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Abstract 

We examine the nature of BRICS stock market returns using a t-DCC model and investigate whether 
multivariate volatility models can characterize and quantify market risk. We initially consider a 
multivariate normal-DCC model and show that it cannot adequately capture the fat tails prevalent in 
financial time series data. We then consider a multivariate t- version of the Gaussian dynamic 
conditional correlation (DCC) proposed by [16] and successfully implemented by [24, 26]. We find that 
the t-DCC model (dynamic conditional correlation based on the t-distribution) out performs the 
normal-DCC model. The former passes most diagnostic tests although it barely passes the Kolmogorov-
Smirnov goodness-of-fit test.  

JEL Classification: C51, C52, G11 

Correlations and Volatilities; MGARCH (Multivariate General Autoregressive Conditional 
Heteroscedasticity) 
Daily returns (standard and devolatized)  
Multivariate t (t-DCC), Kolmogorov-Smirnov test ( NKS ) 
Value at Risk (VaR) diagnostics 
ML – Maximum Likelihood 

                                                           
1 The paper was presented at the 12th African Finance Journal Conference in Cape Town, South Africa on May 20-
21, 2015. In late 2001, Jim O’Neil, an economist at Goldman Sachs came up an acronym BRIC as a shorthand for 
the then fast-growing countries Brazil, Russia, India and China. Almost a decade later in December 2010, South 
Africa joined the group resulting in the acronym BRICS. A few people have suggested that South Africa was added 
just to represent the African continent. 
2 California State University Sacramento (CSUS), Department of Economics, 6000 J Street, Sacramento, 
CA 95819-6082/Tel: 916-278-7519/Email: dubes@csus.edu 
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I. Introduction 

Although any grouping of countries (such BRICS) involves some degree of arbitrary selection; 

the country and population size coupled with economic growth potential often acts as a 

common framework. There are at least two identifiable strengths to BRICS economies that are 

worth examining. First, BRICS countries produce 25% of global Gross Domestic Product (GDP), 

an increase of 15% from 1990. It is estimated that by 2020, they will account for about 37%-

38% of global GDP with the current population of 3 billion with income per capita ranging 

from $7,710 to $13,689.  Second, these economies have reasons for creating a club or grouping 

of their own to act as a counterweight in multilateral diplomacy, particularly in dealing with 

the U.S. and the EU.  

 

Since BRICS stock markets are now globally integrated, they are likely to be affected by 

developments in each other’s market. For investors, less international correlation between stock 

market returns mean that investors may reduce portfolio risk more by diversifying 

internationally instead of wholly investing in the domestic market. Since the level of gains from 

international diversification to reduce risk depends on the international correlation structure, 

the proposed paper provides empirical estimates. The correlation structure between stock 

returns is widely used in finance and financial management, to establish efficient frontiers of 

portfolio holdings. The paper provides time-varying (dynamic) conditional correlation 

estimates of BRICS stock market returns. The fact that stock markets are related, there is likely 
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to volatility across such markets.3 To account for such effects, the multivariate model estimates 

a measure of conditional volatility. Thus, we employ a multivariate t-DCC model for 

conditional correlations in returns and conditional volatility. 

Table 1 shows the correlation matrix of equity returns. Brazilian equity returns are negatively 

correlated with Russia (-0.153); Russia and India (-0.171), China and Russia (-0.169) and 

Russia and South Africa (-0.243). However, Brazilian equity returns are positively correlated 

with those of India, China and South Africa. It remains to be seen whether these relationships 

can be captured by conditional correlations from the t-DCC model. 

 
 

Table 1: Estimated Correlation Matrix of Variables    
 1498 observations used for estimation from 02-Jan-08 to 27-Sep-13        
******************************************************************************* 
                                               RBR           RRU          RIN          RCH          RSA                     
 RBR (Brazil)                         1.0000    
 RRU (Russia)                        -.15282    1.0000    
 RIN (India)                            .37028   -.17146    1.0000     
 RCH (China)                          .37940   -.16858    .56478    1.0000     
 RSA (South Africa)                .50155   -.24296    .48157    .49054    1.0000 

 

A few empirical results are noteworthy. First, our results indicate that the t-DCC model is 

preferred over the normal-DCC model in estimating conditional volatilities and correlations.  

Second, both  ˆ
N  and ẑ (tests of the validation of the t-DCC model) provide support for the t-

DCC model despite the 2008 financial crisis. However, the model barely passes the non-

                                                           
3 Since volatility is a non-observable variable, it is usually proxied for in two ways: (a) using the square 
of daily equity returns ( 2

itr  ) or (b) the standard error of intra-daily returns (realized volatilities) (
realized

it ) as in (7) below. 
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parametric Kolmogorov-Smirnov (
NKS  ) test which tests whether probability transform 

estimates,  ˆ
tU   are uniformly distributed over the range (0, 1).4 Third, from Figures 1(a) -1(c), it 

is clear that some stock market equity returns correlations are negatively related: India and 

Brazil, Russia and Brazil, and China and Russia respectively. Fourth, the model shows that the 

2008 and 2009 financial crisis led to sharp spikes in volatility. In 2008, China had the highest 

spike; in 2009, India had the highest spike and in 2010, South Africa experienced the highest 

spike. During these periods, Russia had the lowest spike in volatility. Fifth, conditional 

correlations of Russia (in equity returns) fell during the financial crisis but picked up from July 

2010. It shows that despite the 2008 financial crisis, BRICS equity returns (in terms of 

correlations) are anchored by the process of globalization in which stock markets are now 

more interdependent than ever. Finally, South African conditional correlations are negatively 

related to Brazil, India and China but they move together with Russian equity returns. It 

suggests that South African investors would have been better diversifying into these economies 

                                                           

4The probability integral transform (PIT) idea is that from a cumulative distribution function (CDF) in 
terms of one variable, it can be transformed into another CDF in terms of different variable such as

( ) ( )x yF x F y .  It is used mostly to generate random variables from continuous distributions. For 
instance, if X has a U (0, 1) distribution, then ( )XF x x . Thus the requirement ( ) ( )X YF x F y in the 
probability integral transform (PIT) reduces to ( )Yx F y or 1(x)Yy F  . Since y  is an observation 
from the probability distribution Y,   this means that one can generate observations from the 
distribution Y  by generating U (0,1) random variables and applying the 1(x)Yy F  transformation.  
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and that BRIC investors would not be investing in South Africa.5 Of course, the statement 

excludes any consideration of the effects of exchange rates.6  

For almost a decade, BRICS economies consistently posted high growth rates as long as foreign 

capital was cheap, with growing exports, and a strong foreign appetite for emerging market 

stocks and bonds by developed economies and investors. By late 2013, the reports that the Fed 

would soon reduce its bond-buying program quickly caused panic runs on the Brazilian real, 

the South African rand, and the Indian rupee as investors fled the BRICS economies.7 The BRICS 

economies have now become the Fragile Five, signifying economies that were too dependent on 

skittish foreign investment to finance their economic growth. The Fragile Five now confront 

three major problems. First, the world economic downturn has cooled the global export boom 

that fueled earlier economic growth. Any growth in the future requires a boost in domestic 

consumption – a time consuming transition. Second, the high equity returns in BRICS stock 

markets relied on huge inflows of foreign capital and very little domestic financing. Third, the 

U.S. Federal Reserve Bank (Fed) and other central banks, pursuing their own interests, held 

down interest rates, thus masking some of the weaknesses in BRICS finances. As interest rates in 

developed economies are expected to trend upwards in the near future, BRICS and other 

emerging markets may experience severe capital flight.  

                                                           
5 Russian equities (in terms of conditional equity returns) tend to move close together with equities in 
Brazil, India, and China but not with South African equities. 
6 [11] studied exchange rate movements and stock market returns in BRICS countries using a Markov-
switching VAR model. They find that stock markets in BRICS countries have more influence on 
exchange rates during calm and turbulent period. 
7 In three phases since late 2008, the Federal Reserve has bought trillions of dollars in bonds using 
newly created money (quantitative easing) to stimulate the economy.  
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The process of modeling conditional correlations across equity returns and conditional 

volatilities is a major function of portfolio managers and those tasked with reducing risks 

under the Value at Risk (VaR) strategies. If there is more than one equity in a portfolio, the use 

of multivariate models is often suggested. The return to equities are of five BRICS countries 

(Brazil, Russia, India, China and South Africa).  This paper employs a t DCC  model to 

estimate conditional volatilities and conditional equity returns. 

The estimation of conditional volatilities and equity returns is achieved by the DCC (with time-

varying correlation estimates) model by assuming a normal or Gaussian distribution of errors 

in the variance-covariance matrix 1t . In other words, the DCC model solves the curse of 

dimensionality by decomposing the variance-covariance matrix and transforming returns to 

normality or Gaussianity by dividing equity returns by a volatility measure (
, 1i t 

 ) to obtain 

standardized returns (see (6) below). A major shortcoming of this approach is that the Gaussian 

assumption often fails in financial empirical analysis because of the fat-tailed nature of the 

distribution of returns. The simple dynamic conditional correlation model ( normal DCC  ) 

from [16] and [16b] is based on a covariance-based method. This bears the risk of modeling 

bias but the assumed conditional Gaussian marginal distributions are not capable in mimicking 

the heavy-tails found in financial time series data observed in markets.  Despite this 

shortcoming, [18] found that the conditional Gaussian distribution fits with VaR models with 

reasonable estimates.  

The transformation of equity returns to Gaussianity is critical since correlation as a measure of 

dependence can be misleading in the presence of non-Gaussian equity returns as in (6) below.  

[24, 26] and [13] point out that for correlation to be useful as a measure of dependence, the 

transformation of equity returns should be made approximately Gaussian. The t-DCC model 
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uses devolatized returns that very closely approximate Gaussianity. It is based on de-volatized 

returns as outlined in [24, 26]. 

The literature on multivariate modelling is quite sizable as reviewed in [5] and [21], the 

Riskmetrics from J.P. Morgan and others and the multivariate generalized autoregressive 

conditional heteroscedastic specification (MGARCH) from [15]. However, if the portfolio has 

m  equities, the number of unknown parameters in the unrestricted MGARCH tends to increase 

exponentially with m so that estimation is not feasible even for a few equities.8 The diagonal 

VEC version of the MGARCH, although better, it still has too many parameters to be estimated. 

This curse of dimensionality is addressed somehow in [16]’s dynamic conditional correlations 

model which allows for time-varying correlations in the correlation matrix ( 1tD  ) in (1) below. 

 The major innovation is the decomposition of the conditional covariance matrix to conditional 

volatilities and conditional cross-equity returns correlations ( 1 1 1 1t t t tD R D     , see (1) below) 

where 1tD    is a m xm  diagonal matrix of conditional volatilities while  1tR   is a symmetric 

m xm  correlation matrix. The returns to equities is represented by a vector ( 1)tr m x  at time 

t  that have a conditional multivariate t distribution with mean of 1t  , a non-singular 

variance-covariance matrix ( 1t ), and 1 2tv     degrees of freedom. The cross-equity returns 

are modelled in terms of a fewer number of unknown parameters which resolves the curse of 

dimensionality. The returns are standardized to achieve Gaussianity. [16] shows that with 

Gaussianity in innovations, the log-likelihood function of the normal-DCC model can be 

maximized in a two-step procedure. In step 1, m  univariate GARCH models are estimated 

                                                           
8 The unrestricted model allows for the estimation of 1i  and 2i  (conditional volatility parameters) for 

1, ,5i   and 1  and 2  (mean-reverting conditional correlations parameters). 
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separately and step 2 uses the standardized residuals from step 1 to estimate conditional 

correlations (
1tR 
 ). 

Of the first four moments (mean, variance, skewness, and kurtosis), the latter three are unlikely 

to be satisfied by the assumption of a normal distribution. To capture these properties of 

financial data (equity returns in this case), the DCC model is combined with a multivariate t   

distribution for equity returns where tail properties of return distributions are a primary 

concern. Under this approach, [16]’s two-step procedure is no longer applicable to a t DCC  

specification. Following [24, 26], the obvious approach is to estimate simultaneously all the 

parameters of the model, including v , the degrees of freedom parameter. This approach solves 

the curse of dimensionality [16] and the absence of Gaussianity (by assuming a t distribution 

instead). 

According to [29], the data on financial series (equities in this case) share some commonalities 

such as heteroscedasticity; the variation and clustering of volatility over time, and 

autocorrelation. Since volatility is not observable, the usual way to model this is to adopt [7]’s 

GARCH framework. To the extent that financial volatilities tend to move together over time and 

across equity markets (clustering), the relevant model is the multivariate modelling framework 

with estimates that improve decision-making in areas such as portfolio selection, option 

pricing, hedging, risk management, and equity pricing.  

The generalization of the univariate standard GARCH model include [8]’s  VEC and BEKK 

models, factor models (F-GARCH) from [14], the full factor models (FF-GARCH) from [32], 

linear combinations of univariate GARCH models  including the orthogonal (O-GARCH) model 

from [1] who use a static principle component decomposition of standard residuals, the 

generalized orthogonal (GO-GARCH) from [31], nonlinear combinations of univariate models 
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which include the constant conditional correlation(CCC-GARCH), the dynamic conditional 

correlation (DCC-GARCH) from [30], and [16] respectively. [19] suggests a slightly different 

model from those above in the form of a generalized dynamic covariance (GDC-GARCH) 

model.  

According to [24, 26], there are 53 different specifications of 1t  that can be categorized into 

8 different model types such as the equal-weighted moving average (EQMA), the exponential-

weighted moving average (EWMA), mixed moving average (MMA), generalized exponential –

weighted moving average (GEWMA), constant correlation (CCC), the asymmetrical dynamic 

conditional correlation (ADCC) from [10], and the dynamic conditional correlation (t-DCC) 

from [24, 26] (Table 2). [26, 27] modified [16]’s DCC model by basing it on the stochastic 

process of the conditional correlation matrix on devolatized residuals rather than on 

standardized residuals. Standardized residuals are obtained by dividing residuals by the 

conditional standard deviations from the a first-stage GARCH (p, q) model, while devolatized 

residuals are found by dividing residuals by the square root of the k-day moving average of 

squared residuals. 

Table 2: Different Specifications of 1t   

 Model Types  Major Innovation 

1. Equally-Weighted Moving 

Average(EQMA) 

Without intra-daily observations, a simple 

estimate of 
0

1

10

1
'

n

t t s t s

s

r r
n

 



    with 0n  = 

last observations 
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2. Exponential-Weighted Moving Average 

(EWMA) 

One parameter is the popular Riskmetrics 

estimate of 
1t  made popular by J.P. 

Morgan 

3. Mixed Moving Average  (MMA) The conditional variances are calculated 

are calculated as in the equal-weighted 

MA model 

4. Generalized Exponential-Weighted 

Moving Average (GEWMA) 

Generalization of the two=parameter 

EWMA. 

5. Constant Conditional Correlation (CCC) 

–[9] 

Assumes that the one-step ahead 

conditional correlations are constant. 

6. Dynamic Conditional Correlation 

(DCC)- [16] 

Conditional correlations are allowed to be 

time-varying. 

7. Asymmetric Dynamic Conditional 

Correlation (ADCC) – [10] 

Allows the possibility of asymmetric effects 

on conditional variances and correlations. 

8. t-Dynamic Conditional Correlation  

(t-DCC)[24, 25, 26, 27] 

t-DCC is based on the stochastic process of 

the conditional correlation matrix on 

devolatized residuals. 

 

All these models can be organized into two groups for the convenience. Models 5 -8 can be 

grouped together as Group 1 whereas models 1- 4 can be viewed as Group 2. The different 

multivariate volatility models are all special cases of MGARCH and the associated conditional 

covariance matrix by it .  
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The paper is organized as follows. Section 2 presents the t DCC  used to provide estimates of 

conditional volatilities and equity returns using devolatized equity returns. Section 3 offers a 

brief discussion on recursive relations for real time analysis. Section 4 details the maximum 

likelihood (ML) estimation of the normal-DCC and t-DCC model. Section 5 presents VaR 

diagnostics such as tests of serial correlation and uniform distributions. Section 6 is the 

empirical application to devolatilized returns. Section 7 presents ML estimates of the t-DCC 

models in subsections: (a) equity-specific estimates; (b) post-estimation evaluation of the t-DCC 

model, and (c) recursive estimates and the VaR diagnostics. Section 8 presents the evolution of 

equity return volatilities and correlations.  Section 9 concludes. 

 

2. t-DCC Model or Modelling dynamic conditional volatilities and correlations of 

equity returns  

We use equity returns which are standardized by realized volatilities (7) rather than GARCH 

(1, 1) volatilities (6). Returns in (7) are more likely to be approximately Gaussian than 

standardized returns [2, 3].  Since we employ daily data and have no access to intra-daily data, 

we follow [24, 26] in getting an estimate of it  that uses contemporaneous daily returns and 

their lagged values as in (9). The t DCC estimation is applied to five equity indexes over the 

period 01 January 2008 to 27 September 2013. The sample is split into an estimation sample 

(2008 to 2011) and an evaluation sample (2012 to 2013). The results show a strong rejection 

of the normal DCC  model in favor of the t DCC model (partly based on the log-likelihood 

for the normal distribution is -8606.4 (Tables 4) while that of the t-DCC model is -8508.0 

(Tables 5)). When subjected to a series of diagnostic tests, it passes a number of VaR tests over 
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the evaluation sample. The data comes from the Financial Times Stock Equities (FTSE) for each 

BRICS country. Some data for Russia and South Africa came from Yahoo Finance!   

We now offer a t-DCC model as formulated by [24, 26, and 27] from the work by [9] and [16]. 

1 1 1 1t t t tD R D                                                                                                                                         (1) 

where  
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1 , 1 , 1( ) ( )t ij t ji tR       is the symmetric m xm  correlation matrix and  1tD   is m xm  diagonal 

matrix with , 1, i 1,2, ,mi t    representing the conditional volatility of the i -th equity return. 

That is, 
, 1

2

1( | )
i t it tV r
     and conditional pair-wise equity return correlations are 

represented by  

1

, 1

, 1 , 1

( , | )it jt t

ij t

i t j t

Cov r r


 





 


   where 1t  is the information set available at 1t  . Note that when for 

,i j  , 1 1.ij t     
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[9] considered a correlation matrix where 
1tR R   which defines a constant correlation 

matrix (CCC) while [16] allows 1tR  to be time-varying, suggesting a class of multivariate 

models known as the dynamic conditional correlation models (DCC).  [9]’s multivariate 

GARCH model assumes that the one-step ahead conditional correlations are constant. [16] 

relaxed the assumption of constant conditional correlation of the CCC model of [9]. The 

conditional variances of individual equity returns are estimated as univariate GARCH (p, q) 

specifications, and the diagonal matrix is formed with their square roots.  [10] generalized the 

DCC model by allowing for the possibility of asymmetric effects on conditional variances and 

correlations.  

[28] proposed an alternative model which uses a conditionally heteroscedastic model where 

unobserved common factors are assumed to be heteroskedastic and assumes that the number of 

common factors are less than the number of equities. The decomposition of the variance-

covariance matric 1t is critical to the estimation of conditional volatilities and correlation. 

That is, 1t allows for the separate specification of conditional volatilities and conditional 

cross-equity returns correlations. One uses the GARCH (1, 1) to model 2

, 1i t 
 as 

2 2 2 2

1 , 1 1 2 1 , 2 2 , 1( | ) (1 )it t i t i i i i i t i i tV r r                                                                          (2) 

where 2

i  is the unconditional variance of the of the i -th  equity return. In the event that 

1 2 1,i i   the unconditional variance ceases to exist in which case we have an integrated 

GARCH (IGARCH) model that is heavily used by finance practitioners and the model is similar 

to the “exponential smoother” as applied to 2' 2.itr s  That is,  

2 1 2

, 1 ,

1

( ) (1 ) , 0 1,s

i t i i i i t s i

s

r    




 



     Or                                                                       (3) 
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In recursive form, 

2 2 2

, 1 , 2 , 1( ) (1 )i t i i i t i i tr                                                                                                          (4) 

[16] suggested that cross-equity correlations estimates can use the following exponential 

smoother applied to “standardized returns” to obtain Gaussianity. 

1

, ,

1
, 1

1 2 1 2

, j,

1 1

ˆ ( )

s

i t s j t s

s
ij t

s s

i t s t s

s s

z z

z z



 

 




 




 
 

 

 




 

                                                                                           (5) 

The standardized returns are represented by  

, 1( )

it
it

i t i

r
z

 

                                                                                                                                    (6)                                                                                                                      

The unknown parameters that must be estimated are given by 1 2, , , ,m    and   which 

have been subject to [16]’s two-step procedure. The first stage involves fitting a GARCH (1, 1) 

model separately to m  equities. The second step estimates the coefficient of conditional 

correlations,    by Maximum Likelihood (ML) methods assuming that equity returns are 

conditionally Gaussian. However, [24, 26] point to two major disadvantages of the two-step 

procedure. First, the normality assumption never holds in daily or weekly returns and it has a 

tendency to under-estimate portfolio risk.9 Second, without Gaussianity, the two-step 

procedure is inefficient. 

Pair-wise correlations based on realized volatilities 

                                                           
9 The use of daily data has its cost. For example, there is no accounting for the non-synchronization of 
daily returns across equity markets in different time zones. The use of weekly or monthly data deals 
with this issue. 
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[24, 25, and 26] base the specification of cross correlation of volatilities on devolatized returns 

defined by (7) below. Suppose the realized volatility ( realized

it )    of the i -th equity return in 

day t  is defined as standard returns (
itr  ) divided by realized volatilities ( realized

it ) to yield 

it
it realized

it

r
r


                                                                                                                                    (7)                                                                                                       

In (7), devolatilized returns are 
itr while in (6), standardized returns are represented by

itz . 

Hence, the conditional pair-wise return correlations based on devolatized returns is given by 

1

, ,

1
, 1

1 2 1 2

, j,

1 1

( ) ,

s

i t s j t s

s
ij t

s s

i t s t s

s s

r r

r r



 

 




 




 
 

 

 




 

such that , 11 ( ) 1ij t      for all values of | | 1.      (8) 

[24, 26] offer an alternative formulation of , 1ij t  that makes use of realized volatilities as in (8). 

There is empirical support for this approach that daily returns on foreign exchange assets and 

stock market returns standardized by realized volatility are approximately Gaussian [2, 3]. 

Since we do not have intraday data for the equities examined here, we provide a simple 

estimate of it  based on daily returns that take into account all contemporaneous values of .itr  

1 2

,2 0( )

p

i t ss
it

r
p

p





                                                                                                                      (9) 

where p  is the lag order which should be chosen very carefully. [24, 26] emphasize that the 

choice of p is critical since the chosen value must be such that it transforms itr  into a Gaussian 

process. The non-Gaussian behavior found in daily returns is mainly due to jumps in the 

return process for many markets as reported in [24, 25, and 4]. A choice of p  well above 20 

does not allow for possible jumps in data to be adequately reflected in 2 ( )it p , while values of 
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p well below makes 
itr  to behave as an indicator type looking function [29].  [24, 25, 26 and 

27] note that 2 ( )it p is not equivalent to the standard rolling historical estimate of 
it given by 

That is, 2 ( )it p  - 2ˆ ( )it p   =   
2 2

,it i t pr r

p

                                                                                   (9b) 

when implementing real time analysis, as in recursive formulae augments used in the 

estimation and evaluation process. It seems that the inclusion of current squared returns 2

itr  (9) 

in the estimation of 2

it  is important in transforming non-Gaussian returns itr into Gaussian itr  

returns. 

3. Recursive relations for real time analysis  

The computation of , 1ij t   in (5) and (8) as noted by [16] is given by  

, 1

, 1

, 1 , 1

( )
ij t

ij t

ii t jj t

q

q q
  



 

                                                                                                                    (10) 

where  

, 1 , 2 , 1 , 1(1 )ij t ij t i t j tq q r r                                                                                                              (11) 

It is important to that , 1ij t   is positive definite as the covariance as the typical element of the 

matrix , 1ij tq   is a positive definite.  

The recursive formula for , 1( )ij t  is the same as in (5) except that (10) uses devolatized 

returns while (5) uses standardized returns ( itz ). We note that in the above models for pair-

wise correlations, , 1,ij t  these are non-mean reverting. The general specification for pair-wise 

correlations is given by  

, 1 1 2 1 , 2 2 , 1 , 1(1 )ij t ij ij t i t j tq q r r                                                                                        (12) 
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where ij  is the unconditional correlation of 
itr  and jtr with the restriction that 

1 2 1    

(mean reversion). There is an expectation that 
1 2  will be very close to one. The non-

reverting mean case is a special case of 
1 2 1.    However, it is not possible to be certain that 

1 2 1    or not.  On the other hand, it is possible to estimate unconditional correlations, ij  by 

using an expanding window. In the empirical part of the paper, we consider both; the mean 

reverting and non-mean reverting cases and compare two specifications of conditional 

correlations using standardized and devolatized returns.  

With m  daily equity returns in the 1m x vector, 
tr   over period 1,2, , ,t T  

1, ,T T N  , we use the first 0T  observations to calculate (9) to start the initialization 

recursive in (12) and obtain estimates of 2

i and ij  in (2) and (12) respectively. Suppose s  is 

the starting point of the recent sample of observations for estimation within the estimation 

sample (2008 to 2011). Then it follows that 0T s T      where   is the size of estimation 

window so that the estimation window is, 1.eT T s    Thus, the remaining observations, N

(2012 to 2013) can be used for evaluating the t-DCC model. Thus, the whole sample equals 

.e evS S  With a rolling window of size w , then 1s T w    so that the whole estimation can 

be moved into the future with an update frequency of .h  

Mean-Reverting Conditional Correlations 

For the mean-reverting case, we need estimates of the unconditional volatilities and correlation 

coefficients from (13) and (14) below. 
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                                                                                                                          (13)                                                                                                                        
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 




 

                                                                                                           (14)                                                                                                             

The index t  represents the end of available estimation sample which may be recursively rolling 
or expanding [24, 25, and 26]. 

4. Maximum Likelihood Estimation of the normal-DCC and the t-DCC Model 

In the non-mean reverting specifications, (2) and (12), the t-DCC model has 2 m  + 3 unknown 

parameters made up of 2 m coefficients 1 11 12 1( , , , ) 'm      and 2 21 22 2( , , , ) 'm     

that enter the individual equity returns volatilities, and the two coefficients 1  and 
2 that enter 

conditional correlations plus the degrees of freedom ( v )  of the multivariate t distribution. 

Following [29], for testing that one of the equity returns has non-mean reverting volatility, let 

1i  and 2i be parameters for the conditional volatility equation of the i  th equity, the relevant 
test is 

0 1 2: 1i iH      against 1 2: 1A i iH     

Under 0H , the process is non-mean reverting and the unconditional variance for the equity 
does not exist. 

In (2) and (12), parameters 2

i  and 2

ij are unconditional volatilities and return correlations 

and could be estimated using the initialization sample (13) and (14). In the non-mean 

reverting case, the intercepts in (2) and (12) cease to exist.  

Suppose we denote the unknown coefficients as follows. 

1 2 1 2( , , , , )`v       
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Given a sample of observations on returns, 
1 2, , , tr r r  available at time t, the t  log-likelihood 

function based on decomposing (1) is given by 

( ) ( ),
t

t

s

l f


 


                                   (15) 

where s t  is beginning date for the estimation window.10 With the t DCC  model, ( )f   
is the density of the multivariate distribution with v  degrees of freedom that can be written in 
terms of  1 1 1 1t t t tD R D      as 

1 1 1 2

1 1 1

1 1 2 1 1 1 2

1
( ) ln( ) ln | R ( ) | ln | D ( , ) | ln[ ( ) / ( )]

2 2 2 2

'D ( , ) ( ) D ( , )
ln( 2) ( ) ln[1 ]

2 2 2

m m v v
f

m m v e R e
v

v

  

    

    

    

 

  

  


     


   



                           (16) 

where 1e r       and  

1 1 2 , 1 1 , 2

1

ln | D ( , ) | ln[ ( )]
m

i i i

i

      



                                                                                    (17) 

As pointed out by [24, 26], surveys by [5] and [21], the multivariate t density is usually written 

in terms of a scale matrix. However, if we assume that 2,v  then it means that 1t  exists to 

permit the scale matrix to be written in terms of 1.t  

In [16], 1tR   depends on 1  and 2   in addition to 1  and 2  (based on standardized returns) 

but the specification here is based on devolatilized returns has 1tR  depending only on 1  and 

2  plus the p -the lag order that is used in the devolatization process. The ML estimate of   

based on sample observations 1 2, , , tr r r  are computable by maximizing ( )tl  with respect to 

  represented by ˆ
t  or simply as  

                                                           
10 There is no need to write out the log- likelihood function for a normal distribution since it is only 
estimated here to show that the results from t-DCC are preferred to those from the normal-DCC model. 
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ˆ max{ ( )},t tArg l


   for , , 2 , , ,t T T h T h T N                                                      (18) 

where h , the estimation is update frequency and N  is the length of the evaluation sample. 

Note that the standard errors of ML estimates are calculated from the following asymptotic 

expression. 

2
1( )ˆˆ( ) { [ ] }

' t

t

t

s

f
Cov 

 






 










 
                     

 

The model is reasonable to estimate in that the number of unknown coefficients of the 

MGARCH model increases as a quadratic function of m while in the standard DCC model, it 

rises linearly with m . This fact notwithstanding, the simultaneous estimation of all parameters  

of the DCC model can and do often gives rise to convergence problems or to a local maxima of 

the  likelihood function ( ).tl   However, if the standard returns are conditionally Gaussian, it is 

possible to resort to [16]’s two-stage   estimation, albeit with some loss in estimation efficiency. 

In the multivariate t  distribution adopted here, the degrees of freedom ( v ) is the same across 

all equity returns whereas under the two-stage estimation procedure, separate (1,1)t GARCH  

can easily lead to different estimates of v 11.   

5. Diagnostic Tests of the t -DCC Model     

Suppose one has a portfolio with m equities with tr   as a vector of returns with 1m x  vector of 

predetermined weights 1tw  .  The returns to such a portfolio would be 

1't t tw r                                                                                                                                      (19) 

                                                           
11 [24, 25, 27] note that the marginal distributions found in a multivariate t distribution with v  are 
also t distributed with the same v . 
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If the interest is calculating the capital Value at Risk (VaR) of a portfolio at t-1 with probability 

(1   ), represented by 
1( , )tVaR w 

 this requires that  

1 1 1Pr[ ' ( , ) | |]t t t tw r VaR w          

Under assumptions, the conditional on 1,t  then (equity returns) 1't tw r  or   have a Student 

t   distribution with mean of 
1 1't tw  

and variance 
1 1 1't t tw w    with v  degrees of freedom. 

Thus, 

1 1 1

1 1 1

' '
( )

2 '

t t t t
t

t t t

v w r w
z

v w w

  

  




 
  

which is conditional on 1t  and also has a t   distribution with v degrees of freedom with 

mean 1( | ) 0t tE z     and 1( | ) 2.t tVar z v v     With the cumulative distribution function 

(CDF) of a Student t  with v  degrees of freedom represented by ( )vF z , the 
1( , )tVaR w 

 is the 

solution to 

1 1 1

1 1 1

( , ) '
( )

2
( ' )

2

t t t
v

t t t

VaR w w
F

v
w w

 
  

  

 
 




 

However, since ( )vF z  is a continuous and monotonic function of z , then  

11 1 1

1 1 1

( , ) '
( ) ( )

2
( ' )

2

t t t
v

t t t

VaR w w
F c

v
w w



 
  

  

 
  




 

where c  is a %  critical value from the Student t -distribution with v  degrees of freedom. 

The out-of-sample VaR forecast puts 0.99.    Thus, 

1 1 1 1 1 1( , ) ' 't t t t t tVaR w c w w w                                                                                         (20) 

where 2v
c c

v
 


   
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Following [24, 25, 25, 27], [12] and [17], the test of the validity of the t DCC  is calculated 

recursively by using the VaR indicators denoted by ( td ) 

1 1( ' ( , ))t t t td I w r VaR w                                                                                                          (21) 

where ( )I B an indicator function that is equal to 1 if 0B   and zero otherwise. The indicator 

statistics can be computed in-sample or preferably based on recursive out-of-sample one-step 

ahead forecasts of 1t  and 1t   for pre-determined preferred set of portfolio weights 1tw   . In 

an out-of-sample exercise, the parameters of the mean returns variables ( ) and volatility 

variables (  ) can be fixed at the start of the evaluation exercise or changed with an update 

frequency of h  periods. Suppose we an evaluation sample, 

{ , 1, 2, , }eval tS r t T T T N      then the mean hit rate [MHR] is 

1

1
ˆ

T N

N t

t T

d
N




 

                                                                                                                               (22) 

With a  t DCC  model, the estimated mean hit rate, ˆ ,N  has a mean of (1   ) and variance (

(1 )

N

   ) and the resulting standardized statistic is  

ˆ[ (1 )]

(1 )

N
z

 

 

 



                                                                                                                 (23) 

This expression has a standard normal distribution if the evaluation sample size N  (in our 

case, 455 observations) is very large. According to [20, 4] and [25, 26], the z  statistic provides 

evidence of the performance of 1t  and 1t  in an average unconditional setting. On the other 

hand, [6] has suggested an alternative conditional evaluation procedure based on probability 

integral transforms. 
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1 1 1

1 1 1
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                                                   (24) 

 

If the t DCC  model is correctly specified, under the null hypothesis the probability integral 

transforms estimates (PIT), ˆ
tU  should be not be serially correlated and should have a uniform 

distribution over the range ( 0,1 ) and is testable. The serial correlation property of ˆ
tU  can be 

tested by Lagrange multiplier tests by running OLS of ˆ
tU  on an intercept and lagged values of 

1 2
ˆ ˆ ˆ, , ,t t t sU U U  

[Table 7]. In this case, the maximum lag length, s  can be determined by the 

AIC information criteria. The uniform distribution of ˆ
tU  over t can be tested using the 

Kolmogorov-Smirnov (
NKS ) statistic defined as ˆsup | ( ) ( ) |N x U

KS F x U x   where ˆ ( )
U

F x  is the 

empirical cumulative distribution function (CDF) of ˆ
tU  for 1, 2, ,t T T T N    and 

( )U x x is the CDF of the iid U (0, 1). If the value of the 
NKS statistic is large, it would show 

that the CDF is not similar to the uniform distribution assumed in the t DCC .12 However, if 

the estimated value of NKS  is below the critical value (say 5%), then it does support the validity 

of the t DCC .  

6. Empirical Application to devolatized equity returns 

Table 3: Standardized and Devolatized Equity Returns 

 Standardized Equity Returns Devolatized Equity Returns 
 Mean  Std. Dev Skewness Excess  

Kurtosis
13 

Mean  Std. Dev Skewness Excess 
Kurtosis 

                                                           
12 For more details on the Kolmogorov-Smirnov test and critical values, see [22] and [23]. 
13 It is a statistical term that describes a probability or return distribution that has a kurtosis coefficient 
that is larger than the coefficient associated with a normal distribution, which is around 3. A higher 
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Brazil -0.087 2.701 -0.636 8.935 -0.031 1.0123 -0.021 -0.160 
Russia 0.094 3.473 -0.532 10.135 0.066 1.0269 -0.312 -0.195 
India 0.078 2.728 -0.549 8.121 0.036 1.0172 -0.224 -0.177 
China 0.113 3.428 -0.741 7.870 0.065 1.005 -0.350 -0.132 
South 
Africa 

0.074 2.622 -0.458 4.578 0.034 1.008 -0.219 -0.253 

 
The rate of return is calculated as follows. If the price of equity is tS then the returns are defined as 

1

ln( )x100.t
t

t

S
S

S 

   Table 3 provides summary statistics of equity returns in percentage terms 

arrived at by setting 20   which transformed returns ( tr  ) into approximate Gaussian to 

obtain devolatilized returns. Standardized returns or non-devolatized returns shows kurtosis 

ranging from 4.5 to 10.13 – all well above 3, the value expected in a Gaussian distribution. The 

excess kurtosis is highest for Russia and lowest for South Africa. On the other hand, all five 

devolatized returns show excess kurtosis that ranges from -0.160 to -0.253. The excess 

kurtosis for Russia has fallen from 10.13 (standardized) to -0.195 (devolatized). Similarly, the 

standard deviations for standardized returns range from 2.62 to 3.743 while for devolatized 

returns, they are all close 1.00 which allows one to compare equity returns across all BRICS 

countries.14 

7. ML estimates of the t-DCC models 

                                                           

value usually indicates that the probability of obtaining an extreme value in the future is higher than a 
lower level of kurtosis. 
14 The evidence exists as well in the form of QQ plots (not included here) which fits returns with the 
normal density. The plots compare the distribution of returns to the normal distribution (represented by 
a straight line in QQ plots). Comparing QQ plots for standardized returns and devolatized returns, the 
QQ plots for devolatized returns tend to lie closer to the diagonal of a normal distribution than 
standardized plots. Russia’s distribution was the only QQ plot that was slightly off the diagonal line. 
Standardized returns tended to lie way-off the diagonal line. 
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[24, 26] point out that weekly or daily returns approximately have mean zero serially 

uncorrelated processes which make it possible to assume that
1 0t   . The t-DCC model is 

estimated for 5 five BRICS equity returns over the period 01-Jan-2008 to 27-Sept-2013.  The 

estimation period is 30-Jan-2008 to 30-Dec-2011 (1023 observations) and we use 455 

observations (02-Jan-2012 to 27-Sept-2013) for the evaluation of estimated volatilities and 

correlations model.  The VaR and distribution diagnostics are used to assess the results from the 

model. 

We estimated the unrestricted version of the DCC (1, 1) assuming a normal distribution 

(normal DCC) with asset-specific volatility parameters 1 11 12 1( , , , ) 'm     and 

2 21 22 2( , , , ) 'm    with common conditional correlations, 1  and 2 . In the paper, 5m 

and there are no restrictions on decay factors (different volatility for each variable and same 

for the correlation decay factor). Table 4 presents the maximum likelihood estimates of 1i 2, i

for five equity returns and 1  and 2 . We note that all the equity-specific returns are highly 

significant with their sum all close to unity. The log-likelihood value is -8848.4. This value is 

important since we will compare it to the log-likelihood value from the t-DCC model. 

Table 4: Results from the Normal-DCC-GARCH multivariate model 

Equity Index 1   2  1 2   1 21     
Brazil (FTSE 100 returns)= rib 0.88687 

(51.4491) 
0.10551 
(6.8752) 

0.99238 
 

0.00762 

Russia (FTSE 100 returns) =rru 0.90689 
(69.6704) 

0.082182 
(7.5107) 

0.989072 
 

0.010928 

India (FTSE100 returns) = rin  0.90709 
(65.5531) 

0.086223 
(6.9970) 

0.993313 0.006687 

China (FTSE 100 returns) = rch 0.91192 
(67.1305) 

0.088387 
(6.7286) 

0.995793 0.004207 

South Africa (FTSE 100 returns) =rsa 0.90827 0.083487 0.991757 0.008243 
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 1   
2  

1 2   
 0.98483 

(417.349) 
0.011280 
(7.1186) 

0.99611 

Value of the log-likelihood = -8848.4 
Note: 1i  and 2i are the equity-specific volatility parameters. 

Table 5: Results from the t-DCC-GARCH multivariate model 

Equity Index 1   
2  

1 2   1 21     value    
Brazil (FTSE 100 returns)= rbr 0.90451 

(46.3046) 
0.087542 
(5.1155) 

0.992052 
 

0.007948 0.000 
 

Russia (FTSE 100 returns) =rru 0.90994 
(59.3676) 

0.078049 
(6.1920) 

0.987989 
 

0.012011 0.000 

India (FTSE100 returns) = rin  0.91832 
(63.7770) 

0.074587 
(5.9389) 

0.992907 0.007093 0.000 

China (FTSE 100 returns) = rch 0.91765 
(62.8273) 

0.076140 
(5.8393) 

0.99379 0.00621 0.000 

South Africa (FTSE 100 returns) =rsa 0.91362 
(53.6865) 

0.074819 
(5.3731) 

0.988439 0.011561 0.00 

1 2   1   2     Log-likelihood Value 
0.994955 0.98301 

(325.5349) 
0.011945 
(6.1483) 

8.9779 
(9.1914) 

-8508.0 

The unrestricted version of the DCC (1, 1) is estimated assuming a t- distribution (t-DCC) with 

asset-specific volatility parameters 1 11 12 1( , , , ) 'm     and 2 21 22 2( , , , ) 'm    with 

common conditional correlations, 1  and 2  and v degrees of freedom. There are no 

restrictions on decay factors (different volatility for each variable but the same for the 

correlation decay factor). Table 5 presents all the maximum likelihood estimates of 1i 2, i  for 

five equity returns and 1  and 2 . We note that all the equity-specific returns are highly 

significant with their sum all close to unity. The log-likelihood value from the t-DCC model is -

8508.0 and it is larger than the value from Table 4. The degrees of freedom is 9.1914, well 

below the value of 30 that is expected for a multivariate normal distribution. As a check on the 
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results in Table 5, similar results were obtained when we estimated a t-DCC model on residuals 

obtained when a regression of equity returns is on returns on their past values. As the in Table 

4, specific-equity returns estimates of the volatility and correlation decay parameters are 

highly significant and close to estimates obtained in Table 4. 

Table 6: Results for non-mean reverting volatility from the t-DCC-GARCH multivariate model 

Equity Index 1 21     
Estimate 

Standard-Error t-statistic Variance  
Matrix 

Brazil (FTSE 100 returns)= rbr 0.0079994 0.0030902 
 

2.5886 
 

0.9550E-5 

Russia (FTSE 100 returns) =rru 0.012099 
 

0.0044621 
 

2.7116 
 

0.1991E-4 

India (FTSE100 returns) = rin  0.0070998 
 

0.0027202 
 

2.6101 0.7399E-5 

China (FTSE 100 returns) = rch 0.0062000 
 

0.0022165 
 

2.7972 0.4913E-5 

South Africa (FTSE 100 returns) =rsa 0.011599 
 

0.0043472 
 

2.6682 0.1890E-4 

Table 6 presents tests for non-mean reversion. The sum of estimates of 1i  and 2i  are almost 

unit.  The hypothesis that 0 1 2: 1i iH     (Integrated GARCH) against mean reversion (

0 1 2: 1i iH    ) is rejected for all five equities. This means that BRICS stock market returns 

show significant mean-reverting volatility for all equities in these economies. Similarly, in 

Table 6, 1 2
ˆ ˆ 0.994955    which suggests very slow but statistically mean reverting 

conditional correlations.  

The evaluation sample from 02-Jan-2012 to 27-Sept-2013 tests are based on the probability 

integrals transform (PIT), ˆ
tU  as defined by (24). Under the null hypothesis, if the t-DCC model 

is correctly specified, then ˆ
tU   has no serial correlation and it is uniformly distributed over (0, 

1). ˆ
tU is obtained by considering an equal-weighted portfolio of all five BRICS equity returns as 



28 
 

defined by (19) with a risk tolerance of 0.1  . To test the null hypothesis that ˆ
tU ,s are not 

serial correlated, we use the Lagrange Multiplier test. The value of the CHSQ (12) = 

14.6899[.259] and the F Statistic = F (12,442) =   1.2289[.260] as reported in Table 7. Given 

these values, it is clear the t-DCC model specification passes the test. 

            Table 7:  Test of Serial Correlation of Residuals (OLS case)               
****************************************************************************** 
 Dependent variable is U-Hat 
 List of variables in OLS regression: 
 Intercept                                                                      
 455 observations used for estimation from 02-Jan-12 to 27-Sep-13 
******************************************************************************* 
 Regressor              Coefficient       Standard Error         T-Ratio [Prob] 
 OLS RES(-1)           -0.0039942         .047466               -.084149[.933] 
 OLS RES(-2)           -0.038424            .047307                 -.81223[.417] 
 OLS RES(-3)            0 .082767            .047311                  1.7494[.081] 
 OLS RES(-4)            -0.060729            .047477                -1.2791[.202] 
 OLS RES(-5)            -0.013246            .047436                -.27924[.780] 
 OLS RES(-6)            -0.020254            .047498                -.42642[.670] 
 OLS RES(-7)             0.049075            .047659                  1.0297[.304] 
 OLS RES(-8)            -0.076828            .047763                -1.6085[.108] 
 OLS RES(-9)             0 .0095552         .047809                 .19986[.842] 
 OLS RES(-10)           0.039533            .047648                 .82970[.407] 
 OLS RES(-11)           0.089915            .047680                 1.8858[.060] 
 OLS RES(-12)          -0.068241            .047876               -1.4254[.155] 
******************************************************************************* 
 Lagrange Multiplier Statistic    CHSQ (12) = 14.6899[.259] 
 F Statistic                      F (12,442) =   1.2289[.260] 
******************************************************************************* 
 U-Hat denotes the probability integral transform. 
 Under the null hypothesis, U-Hat should not display any serial 
correlation. 
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In Figure 2, the Kolmogorov-Smirnov test (
NKS ) is applied to ˆ

tU  to determine whether the 

probability integrals transform (PIT) are from a uniform distribution. The value of the NKS

statistic is 0.061220 which is barely within the 5% critical value of 0.063758. This means that 

the null hypothesis that the sample’s cumulative density function (CDF) is similar to the 

uniform distribution cannot be rejected, although barely. Figure 4 shows the histograms of the 

probability integral transform variable ˆ
tU with minor violations of a uniform distribution. 

In Figure 5, we test whether there is any violation of the Value at Risk (VaR) constraint as this 

test focuses on the tail properties of equity returns. With a tolerance probability of 0.01  , 

Figure 5 shows the risks in these emerging markets shows spikes in June and September 2013 

when the U.S. Federal Reserve Bank indicated that it might begin reducing liquidity 

(quantitative easing). This announcement sent shock waves in the emerging markets (BRICS) as 

the U.S. market looked better for investors. 

Table 8 

  Mean VaR Exceptions and the Associated Diagnostic Test Statistics        
****************************************************************************** 
 Mean Hit Rate ( ˆ

N statistic) =0.99780 with expected value of    0.99000 
 Standard Normal Test Statistic ( ẑ  ) = 1.6726[.094] 

 

In Table 8 there is an additional test of VaR violations under a tolerance probability of 0.01  .  

The ̂  statistic has a value equal to 0.998 which is very close to its expected value of 0.990. 

Similarly, the F statistic is 1.229 with a p-value of 0.260. These results provide support for the 

validity of t-DCC model. The ẑ  statistic is not significant at p = 0.094. 

Table 9: Use of Cross Conditional Correlations in Investment Decisions  
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Figure Country-to-Country 
Correlation (Negative) 

Country to invest in  Do not Invest in 

1A India and Russia Indians can invest 
in South Africa, 
Brazil and China 

Indians should NOT 
invest in Russia 

1B Brazil and Russia  Brazilians can invest 
in India, South 
Africa and China 

Brazilians should NOT 
invest in Russia 

1C China and Russia Chinese can invest 
in India, South 
Africa and Brazil 

Chinese should NOT 
invest in Russia 

8 and 9 South Africa and Russia South Africans can 
invest in India, 
China and Brazil 

South Africans should 
NOT invest in Russia 

6 and 7 Russia with all other 
Stock Markets in India, 
China and South Africa 

By 2013, India, 
Brazil, and China 
look good for 
investment in stocks 

Not in Brazil (2011-12) 
Not in India (mid-2012) 
South Africa (avoid 
2010) 
India (avoid 2010) 

 

Table 9 provides a summary of how investors in BRICS countries might use results from 

conditional correlations to determine where to invest in terms of stock market performance. 

While the results are tentative, they do suggest that investors in South Africa, Brazil, China and 

India avoid investing in the Russian stock market.15  Figures 6 and 7 indicate that South Africa 

was not favorable in 2010, Brazil in 2011-12, India in 2010 and in mid-2012. However, by 

2013 India, Brazil, and China had become favorable destinations for stock market investments. 

                                                           
15 Incidentally, the negative view of Russian stocks has nothing to do with the current crisis in Ukraine. The 
analysis in this paper ends on September 27, 2013 – long before the start of the Russian-Ukraine crisis. In fact, the 
current situation would tends to strengthen the idea that Russian stocks should be unattractive to investors in 
China, India, Brazil and South Africa.  
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8. Evolution of Equity Return Volatilities and Correlations 

The conditional equity returns on equities for BRICS countries are shown in Figures1 (a) -1(c), 

Figure 3, and Figures 6-9. Figure 1(a) shows conditional correlations of the Indian stock 

market with other members in the BRICS countries. Indian and Russian equity returns show 

negative correlation but positive correlation with Brazil, China, and South Africa. Figure 1(b) 

shows negative conditional correlation between India equity returns with Russia but positive 

correlation with Brazil, China, and South Africa. Figure 1(c) shows negative conditional 

correlation between Chinese equity returns with Russia but positive correlation with Brazil, 

China, and South Africa. The Chinese-Russian conditional correlations improve until January 

10, 2011 but then deteriorate thereafter. 

Figure 3 shows that the 2008 and 2009 financial crisis led to sharp spikes in volatility. In 

2008, China had the highest spike; in 2009, India had the highest spike, and in 2010, South 

Africa experienced the highest spike. In these periods, Russia had the lowest spike in volatility.  

Figure 5 shows that volatility risk increased between May 16 and 24 July 2013 and around 

September 27, 2013. From December 2012, it appears as if these emerging markets exhibited 

little variations in equity volatility as foreign investors sought higher returns in these markets.  

In Figure 6, conditional correlations of Russia (in equity returns) fell during the financial crisis 

but picked up from July 2010 (Figure 7). It shows that despite the 2008 financial crisis, BRICS 

equity returns (in terms of correlations) are anchored by the process of globalization in which 

stock markets are now more interdependent than ever. The estimation period shows how the 

Russian equity returns move together. This fact is true even during the depth of the financial 

crisis. 
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Finally, in Figures 8 and 9, South African conditional correlations were negatively related to the 

Russian stock market but positively related to Brazil, China, and India stock markets. These 

results hold true for both the estimation period and the evaluation sample. The negative 

relationship between South African and Russian equity returns improved until May 2011 but 

deteriorated again from mid-September 2013. 

All said, equity markets with negative conditional correlation within BRICS can diversify their 

portfolio by investing in stock markets that have positive conditional correlations. The 

maximum eigenvalues show that there has been a decline in volatility. Figure 10 represents the 

extent of volatilities across all 5 BRICS equity returns given by the maximum 5 x 5 matrix of 

equity volatilities. It captures a high spike at the beginning of 2009 that reflects the financial 

crisis. 

 

 

9. Concluding Remarks 

The paper tested the idea that devolatized returns are a better approach to understanding the 

volatility of asset markets than standardized returns so widely used in portfolio decision 

making and risk management [24, 25, and 26]. Given that the modelling of conditional 

volatilities and correlations across stock market returns is a critical function of investing and 

portfolio management in a global economy, [24, 25, 26] suggest that devolatilized returns 

within a multivariate t-DCC model capture the fat tail properties of financial time series since 

transforming returns by realized volatility makes the innovations Gaussian. This is a key 

concept in the application of the t-DCC model. The paper applied this approach to the 
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estimation of conditional correlations and volatilities for BRICS equity returns. Our results 

indicate that the t-DCC model is preferred over the normal-DCC model in estimating 

conditional volatilities and correlations.  Second, both  ˆ
N  and ẑ [tests for serial correlation 

and a uniform distribution] provide support for the t-DCC model despite the 2008 financial 

crisis. However, the model barely passes the non-parametric Kolmogorov-Smirnov (
NKS  ) test 

that tests whether probability transform estimates,  ˆ
tU   are uniformly distributed over the 

range (0, 1). From Figures 1a -1c, it is clear that some stock market equity return correlations 

are negatively related: India and Brazil, Russia and Brazil, and China and Russia respectively. 

The model shows that in 2008 and 2009 financial crisis led to sharp spikes in volatility (Figure 

3). Overall, the results track well correlations and volatilities in BRICS equity returns. 
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The Kolmogorov-Smirnov goodness-of-fit test for the full t-DCC model over the evaluation 
sample. 
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 In order to reduce the impact of the impact of the initial initialization on the plots of 

correlations, the initial estimates for 11 months in 2008 are excluded. 
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