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Resumen

The principal goal is generalize the field theory on spaces that ad-

mit decomposing in components that can be manageable in the com-

plex Riemannian manifolds whose complex varieties can be part of

those components called motives, creating a decomposition in the de-

rived category of its spectrum where solutions of the field equations

are defined in a hypercohomology. The derived tensor product btr
L,ét

induces a tensor-triangulated structure to a derived category more

general than D´RpAq, as for example, DMeff,´

ét pk,Z{mq, which is

our objective. In this case, we want geometrical motives, where this

last category DMeff,´

ét pk,Z{mq, can be identified for the derived ca-

tegory DM´
gmpk,Rq. Then the solutions to the category DQFT (the

category of complexes to quantum field equations dda “ 0) are inte-

grals of certain cohomology group. For other way, the category DQFT

can be defined as of the motives in a hypercohomology of the type

H
p,q
L pX,Qq “ Hp,qpX,Qq, from the category Smk, on Q- modules with

transfers.
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1. Introduction

The intention of this study is establish a methodology through of commuta-

tive rings and their construction of a total tensor product bL, 2 on the category

PSTpkq, considering extensions of the tensor products bRpAq, to obtain reso-

lution in the projective sense of infinite sequences of modules of Étale sheaves,

being these, fundamental sheaves to the construction of derived categories of

geometrical motives. These sheaves are pre-sheaves of Abelian groups on the

category of smooth separated schemes restricted to scheme X.

Likewise, the immediate application of the derived tensor products will

be the determining of the tensor trianguled category DM´
éttpk,Z{mq, of Étale

motives to be equivalent to the derived category of discrete Z{m- modules over

the Galois group G “ Galpksep, {kq, which says on the equivalence of functors

of tensor triangulated categories3 . This is very useful to characterize a derived

category in quantum field theory on k- modules that can be finer in equivalence

classes of the category Smk, through the corresponding derived tensor product

btr
ét, of pre-sheaves.

2L, is a Lefschetz motive Z (1) [1].
3Theorem. If 1{m P k, pL ,bL q, is a tensor trianguled category and the functors

D´pG,Zq
π˚

Ñ́ L Ñ́ DpW´1

A
q “ DMeff,´

Ét
pk,Z{mq,

are equivalences of tensor triangulated categories. Here π˚, is a trangulated functor

from D´pG,Z{mq, until the category D´pShétpCork,Z{mqq.
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Then the mean result of derived tensor products will be in tensor trian-

gulated category DMeff,´
Nis pk, Rq, of effective motives and their subcategory of

effective geometric motives DMeff,´
gm pk, Rq. Likewise, the motive MpXq, of a

scheme X, is an object of DMeff,´
Nis pk, Rq, and belongs to DMeff,´

gm pk, Rq, if X,

is smooth. However, this requires the use of cohomological properties of shea-

ves associated with homotopy invariant pre-sheaves with transfers for Zariski

topology, Nisnevich and cdh topologies.

Finally, all this treatment goes in-walked to develop a motivic cohomology

to establish a resolution in the field theory to solutions in the field equations

dda “ 0, incorporating singularities in the complex Riemannian manifolds

where singularities can be studied with deformation theory through operads,

motives and deformation quantization [1].

2. Derived Triangulated Categories with Struc-

ture by Pre-Sheaves bL and btr
L,ét

We start giving some definitions for after establish some lemmas on the

triangulated structure of derived categories with pre-sheaves in derived tensor

products to build the derived category of the total tensor product that will

determine the hypercohomology under the structure of a derived category of

geometrical motives on k-modules. Here, k must be the numerical field more

adequate to quantum field theory, that is to say, on Q- modules.

Def. 2.1. A pre-sheaf with transfers is a contravariant additive functor:

F “ Cork Ñ Ab, (1)

Then we write

PreShpCorkq Ñ PSTpkq “ PST, (2)

to describe the functor category on the field k, whose objects are pre-sheaves

with transfer and whose morphisms are natural transformations.
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Analogously we can define to the tensor product btr, and their extension

to btr
ét.

Then we have the definition.

Def. 2.2. If F , and G, are pre-sheaves of R- modules with transfers, we

write:

pF btr Gqét Ñ F btr
ét G, (3)

to establish that the Étale sheaf associated to F btr G, is pF btr Gqét.

If C, and D, are bounded above complexes of pre-sheaves with transfers,

we shall write C btr
ét D, for pC btr Dqét, and

pC btr
L Dq – P btr

ét Q, (4)

where P , and Q, are complexes of representable sheaves with transfers,

P – C, and Q – D. Then there is a natural mapping

pC btr
L,ét Dq Ñ C btr

ét D, (5)

induced by

pC btr
L Dq Ñ C btr D, (6)

Lemma 2. 1. If F , and F 1, are Étale sheaves of R- modules with transfers,

and F , is locally constant, the mapping:

hXpUq bR hY pUq “ HomApU,Xq b HomApU, Y q
b
Ñ́ HomApU b U,X b Y q

∆1

Ñ́ HomApU,X b Y q “ hXbY pUq, (7)
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induces an isomorphism

F bét F
1 –

Ñ́ F btr
ét F

1, (8)

Remember that a pre-sheaf is defined as:

Def. 2. 3. A pre-sheaf F , of Abelian groups on Sm{k, is an Étale sheaf if

it restricts to an Étale sheaf on each X, in Sm{k, that is if:

1. The sequence

0 Ñ F pXq
diag
Ñ́ F pUq

p`,´q
Ñ́ F pU ˆX Uq, (9)

is exact for every surjective Étale morphism of smooth schemes,

U Ñ X, (10)

2. F pXYY q “ F pXq ‘ F pY q, @X, Y , schemes.

We demonstrate the lemma 2. 1.

Proof. We want that the tensor product btr
L,ét, induces to a tensor triangu-

lated structure on the derived category of Étale sheaves of R- modules with

transfers 4 defined in other expositions [4]. We consider the proposition 5 then

we have:

pC btr
L,ét Dq Ñ D btr

L,ét C, (11)

Then is sufficient to demonstrate that btr
L,ét, preserve quasi-isomorphisms.

The details can be consulted in [5].

4Definition. A presheaf with transfers is a contravariant additive functor from the

category Cork, to the category of Abelian groups Ab.
5Proposition. The derived category D´RpAq, equipped with bL- structure is a

tensor-triangulated category.

In the demostration of this proposition was used the particular fact of that HompF, ‚q is

left exact and F b ‚, is right exact.
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Then the tensor product btr
ét, as pre-sheaf to Étale sheaves can to have

a homology space of zero dimension that is vanished in certain component

right exact functor ΦpF q “ RtrpY q btr
étF , from the category PSTpk, Rq, of pre-

sheaves of R- modules with transfers to the category of the Étale sheaves of R-

modules and transfers. Then every derived functor LnΦ, vanishes on H0pC̃q,

to certain complex of Étale.

Then all right exact functor RtrpY q btr
ét F , is acyclic. This is the machinery

to prove the functor exactness and resolution in modules through of induce

from btr
L,ét, a tensor-triangulated structure to a derived category more general

that D´RpAq.

In addition, we have:

Lemma 2. 2. Fix Y , and set Φ “ RtrpY qbtr
ét. If F , is a pre-sheaf of R-

modules with transfers such that Fét “ 0, then LnΦpF q “ 0, @n.

Proof. [2].

To establish a triangulated tensor category on the Étale pre-sheaves defined

in Q- modules, we require related sheaves to the Étale pre-sheafs such that their

homotopy invariance as also their cohomology can be equivalent. Because to

the Nisnevich sheaves we have the following property: If F , is a homotopy

invariant pre-sheaf with transfer and k, is a perfect field then the associated

Nisnevich sheaf, which we can denote as FNis, is homotopy invariant and also

complies to their cohomologies.

Also considering the lemma 2. 1, we have that the tensor product btr
L,ét,

endows to Étale derived category to be a tensor triangulated category, which

will be relevant to obtaining through the Étale sheaves of a tensor triangulated

category of motives. Likewise, we have:

Corollary. 2. 1. The tensor product btr
L,ét, endows DMeff,´

ét pk,Rq, with
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the structure of a tensor triangulated category.

Proof. [2-4].

Then in the motives context we have the following lemma.

Lemma 2. 2. Let F , be a Zariski sheaf of Q- modules with transfers. Then

F , is also an Étale sheaf with transfers [4].

The association of sheaves with Zariski topology and establish their equi-

valence to Étale sheaves on Q- modules help us to determine a structure of

derived categories with geometrical motives even in singularities. Now in ho-

motopy invariance obtained through Nisnevich sheaves we have the following

consequence from lemma 2. 1, and from the tensor triangulated categories of

motives.

Corollary. 2. 2.If F , is a pre-sheaf of Q- modules with transfers, then we

have FNis “ Fét.

Then also their homologies:

Proposition 2. 1. If F , is an Étale sheaf of Q- modules, the homologies

comply that:

Hn
étp_, F q “ Hn

Nisp_, F q, (12)

Then consequently we can enunciate the following functor.

Let Lét, denote the full subcategory of derived category D´
ét “ D,´pShét

pCork,Rq, consisting of complexes with homotopy invariant cohomology shea-

ves.
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Theorem 2. 1. The natural functor

Lét,Ñ DMeff,´
ét pk,Rq, (13)

is an equivalence of triangulated categories if Q Ď R.

This is the part of the theorem described in the note foot 2, that we use in

the demonstration of the main theorem in this paper.

3. Considerations to the Field equations.

Remember that in the derived geometry we work with structures that must

support R- modules with characterizations that should be most general to the

case of singularities, where is necessary to use an irregular connection, if was

the case, for example in field theory in mathematical physics when are studied

the quantum field equations on a complex Riemann manifold with singularities.

Characterizing connections through derived tensor products [2] we search

precisely generalize the connections through pre-sheaves with certain special

properties, as can be the Étale sheaves [4].

Remember we want generalize the field theory on spaces that admits de-

composing in components that can be manageable in the complex manifolds

whose complex varieties can be part of those components called motives, crea-

ting a decomposition in the derived category of its spectrum considering the

functor Spec, and where solutions of the field equations are defined in a hyper-

cohomology 6 . Likewise, this goes focused to obtain a good integrals theory

(solutions) in the hypercohomology context considering the knowledge of the

6Definition. A hyperhomology or hypercohomology of a complex of objects of an

Abelian category is an extension of the usual homology of an object to complexes. The

mechanism to give a hypercohomology is suppose that A, is an Abelian category with

enough injectives and Φ, a left exact functor to another Abelian category B. If C, is a

complex of objects of A, bounded on the left, the hypercohomology HipCq, of C, (for an

integer i) is calculated as follows: is taken a quasi-isomorphism ψ : C Ñ I, where I,

is a complex of injective elements of A. The hypercohomology HipCq, of C, is then the

cohomology HipΦpIqq, of the complex ΦpIq.
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spectral theory of the cycle sequences in theory that searches the solution of the

field equation even including singularities of the complex Riemann manifold.

We can demonstrate that btr
L,ét, induces a tensor-triangulated structure to a

derived category more general than D´RpAq, as for example, DMeff,´
ét pk,Z{mq,

which is our objective. In this case, we want geometrical motives, where this

last category DMeff,´
ét pk,Z{mq can be identified for the derived category DM´

gm

pk, Rq.

We consider and fix Y , and the right exact functor ΦpF q “ RtrpY q btr
ét F ,

from the category PSTpk, Rq, of pre-sheaves of R- modules with transfers to

the category of the Étale sheaves of R- modules and transfers. Likewise, their

left functors LpΦpF q, are the homology sheaves of the total left derived functor

ΦpF q “ RtrpY q btr
L,ét F .

Considering a chain complex C, the hypercohomology spectral sequence is:

E2

p,q “ LpΦpHqCq, (14)

then

Lp`qΦpCq “ 0, (15)

Then the corresponding infinite sequence is exact (and are had integrals to

the complexes of field equations [1]).

We consider A, and B P A, where A, is a category as has been defined

before.

We have the following propositions demonstrated in [5].

Proposition 3. 1. There is equivalence between categories Ab(CRingA{{Bq

– ModB.

Then a hypercohomology as given to dda “ 0, can be obtained through

double functor work A Ñ B Ñ B, through an inclusion of a category ModB,

in CRingA{{B. Then is had the result.
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Theorem 3. 1. The left adjoint to the inclusion functor ModB ü CRingA{{B,

is defined by X ÞÑ ΩX{A bX B. In particular, the image of A Ñ B Ñ B, under

this functor is B ÞÑ ΩX{A.

The derived tensor product is a regular tensor product.

Theorem 3. 2. The character to an adjoint lifts to a homotopicaly mea-

ningful adjunction complies:

Ch(B)ěB ÐÑ sCRingA{{B, (16)

Meaning that is an adjunction of categories, which induces an adjunction

to level of homotopy categories.

We define the cotangent complex required in derived geometry and QFT .

Def. 3. 1. The cotangent complex LA{B, is the image of functor A Ñ B Ñ

B, under the left functor of the Kähler differentials module MbL
RpAq. Likewise,

if P‚ Ñ B, be a free resolution then

LA{B “ ΩP‚{A bP‚
B, (17)

The cotangent complex as defined in (17) lives in the derived category

ModB. We observe that choosing the particular resolution of B, then ΩP‚{A, is

a co-fibrant object in the derived category ModP‚
, which no exist distinction

between the derived tensor product and the usually tensor product. Then to

any representation automorphic of GpAq, the GpF q{GpAq, can be decompo-

sed as the tensor product bn
i“1πI . This last fall in the ramification theory to

Langlands ramifications.

Example 3. 1. This, in the context of solution of field equations as dda “

0, has solution in the hypercohomology of a spectral sequence of D´RpAq,

(established on the infinite sequence ... Ñ F n Ñ 0 Ñ ...[1]) when its functors

whose image ΩB{A, have as its cotangent complex the image under of the

functor LA{B, which is the functor image A Ñ B Ñ B, under the left derived

functor of Kähler differentials.

To demonstrate this, is necessary to define an equivalence between derived
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categories in the level of derived categories DpLBun,Dq, and DpLLoc,Oq, where

geometrical motives can be risked with the corresponding moduli stack to

holomorphic bundles. The integrals are those whose functors image will be

in SpecHSymT(OPLG
pDqq, is the variety of opers on the formal disk D, or

neighborhood of all point in a surface Σ, in a complex Riemannian manifold

[1].

4. Main theorem.

As was showed the geometrical motives required in our research are result

of embed the derived category DM´
gmpk, Rq, (geometrical motives category) in

the DMeff,´
ét pk,Z{mq, considering the category of smooth schemes on the field

k.

We consider the following functors. For each F P D´pShNispCorpkqqq, there

is LA1F P Deff
´ pkq, the resulting functor is:

LA1 : D´pShNispCorpkqqq Ñ Deff
´ pkq, (18)

which is exact and left-adjoint to the inclusion

Deff
´ pkq Ñ D´pShNispCorpkqqq, (19)

Also the functor (18) decends to an equivalence of triangulated categories.

This is very useful to make Deff
´ pkq, into a tensor category in the way as follows.

We consider the Nisnevich sheaf Ztrpkq, with transfer tr : Y Ñ cpY,Xq. We

define

Ztrpkq b Ztrpkq :“ ZtrpX ˆk Y q, (20)

Then can be demonstrated that the operation realised in (18) can be exten-

ded to give D´pShNispCorpkqqq, with the structure of a triangulated tensor cate-

gory. Then the functor LA1 , induces a tensor operation on D´
A1ShNispCorpkqqq,

making that the itself D´
A1ShNispCorpkqqq, is a triangulated tensor category.

Likewise, explicitly in DMeff
´ pkq, this gives us the functor

m : Smk Ñ DMeff
´ pkq, (21)
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defined by

mpXq :“ CSuspZtrpXqq, (22)

where we have the formula

mpX ˆk Y q “ mpXq b mpY q, (23)

If we consider the embedding theorem, then we can establish the following

triangulated scheme

Smk Ñ́ DMeff
gm pkq

m Œ Ù Id (24)

DMeff
gm pkq

which has implications in the geometrical motives applied to bundle of

geometrical stacks in mathematical physics.

Theorem 4. 1 (F. Bulnes). Suppose that M, is complex Riemannian

manifold with singularities. Let be X, and Y , smooth projective varieties in

M7. We know that solutions of the field equations dda “ 0, are given in a

category Spec(Smkq, (see example 4). Solutions of the quantum field equations

for dda “ 0, are defined in a hyper-cohomology on Q- coefficients from the

category Smk, defined on a numerical field k, considering the derived tensor

product btr
ét, of pre-sheaves. Then the following triangulated tensor category

scheme is true and commutative:

DQFT

i Ö Œ F (25)

MDgmpQq ÐÑ MDpOY q

7Singular projective varieties useful in quantization process of the complex Rieman-

nian manifold. The quantization condition to compact quantizable Kähler manifolds can

be embedded into projective space.
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The category DMeff
gm pk, Rq, has a tensor structure and the tensor product

of its motives is defined in (23) as mpXq b mpY q “ mpX ˆ Y q.

Triangulated category of geometrical motives DMgmpk, Rq, or written simply

as DMgmpkq, is defined formally inverting the functor of the Tate objects8 (are

objects of a motivic category called Tannakian category) Zp1q, to be image of

the complex rP1s Ñ rSpecpkqs, where the motive in degree p “ 2, 3, will be

mppq “ m b Zp1qbp, or to any motive m P DMeff
gm pkq, @p P N.

Likewise, the important fact is that the canonical functor DMeff
gm pkq,Ñ

DMgmpkq, is full embedding [6]. Therefore, we work in the category DMgmpkq.

Likewise, for X, and Y , smooth projective varieties and for any integer i,

exist an isomorphism:

HomDMeff
gm pkqpmpXq, mpY qpiqr2isq – Am`ipX ˆ Y q, m “ dimY, (26)

We demonstrate the theorem 4. 1.

Proof. @X P Smk, the category Smk, extends to a pseudo-tensor equivalen-

ces of cohmological categories over motives on k, that is to say, MMpkq, is the

image of functors9

DMeffpkq Ñ DMgmpkq, (27)

8Let MTpZq, denote the category of mixed Tate motives unramified over Z. It is a

Tannakian category with Galois group GalMT.
9The duality between derived category of motives can be understood under homo-

logy and cohomology. Likewise we can define the derived category of geometrical motives

DMgmpkq, as image from a homological category of motives under the functor which maps

a derived category belonging to the category SmOp
k , called Levin1s derived category, to the

derived category of geometrical motives. Both derived categories obtained homologically

are dual. Likewise, we have the important result.

Theorem. Let k, be a field admitting resolution of singularities. Sending Z.Xpnq, in

the Levine1s derived category DMLevpkq, to HomDMgm
pmpXq,Zpnqq, in DMgmpkq, for

X P Smk, extends to pseudo-tensor equivalence of cohmological categories over motives

on k, having DMLevpkq Ñ DMgmpkq, that is to say, an equivalence of the underlying trian-

gulated tensor categories, compatible with respective functors on SmOp
k .
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which is an equivalence of the underlying triangulated tensor categories.

For other way, the category DQFT can be defined as of the motives in a

hypercohomology from the category Smk, defined as:

HomDMeff
gm pkqpmpXq,Qpqqrpsq – H‚

NispX,Qpqqq “ Hp,qpXNis,Qpqqq, (28)

which comes from the hypercohomology

H
p,q
L pX,Qq “ Hp,qpX,Qq, (29)

We observe that if a Zariski sheaf of Q- modules with transfers F , is such

that F “ HqC, for all C, a complex defined on Qpqq- modules, being a spe-

cial case when C “ Qpqq, where the cohomology groups of the isomorphism

H
p
étpX,Fétq – H

p
NispX,FNisq, can be vanished for p ą dimpY q.

Then survives a hypercohomology HqpX,Qq. We consider SpecpSmkq we

can to have the quantum version of this hyper-cohomology with an additio-

nal work on moduli stacks of the category ModB, in a study on equivalence

between derived categories in the level of derived categories DpLBun,Dq, and

DpLLoc,Oq, where geometrical motives can be risked with the corresponding

moduli stack to holomorphic bundles10 .

For other way, with other detailed work of quasi-coherent sheaves [1, 7] we

can to obtain the category MOOpY q. The functors are constructed using the

Mukai-Fourier transforms.

l

10We consider the functor F , defined as:

F : DpX ˆY Xq
FγαF

Ñ́ ModT pDpX ˆY Xqq –K KpF γqD̃holomorphicpLYq,

where KpF γq is the kernel space of the functor F γ , is the funtor that induces the equi-

valence ModT pDpX ˆY Xqq –K KpF γq, and the operator T “ F γ ˝ F , acting on category

DpX ˆY Xqq.
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5. Conclusions.

The determination of a hypercohomology as cohomology group where are

defined the solutions of the field equations obeys to the triangulated derived

categories that permit an scheme (triangle) commutative whose integrals are

solutions of the field equations. The determination of this hypercohomology

arise of the fact of that derived motivic category DMgmpkq, which is of the

motivic objects whose image is under Specpkq, that is to say, an equivalence of

the underlying triangulated tensor categories, compatible with respective fun-

ctors on SmOp
k . The geometrical motives will be risked with the moduli stack

to holomorphic bundles. By the lemma 2. 3, corollary 2. 2, proposition 2. 1,

and Theorem 2. 1, the special case where complexes C “ Qpqq, are obtained

when cohomology groups of the isomorphism HppX,Fétq – H
p
NispX,FNisq, can

be vanished for p ą dimpY q. We observe also the Beilinson-Soulé vanishing

conjectures [8-10] where we have the vanishing HppF,Qpqqq “ 0, if p ď 0, and

q ą 0, which confirms the before established. Then survives a hypercohomo-

logy HqpX,Qq. Then their objects are in Spec(Smkq. Likewise for the complex

Riemannian manifold the integrals of this hypercohomology are those whose

functors image will be in SpecHSymTpOPLG
pDqq, which is the variety of opers

on the formal disk D, or neighborhood of all point in a surface Σ [1].

Technical Notation

DMeff
gm pkq- Derived category of effective geometrical motives. This is a fun-

damental derived category to build the tensor-triangulated category of motives.

HqpX,Qq- Hypercohomology space of dimension q. This is our hypercoho-

mology considered as base to obtain its their quantum version with additional

work in the moduli stack ModB, to obtaining of solutions of the equations

dda “ 0.

Q- modules- These modules are k´ modules obtaining of the equivalence

of the category Sm{k. These are our modules to define our hypercohomology

to the field equations.

btr
L,ét- Tensor product of complexes of Étale sheaves with transfers.
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Sm{k- Category of smooth separated schemes.

Hn
NispX,Kq- Nisnevich hypercohomology of complex of sheaves K.

Cork- Category of finite correspondences.

DMeff,´
ét pk, Rq- Category of effective Étale motives.

HompM,Nq- Internal Hom, in DMgm.

DM´pk, Rq- Category of motives.

btr
L,Nis- Tensor product on the derived categories D´

A1pShNispCorpkqqq.

Hp,qpX,Aq- Étale motivic homology.

HompF,Gq- Hom, pre-sheaf.

M- Complex Riemannian manifold with singularities. Model of the space-

time that includes quantum field phenomena.

btr
ét- Tensor product of Étale sheaves with transfers.

bL- Total tensor product.

Lét ´ A1- local object in D´pShétpCork, Rqq.

D´pG,Z{nq- Derived category of discrete Z{n- modules over G.

dda “ 0- Field equations of the field a P CpOpLpDqq, which is in a hyper-

cohomology of the type HqpX,Qq.
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