, A) — C>™(M*4, A)
such that
d*(f*) = (=d) o f4,
for any f € C>*(M).
Proof. 1f d is a derivation of A, then the map
C%(M) — C=(M*, A), f = (=d) o f4,

is a vector field on M#. Thus, according to the equivalent (2) <= (3) of the theorem
2.1.2, there exists one and only, one A-linear derivation

d*: C®°(M*, A) — C>®(M*4, A)
such that
d*(f4) = (=d)o f4,
for any f € C*(M). O
Proposition 10. For any f € C*(M),
d*(po f4) = —po—do f4.

Proposition 11. If d, d;, dy are vector fields on M and if f € C°°(M), then we have:

L. (dy + do)" = df + d3;

2. (a-d)" =a-d;

w

- dy, do]" = [df, d3).

=

[d*,6"] = 0.

2.4 Writing of a vector field on M in local coordinate system.

Let U is a coordinate neighborhood of M at x with coordinate system (xy, ..., z,,). Then ac-

o \" o \" 2 \"
cording to [7], (a_xl) (€), (8_1:2> &), ..., (8x ) (€) is an A-basis of an A-free module

Te M of dimension n. For v € T M*, we have:

v = i)‘i (%)A(f)-

=1
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Proposition 12. There exists a canonical diffeomorphism
0 :T(M*) — TM* v+— O(v),
such that, for any f € C*°(M), we have:
L O] (f o) = [mara(v)] (f).
2. [O()] (df) = v ().

Proof. Let
O T(MA) 25 (MA)P 22 MASP 25 (M)A 24 (4P 22 T,
where
O1(v) : C®(M*) — D, F +— F(&) +v(F) -
O : ©1(v) — (ida ® ©1(v)) 0 V45
dim A
Oyt (idy © 01(v)) 0 74 — O [(ids © ©1(0)) 07,] : f— 3 [04(0)] (a0 1) @
a=1
O4: O3[(ida ® ©1(v)) 0o yul 1
such that

(idp ® 1) 0 vp = O3 [(ida @ B1(v)) © 74].
Thus for any f € C>°(M), we have:

[(idp @ ) 0 vp] (f) = O3 [(ida ® O1(v)) © 7] (f)

and
dim A
1 o fP)+e@nE o) = Y [0:(v)](a}o f*) @ aa
d?;; dim A
= Zaa@) (a0 f) (&) + Z%@W [(aZ o f*) - €]
" dim A - dim A
= 1® (ZQZ [fA(f')] -aa> +e® Zv [(a;ofA) -aa}

dim A
16 (Za:; ()] ) +e@v(f),

then the identification
n(1*o f%) =£(f)
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and
(et o f) = v(f).
It follows that
O(v) = [O5004003005004](v)
= O5(n)
= noy’

with ¢ : M? — TM, & — v, such that for f € C®°(M), £(f) = f(p) + v(f) where p €
M,veT,M and ¢ € sz‘. The map ¢ is a diffeomorphism. Then, © is a diffeomorphism
as composition of diffeomorphisms. Moreover,

O] (fomu) =nle"(fomu)] =n(1" o f7) = £(f) = mara(v)

and

[©)] (df) = nle*(df)] = n(e o f7) = v(f4).

Proposition 13. The map
0:TUY — Ut x A" v — (mpra(0), 0 (27), ..., v(z]))
is a diffeomorphism. For & € U4,
Ojrva TUA — {€} x A"
is an isomorphism of A-modules.

Proof. Let mp : TM — M and mya : TMA — MA be the projections of TM and
TMA on M, M* respectively.

The bundle T'M being locally trivial then for any = € M there exists an open coordinate
neighborhood U of x in M and a local diffeomorphism hy; : 7, (U) — U x R™ such that
the following diagram

commute i.e pry o hy = Ttjn s} (U)- Thus, let

Ay © A(hU)A nA 91 A A ®2 A n ¢3 A n
T(U)—>(TU) —>[UXR] — U X(R) —= U X(R ®A)—>U QA

where
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O :v— O(v);
(hv)™ : ©(v) = O(v) 0 hyy;
¢1: ©(v) 0 hiy = ((pr1)[O(v) © hy ], (pr2) [O(v) © hi]) ;

¢+ ((pr1)*[O(v) 0 Ay, (pr2)[O(v) © hp]) = ((pﬁ)A[@(v) ohil, Y e ® [(pr2)*[O(v) o h7]] (62‘)) ;

=1

¢3 : <<pr1)A[@<v) S h?]]? Zei & [(pTQ)A[@(v) © h?]” (6;()) = (WMA (U)a (U(%f), 77}@%)))

i=1
with e} o pry o hy = dx;.
It follows that,

0(v) = [¢30 ¢y 0 by 0 (hy)* 0 © (v(a), ..., v(wy)))(v) = (Tara(v),)

hence 6 is a diffeomorphism as composition of diffeomorphisms.
Besides, for € € U4, 0\1.v4 is an isomorphism of A-modules. Indeed: it follows from 6 that

A A
0\r,u4 is bijective and in addition, if v = SN <8i> () andw =377, p; <ai> (€)
€T; i

are element of T:U4 and a € A, we have first

9|T5UA(U +w) = H\TgUA (Z()\i + 1) (82:1) (f))

i=1
= (A F gy A )
= (Ao An) A+ (fgs s 1)
= H‘TgUA<U>+9|T€UA<w)'

and secondly, we have

Orvala-v)=(a-Ai,.,a-Ay) =a- (A1, ., \n) = a-Oipa(v).

That result leads to state:
Corollary 14. The tangent bundle M4 is locally trivial with typical fiber A™.

Proposition 15. If X : M4 — TM* is a vector field on M and if U is a coordinate
neighborhood of M with coordinate neighborhood (x1,...,2,), then there exists some
functions f; € C°(U*4, A) for i = 1, ...,n such that

n a A
Xjpa = ;f (W) :
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Suggestion for notations.
When (U, ¢) is local chart and (21, ..., z,,) his local coordinate system. The map
U4 — A" & (E(21), -, E(20)),

is a diffeomorphism from U4 onto an open set on A”.
As

a A
L (1o (TTA oA
(8:67;) L C(UA, A) — CF(UA, A)

is such that

we can denote

Ifve TEMA, we can write

If X € X(MA) = Der,[C>®(M4, A)], we have

- 0
X|UA - ;fl@

with f; € C°(U4, A) for i = 1,2, ..., n.
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