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Abstract
In this paper we have proposed an approach for minimization of a shares portfolio invested in a market which the fluctuations follow a normal distribution based in amathematical explicit formulae for calculating Value at Risk (VaR) for portfolios of linear financial assets invested using the Black-Scholes stochastic process and assuming that the portfolio structure remains constant over the considered time horizon.
We minimize this Value at Risk using neural networks and genetic algorithms.

Keywords
Value at Risk, Normal Market, Portfolio Risk, Black-Scholes stochastic process, Normal Distribution, Neural Networks, Genetic Algorithms.


1. Introduction
The optimization portfolio has long been a subject of major interest in the field of finance. Markowitz was the first to introduce a model based on the risk of choosing an optimal portfolio, offering the variance of returns observed around their average, as a measure of risk. But his model remains often used into practice because of the significant resources and it requires the character of the quadratic objective function and the calculation of the variance-covariance.
To simplify the difficulties associated to the design load of Markowitz model, several models have been proposed as alternative models to the mean-variance approach. Some authors have attempted to linearize the portfolio choice problem as Sharpe, Stone , Konno and Yamazaki , and Hamza and Janssen . 
Rudd and Rosenbeg , and Hamzaand Janssen showed that the Markowitz model in its classic formulation still far from meeting satisfying a professional investor and they proposed a realistic portfolio management.
Recently, Value at Risk (VaR) has been implemented to quantify the maximum loss that might occur with a certain probability, over a given period. This risk measure is easy to interpret.
Based on an explicit formula for calculating the VaR for a shares  portfolio invested in a normal market, we minimize this VaR of  portfolio formula by using neural network and genetic algorithms.
This work is organized as follows. In section 1, we deal with the presentation of some elements of the portfolio. Neural network  and genetic algorithms are presented in section 2. In section 3, we present the VaR of shares portfolio under normal distribution and Black-Scholes stochastic process. Finally, we propose the portfolio minimization procedure. 

2. Elements of portfolio theory
2.1 Return and Value Portfolio




We call return  of an action obtained by investing in an action, the ratio between the share price at the moment  and its course at the moment  plus income (dividends) received during the period:


                                                                                                                      
where:
1. 

 :  The course of action i at the end of the period .
1. 

 :  The dividend income at the end of the period .

The expected return of a share for a period is given by


                                                                                                                             



The profitability of a portfolio consisting of expected return of  shares ,  : 


                                                                                                                        



where , are the proportions of wealth of the investor placed respectively in the shares i ().

2.2 Risk portfolio
The risk of a financial asset is the uncertainty about the value of this asset in an upcoming date. Variance, the average absolute deviation, the semi-variance, VaR and CVaR are means of measuring this risk. The portfolio risk is measured by one of the  measuring elements mentioned above. It depends on three factors namely:
· The risk of each action included in the portfolio
·  The degree of independence of changes in equity together
·  The number of shares in the portfolio

The VaR is defined as the maximum potential loss in value of a portfolio of financial instruments with a given probability over a certain horizon. In simple words, it is a number that indicates how much a financial institution can lose with some probability over a given time. It depends on three elements:
· Distribution of profits and losses of the portfolio that are valid for the period of detention.
· Level of confidence.
· The holding period of assets



Analytically, the VaR in time horizon and the probability threshold  is a number such that:


                                                                                                             
With  :
· 
 :  represents the loss ("Loss") , is a random variable which might be positive
or   negative.
· 
 :   is associated with the VaR horizon which is 1 day for RiskMetrics or more
than a day
· 
: The probability level is typically 95%, 98% or 99%.
If the distribution of the value of this portfolio is a multivariate normal, then :


                                                                                                  
 as:
· 
 is  the value variation 
· 
 is mean of values
· 
 is standard deviation
· 

 is  the quantile of order of confidence 

3. The VaR of shares portfolio of normal distribution using Black-Scholes stochastic
     process



The price of a  share  at time t is a random variable whose evolution over time can be modelled by a stochastic process on a filtered probability space  satisfying the Black-Scholes stochastic differential equation:

                                                 	                                              	(6)
· 
The constant drift  indicates the expected return of the share price per unit time;
· 
is a constant indicating the annual volatility of the share price.		  	    


The process z is a standard Wiener process so that  is a Markov process with expected increases which are zero and the variance of these increases is equal to 1 per unit time and it satisfies the following two properties:
· 

the process z is a standard Brownian motion so that for simulation, the variation  during a short time interval and length  is expressed by:




       where is a random variable that follows a reduced normal distribution  .        
· 

The ’s values for two short intervals of time and length  are independent.



In discrete case  we have           .

So  for all   we have :




As   .



The Value at Risk of a portfolio for a horizon t  is noted VaR, such as the loss on this portfolio during the not fall below VaR with a fixed probability , i.e: 


                                                                                          
where:


                                         .                                                      


 and   are respectively the values of portfolio at the beginning and end of the period. More rigorously, the VaR can be defined as:


                                   .                                             



When the random variable is distributed according to a normal distribution , the VaR  of  probability level  is defined as follows:



If       is the quantile of the distribution N (0,1), we obtain;


                                          .                                           

Let the value of the portfolio of  n shares  invested in a given market at time t.    




We denote bythe number of shares in the portfolio. Let  the price of stock   at time. It follows that:


                                                                                                                   
The portfolio value to the horizon T  is characterized by the following equations:


                                   .                                    



By the definition of return  of   


                                                                                          
The relation (13) becomes: 









The disadvantage of the equation(10) is that both parameters require knowledge of the univariate parameters and  for each title and the bivariate parameters  for each pair of tracks , either in total  parameters.
Hence the suggestion of the use of  Black-Scholes stochastic process  which the simplest and most widely used. 
We have:


                                                                                                                         

for all  ;
So  


It comes   



                   


                                                                              
and


Or 


Then 





4. Minimization procedure of the VaR of shares portfolio using genetic algorithms and
    neural network  
4.1 Genetic  algorithms (GA)
A genetic algorithm was originally developed by John Holland. It  is an algorithm
Iterative for finding optimum, it manipulates a population of constant size. This population is composed of candidate points called chromosomes.
The constant size of the population leads to a phenomenon of competition between chromosomes.
Each chromosome represents the encoding of a potential solution to the problem to be solved, it consists of a set of elements called genes, which can take several values belonging to an alphabet which is not necessarily digital.
At each iteration, called generation, a new population is created with the same number of chromosomes. This generation consists of chromosomes better "adapted" to their environment as represented by the selective function. As in generations, the chromosomes will tend towards the optimum of the selective function.
The creation of a new population base on the previous one is done by applying the genetic operators that are:  selection, crossover and mutation. These operators are stochastic. 
The selection of the best chromosomes is the first step in a genetic algorithm. During this operation the algorithm selects the most relevant factors that optimize the function.
Crossing permits two chromosomes to generate new chromosomes "children" from two "parents" chromosomes selected.
The mutation makes the inversion of one or more genes of a chromosome.
Figure 1 illustrates the various operations involved in a basic genetic algorithm:
 (
       
Random generation of initial population
       Calculation of the selective function
 
Repeat
      Selection
      Crossing
     Mutation
     Calculation of the selective function
Until
 stopping criterion satisfaction
Figure 
1 :
 Basic genetic algorithm
)










4.2  Minimization of  the VaR using genetic algorithms



                                                                                              
The objective of this algorithm is to determine dynamically the proportions of the portfolio shares under certain constraints to minimize this measure. So we seeking to minimize the proportions using genetic algorithms (GA) as indicated by the following figure:
 (
  GA
)

 (
Figure 
2
: Structure of AG used in the algorithm Min
imization 
of  the
 
VaR
)


under the following constraints:
     Where   
· 
 :  is  the performance that  determined by the investor.
· 
: is the value at risk obtained by genetic algorithms.
· 
:  is the value at risk obtained by neural networks using an initial vector

                    in first step or iteration.

At this level, the proportions are considered variables. The process of minimization followed by genetic algorithms is as follows:
a- Initialization




The population is a set of chromosomes which are composed of  genes representing    numbers, which is the number of wealth invested in the action .
This population is initially randomly using real code.
	

	

	    ………………………..
	



 (
Figure 
3
:
 Structure of chromosome
)
b- Evaluation Function
The following operation is the evaluation of chromosomes generated by the previous operation by an evaluation function (fitness function), while the design of this function is a crucial point in using GA. The fitness function used in this work is:


                                                                                                                         
c- Operations of selection

After the operation of the assessment of the population, the best chromosomes are selected using the wheel selection that is associated with each chromosome a probability of selection, noted, .


                                                                                                         
Each chromosome is reproduced with probability. Some chromosomes will be "more" reproduced and other "bad" eliminated.

d- Operations crossing
After using the selection method for the selection of two individuals, we apply the crossover operator to a point on this couple.
This operator divide each parent into two parts at the same position, chosen randomly.
The child 1 is made a part of the first parent and the second part of the second parent when the child 2 is composed of the second part of the first parent and the first part of the second parent.
 (
       
Figure 
4
:
 operation at a crossing point
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e- Operation of mutation
This operation gives to genetic algorithms property of ergodicity which indicates that it will be likely to reach all parts of the state-owned space, without the travel all in the resolution process. This is usually to draw a random gene in the chromosome and replace it with a random value.

 (
 
Figure 
5
:
 Mutation
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f- Conditions for Convergence
At this level, the final generation is considered. If the result is favorable then the optimum chromosome is obtained. Otherwise the evaluation and reproduction steps are repeated until a certain number of generations, until a defined or until a convergence criterion of the population are reached. 

After this step, we use neural networks to minimize dynamically further the VaR.
4.3 Neural networks (NN)
4.3.1 Definition of neural networks
The neural networks (NN) are mathematical models inspired by the structure and behavior of biological neurons. They are composed of interconnected units called artificial neurons capable of performing specific and precise functions . Figure1 illustrates this situation.
 (
Figure
 6
: 
Black box
 
of 
 
Neural
  Networks
Input vector
Output vector
)
 (
NN
)



For a neural network, each neuron is interconnected with other neurons to form layers in order to solve a specific problem concerning the input data on the network.
The input layer is responsible for entering data for the network. The role of neurons in this layer is to transmit the data to be processed on the network. The output layer can present the results calculated by the network on the input vector supplied to the network. Between network input and output, intermediate layers may occur; they are called hidden layers. The role of these layers is to transform input data to extract its features which will subsequently be more easily classified by the output layer.

4.3.2 Back-propagation algorithm




The objective of this algorithm is to approximate a function where  is an input vector of returns (risk respectively) presented  the input layer  assigning each component of  to a neuron. These inputs are then propagated through the network until they reach the output layer. For each neuron, an activation is calculated using the formula: 


                                                                                                                   
where:
· 
is the output of neuron j of the preceding layer,
· 
is the weight connecting neuron j to neuron i,
· Fis the transfer function (or activation function) of the neuron i.
The output vector that the network is compared with the product of expected output. 

An error  is calculated as follows:


                                                                                                                     
· 

is the value neuron output of  in the output layer   
· 

is the th output target value

If the error value is not close to 0, the connection weights should be changed to reduce this error. Each weight is either increased or reduced by propagating the error back-calculated. The mathematical formula used by this algorithm is known as the Delta rule: 


                                                                                                                          
where:
· 

is the variation weight 
· 
 is the learning rate (set by user)
· 
is the error on the output of the neuron i of a layer.
The calculation depends on the type of neuron. If the neuron is a neuron output, then the error is: 


                                                                                                                
else (hidden neuron)


                                                                                                                 

where  neurons belonging to the next  layer of the neuron i.
The algorithm is repeated for each pair of input / output and more passes are performed until the error has dropped below an acceptable threshold or a maximum number of passes is reached.





In our case, the neural network architecture used is an architecture containing a single input layer, one hidden layer composed of neurons where  is the number of   where and a layer of containing a single output neuron representing the value of .



 (
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Output 
Hidden
) (
Input Layer
)
 (
Figure 
7
: 
neural network architecture
Backward propagation of error correction
)



The learning algorithm used is the gradient back-propagation supervised.
The error between the current output(obtained by neural networks) and the desired output(observed) spreads, while adjusting the weights with the aim to correct the weights of the network to reduce the global error expressed by the following formula:


                                                                                                          
Where:
· 

[bookmark: _GoBack]  represents the estimated value of  in ith iteration 
· [image: ] is the over all error,




The operation of the network illustrated as follows by the figure 7: Each neuron [image: ] ([image: ]) in the input layer receives a value of the  to be weighted by the proportions of    and the result transmitted to the output layer.  In this case, the output  is given by the following formula:


                                                                                                    
The minimization procedure is based genetic algorithms and neural networks is shown in the following figure:
 (
Initialization
:  
,   
 
 and     
     
  
While      
   Do
        
         
If 
 
   
Then 
         
        
                       
                 
         
End 
   
         
If    
No improvement 
of  risk
  
  or   
A
fter a certain
 
 number of iterations 
   Then
                 
 
       
End
End
Return  
)














 (
Figure 
8 :
 Minimization algorithm of
 
 the 
VaR
)

5. Conclusion
In this paper we presented a new approach to minimize the VaR  of a stock portfolio investing in a market whose fluctuations follow a normal stochastic process using Black-Scholes stochastic process developed in discrete time and assuming that the portfolio structure remains constant over the time horizon.
The minimization procedure is based genetic algorithms and neural networks.
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  Figure 4: Mutation Operation  

           Gene to be mutat ed   
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