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Abstract

In this present paper we analyze two exponential Lévy models, the

Black-Scholes model and the Merton Jump-Diffusion model from the

perspective of the investigation of the skewness and excess kurtosis

present in underlying assets log-returns distribution. Calibrating both

models on real-world financial data and investigating their various mo-

ments and mean square error, we obtain results which show how the

Merton jump-diffusion model performs better than the Black-Scholes

model for modeling log-returns. This robust conclusion was also con-

firmed by using the Diebold-Mariano test to compare the forecast ac-

curacy of the two models.

Mathematics Subject Classification : xxxx

Keywords: Black-Scholes (BS) model, Merton jump-diffusion (MJD) model,

log-returns.

1Department of Mathematics, Pan African University, Institute of Basic Sciences, Tech-

nology, and Innovation, Kenya, e-mail: stauresmeg@gmail.com
2Department of Actuarial Science and Statistics, Jomo Kenyatta University of Agricul-

ture, Technology and Innovation, e-mail: jaduda@jkuat.ac.ke
3Quantitative Analyst, CIBC Asset Management Inc. Montreal, QC, e-mail: mo-

meya2008@gmail.com

Article Info: Received : xxxx. Published online : xxxx



2 running headAuthor 1 and Author 2

1 Introduction

The key property in financial markets is extreme volatility. The prices of fi-

nancial instruments such as stocks vary constantly and cause significant risk

on businesses or organizations connected to such fluctuating prices. To miti-

gate this risk, modern finance establishes suitable models to assist investors or

traders analyze real-world data to predict the future behavior of asset prices

in the financial market. In this paper, we will focus on two exponential Lévy

models (BS and MJD) to analyze the trend of the underlying asset prices

log-return.

The BS model is a pioneer valuation model, proposed by [1] and a bench-

mark against which other models can be compared. BS model assumes that

the log-return of the underlying assets is Gaussian, i.e., normally distributed.

Unfortunately, assets in real markets rarely exhibit this behavior (see [2, 3]).

Real asset prices and related market indexes show far more extreme fluctua-

tions than predicted by Gaussian statistics. According to [2, 4], these extreme

fluctuations leads to two empirical phenomena: leptokurtic feature and volatil-

ity smile. Therefore the need to propose another valuation model to handle

this issue since the BS model experiences numerous inadequacies and is unable

to explain empirical stylized facts in the financial markets.

In 1976 Robert C. Merton received the Nobel Prize award in Economics

for developing a JDM called Merton jump-diffusion (MJD) model, a general-

ization of the BS model. Merton’s main idea was to implant discontinuous

jump processes in the classical BS model to help describe discontinuous price

behavior in stock. The formula is the geometric Brownian motion (random

walk) plus a compound Poisson process to account for “jumps” in the stock

prices. The random walk together with the jump component are assumed to be

sources of randomness in the stock prices. By adding three more parameters to

the classical BS model, the MJD model captures the skewness and leptokurtic

feature in the underlyings log-return distribution which differs from the BS

normal log-return distribution. To compare the forecast accuracy of the two

models, both models are calibrated and the results are used to compare the

plot of their log-density functions, the values of their corresponding moments

and mean square error. To boost our comparison, the Diebold-Mariano test

[5] is applied and indicates the predictive performance of the MJD model over
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the BS model.

To investigate both models, some basic tools in probability and stochastic

process theory will be introduced in section 2. Also in section 2, we will intro-

duce the two exponential Lévy models and estimation of the model parameters

by Multinomial Maximum Likelihood function. We conclude this section with

a brief introduction to the Diebold-Mariano test. In section 3 and 4 we present

the corresponding results and conclusion respectively.

2 Preliminary Notes

Definition 2.1 (log-return).

Asset is an investment instrument that can be bought and sold. Let Xt be the

price of an asset at time t. For a time increment 4t, we define a log return

r4t as the natural logarithm of the simple gross return of an asset

r4t = log

(
Xt+4t

Xt

)
Log return will be used in this study as their the statistical properties are more

manageable.

Definition 2.2 (Stochastic Process).

A stochastic process X on a probability space (Ω,F ,P) is a collection of random

variables {Xt}0≤t≤∞.

Definition 2.3 (Lévy Process). Let L be a stochastic process. Then Lt is

a Lévy process if the following holds:

• L0 = 0

• L has independent increments. That is Lt−Ls is independent of Fs, 0 ≤
s ≤ t ≤ ∞.

• L has stationary increments. That is P(Lt − Ls ≤ x) = P(Lt−s ≤
x), 0 ≤ s ≤ t ≤ ∞

• Lt is continuous in probability, i.e limt−→s Lt = Ls

Definition 2.4 (Poisson process).

A stochastic process (Nt, t ≥ 0) is called a Poisson process if
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• Nt only takes on values 0, 1, 2, . . . and N0 = 0.

• If s ≤ t, then Nt − Ns is Poisson-distributed with mean λ(t − s): this

means that

P(Nt −Ns = n) =
(λ(t− s))n

n!
e−λ(t−s), n = 0, 1, 2, . . . (1)

Let t− s = dt

• If u ≤ s < t, then Nu and Nt −Ns are independent.

Here λ > 0 is a constant which is called the intensity of the Poisson process.

Definition 2.5 (Compound Poisson process).

Let {Ui}i≥1 be a sequence of iid random variables, and {Nt}t≥0 be a Pois-

son process with intensity parameter λ. Then the compound Poisson process

{Ct}t≥0 is defined by

Ct =
Nt∑
i=1

(Ui − 1),

with jump intensity λ.

Definition 2.6 (Jump-diffusion processes).

Suppose we have a filtered probability space (Ω,FT ,F,P∗). Let Nt be a Poisson

Process with intensity λ and waiting times τ = T − t, Wt a Brownian Motion

and {Ct}t≥0 be a compound Poisson process as define above, then

St = γt+ σWt + Ct

is a jump-diffusion process, where σ ∈ R+ and γ ∈ R

2.1 The BS model specification

In this model the asset price is described as follows

dXt

Xt

= µdt+ σdWt, (2)

where

• µ is the expected return of the asset

• σ is the volatility of the asset and
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• Wt is a Wiener process.

The solution to equation 2 is given by

Xt = X0e
(µ− 1

2
σ2)t+σWt (3)

where X0 is the stock price at time t=0, µ, σ and Wt are define as in equation

2. The assets are modeled by 3. From 3, the log-return of the asset price is:

Lt = ln(
Xt

X0

) = (µ− 1

2
σ2)t+ σWt

Under the BS model, definition 2.1 tells us that for a time increment 4t the

Figure 1: For the given parameters µ = 0.17, σ = 0.20 and X0 = 365 and

simulation of the standard Brownian motion, we easily generate BS modeled

asset prices from equation 3.

log-return of the asset price is given by:

L4t = ln(
Xt+4t

Xt

)

= (µ− 1

2
σ2)4t+ σ(Wt+4t −Wt)

∼ N

(
(µ− σ2

2
)4t, σ24t

) (4)

which means

L4t − (µ− σ2

2
)4t = σ4Wt ∼ N (0, σ24t)
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The above equation shows that the log-returns follow the Gaussian distribu-

tion. It is no news that the BS model is complete, and in this framework there

exists a unique risk-neutral measure P∗ under which the discounted asset price

is a martingale, see for example [6].

By the Girzanov theorem, the asset prices are described by the risk-neutral

dynamic as follows
dXt

Xt

= rdt+ σdW ∗
t ,

where

W ∗
t =

µ− r
σ

t+Wt, t ∈ [0, T ]

is a P∗-Brownian motion and µ−r
σ

the market price of risk measured per unit

of volatility. Under BS model, the characteristic function associated with the

log-return asset price L4t is given by:

Φ(θ) = exp

{
4t
(
i(µ− σ2

2
)θ − 1

2
σ2θ2

)}
(5)

Regarding the leptokurtic feature which is a measure of how heavy or fat

the tail of the log-returns distribution is, we’ll exploit the approach suggested

in [7].The theorem below is a consequence of equation 4.

Theorem 2.7.

Let E∗BS,MBS
i , i = 2 : 4, SBS and KBS denote the mean, the central moments,

the skewness and excess kurtosis for the BS-modeled log-returns respectively.

We’ve 

E∗BS = (µ− 1
2
σ2)4t

MBS
2 = σ24t

MBS
3 = 0

MBS
4 = 3σ4(4t)2

SBS = 0

KBS = 3

Proof.

From equation 4, we clearly see that

E∗BS = E∗[L4t]

= (µ− 1

2
σ2)4t since 4Wt = Wt+4t −Wt ∼ N (0,4t).
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By the central moment definition

MBS
i = E∗

[
(Lt − E∗[Lt])i

]
= E∗

[
(σ4Wt)

i
]

= σiE∗
[
(4Wt)

i
] (6)

Let Φ4Wt(θ) denote the characteristic function of 4Wt. Upon calculation we

obtain

Φ4Wt(θ) = E∗(eiθ4Wt)

=

∫ ∞
−∞

eiθx.
1√

2π4t
e−

x2

24tdx

=
1√

2π4t

∫ ∞
−∞

e−
(x−iθ4t)2+(θ4t)2

24t dx

= e−
θ24t

2 since
1√

2π4t

∫ ∞
−∞

e−
(x−iθ4t)2

24t dx=1

= exp {Ψ(θ)}

where Ψ(θ) = e−
θ24t

2 .

Assuming that the characteristic function is sufficiently differentiable,

=⇒ E∗[(4Wt)
n] =

1

in

[
dΨ(0)

dθ

]
=⇒ E∗[(4Wt)

2] = 4t

From equation 6 we get

MBS
2 = σ24t

Also we have that

E∗[(4Wt)
3] = 0

leading to

MBS
3 = 0 and

MBS
4 = 3σ44t

which yields

SBS =
MBS

3

(MBS
2 )1.5

= 0

KBS =
MBS

4

(MBS
2 )2

= 3
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2.1.1 Estimation of the parameters µ and σ for the BS model

Figure 2: Empirical log-returns rdt of NASDAQ index.

To find estimates of µ and σ based on empirical data, let us consider the

empirical log-returns rdt of NASDAQ index data from 2014-02-06 to 2019-05-

23, with 1332 trading days in figure 2 above.

Estimation of model parameters (µ, σ) is required for us to fit empirical

data to the BS model. From theorem 2.7:{
E∗BS = (µ− 1

2
σ2)4t

MBS
2 = σ24t

so that  µ̂ =
2Ê∗BS+V̂ar[L4t]4t

24t

σ̂ =
√

V̂ar[rdt]
4t

where Ê∗BS and V̂ar[L4t] are the sample mean and sample variance of the

empirical log-returns respectively.

2.2 The MJD model specification

The model propose that the underlying asset price evolves according

dXt

Xt−
= (µ− λk)dt+ σdWt︸ ︷︷ ︸

Continuous part

+ d

(
Nt∑
i=1

(Ji − 1)

)
︸ ︷︷ ︸

Discontinuous or jump part

(7)



9

where: µ is the instantaneous expected return on the stock; k = E[Jt − 1]

is the expected percentage change in the stock price if a Poisson event oc-

cur; σ is the instantaneous variance of the return, condition on no arrival of

important new information (i.e. a Poisson process does not occur) that one

assumes constant. Xt− the asset price before a jump occurs at time t; dWt is

a standard Brownian motion; Nt is a Poisson process represents the arrival of

new information (events) which has a significant effect on the stock price with

parameter λ which stand for the average number of jump arrivals per unit of

time; Jt the jump sizes are i.i.d. Because of the jump component provided

by the compound Poisson process, the model considered in 7 is a process not

purely Gaussian representing a particular case of Lévy process. The solution

to 7 is given by:

Xt = X0e
(µ− 1

2
σ2−λk)t+σWt+

∑Nt
i=1 Ui (8)

where
∑Nt

i=1 Ui is a normally distributed compound Poisson process with mean

Ntµj, variance Ntσ
2
j and intensity λ. In other-words, for n = Nt,

∑n
i=1 Ui ∼

N (nµj, nσ
2
j ). The index j represents the jump part of MJD model.

Figure 3: For the assumed parameters µ = 0.21, σ = 0.056, λ = 4, µj = 0.051

and σj = 0.097, we present simulated sample path of MJD-modeled asset

prices.

Equation 8 describes stock price behavior under MJD model. From equa-
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tion 8, the log stock prices are given by

lnXt = lnX0 + (µ− 1

2
σ2 − λk)t+ σWt +

Nt∑
i=1

Ui

Then by definition 2.1 for a time increment 4t, we get the log-returns L4t

of the asset prices modeled by MJD model as

L4t = ln(
Xt+dt

Xt

)

= γ4t+ σ4Wt +

4Nt∑
i=1

Ui

(9)

where γ = µ− 1
2
σ2−λk, U

′s
i are i.i.d and Ui ∼ N (µj, σ

2
j ); 4Wt = Wt+4t−Wt

is the standard Brownian motion increment; and lastly 4Nt = Nt+4t − Nt

a Poisson process with mean λ4t. [7] proof that the assumption about the

log-return jump size distribution being normal facilitates the derivation of the

probability density function of the log-returns L4t which is a converging series

of the following form:

gt = P(L4t ∈ B) =
∞∑
h=0

P(4Nt = a)P(L4t|4Nt = a) for B ⊂ R

=
∞∑
a=0

e−λ4t(λ4t)a

a!
N
(
L4t; γ4t+ µja, σ

24t+ σ2
ja
)

where

N
(
L4t; γ4t+ µja, σ

24t+ σ2
ja
)

=
1√

2π(σ24t+ σ2
ja)

e
−

(L4t−[γ4t+µja])
2

2(σ24t+σ2
j
a)

is the normal density function of L4t assuming that the asset price jumps a

times in the time interval 4t and P(4Nt = a) is the probability that the

asset price jumps a times in the time interval 4t. gt is expressed as the

weighted sum of normal densities. In such a framework, the market model is

incomplete, hence the existence of more than one risk-neutral measure P∗. To

have a risk-neutral measure, we need to replace the compound Poisson process

in equation 7 by a compensated compound Poisson process.The latter can be

done in several ways. Let us consider the discounted asset price e−rtXt such
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that

d(e−rtXt) = −re−rtXtdt+ e−rtdXt

= −re−rtXtdt+ e−rtXt(µ− λk)dt+ e−rtσdWtXt + e−rtXtd

(
Nt∑
i=1

(Ji − 1)

)

= e−rtXt(µ− r − λk + λ∗k∗)dt+ e−rtσd(W ∗
t − ut)Xt + e−rtXtd

(
Nt∑
i=1

(Ji − 1)− λ∗k∗
)

= e−rtXt(µ− r − λk + λ∗k∗ − σu)dt+ e−rtσdW ∗
t Xt + e−rtXtd

(
Nt∑
i=1

(Ji − 1)− λ∗k∗
)

For e−rtXt to be a martingale we suppose

µ− r − λk + λ∗k∗ − σu = 0

where u is such that

W ∗
t = ut+Wt t ∈ [0, T ]

is a P∗-Brownian motion thanks to the Girzanov theorem. λ∗ > 0 is the new

intensity and k∗ = E∗[J − 1]. Merton proposes the following for the change of

measure

λ∗ = λ

So that

f ∗U(j) = fU(j) =⇒ k = k∗

=⇒ u =
µ− r
σ

For simplicity, if we let u = 0, then µ = r. Since the jump risk is diversify and

no risk premium is attached to it, we can leave the jump part unchanged. So

the new asset price dynamic under P∗ is

dXt

Xt−
= (r − λk)dt+ σdW ∗

t + d

(
Nt∑
i=1

(Ji − 1)

)
(10)

For the MJD model, the central moment is given by:

MMJD
i = E∗

[
(Lt − E∗[Lt])i

]
= E∗

[
(σ4Wt + U4Nt − λµj4t)i

]
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with Wt, U,4Nt being i.i.d. The characteristic function of L4t is obtained by

applying Fourier transform to gt as

Φ(w) = e4tΨ(w)

where

Ψ(w) = λ exp

{
(iwµj −

1

2
σ2
jw

2)− 1

}
+ iw

(
µ− 1

2
σ2 − λk

)
− 1

2
σ2w2

is the characteristic exponent (cumulant generating function) and

k = E[eU − 1]

= eµj+
1
2
σ2
j − 1.

Theorem 2.8.

Considering the central moment and the characteristic exponent defined above,

we’ve

E∗MJD = (γ + λµj)4t
M2

MJD =
(
σ2 + λ(σ2

j + µ2
j)
)
4t

M3
MJD = λ(3σ2

j + µ3
j)4t+ 6µjσ

2
j (λ4t)2

M4
MJD = λ(3σ4

j + µ4
j + 6σ2

jµ
2
j)4t+ 3(σ24t)2 + (3µ4

j + 21σ4
j + 30µ2

jσ
2
j )(λ4t)2

+ 6σ24t(σ2
j + µ2

j)λ4t+ (6µ2
jσ

2
j + 18σ4

j )(λ4t)3 + (6σ2σ2
j4t(λ4t)2 + 3σ4

j (λ4t)4

SMJD =
M3

MJD

[M2
MJD]1.5

KMJD =
M4

MJD

[M2
MJD]2

For the proof of the above theorem, the reader is referred to [7, 8].

2.2.1 Some Important Properties of the PDF gt of Merton log-

returns

1. The sign of skewness is determined by the size of E[J ] = µj. ”Figure” 4

shows that gt is asymmetric if µj 6= 0 and symmetric if µj = 0.

2. The value of λ makes the density fatter-tailed as illustrated in ”Figure”

4. Note that the excess kurtosis in the case λ = 50 is much smaller

than in the case λ = 2 or λ = 4. This is because excess kurtosis is a

standardized measure (by standard deviation)
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Figure 4: Pdf of Merton log-returns with different values of µj and λ

2.2.2 Estimation of model parameter Θ = (µ, σ, λ, µj, σj)

Estimation of model parameter Θ is required for us to fit empirical data to the

MJD model. From theorem 2.8, we see that the five parameters µ, σ, λ, µj, and

σj do not have explicit expressions. To address this issue, we will consider the

situation when a single jump occurs i.e. Nt = 1. Let us consider the empirical

log-returns L4t of NASDAQ index data in ”Figure” 2.

We propose a decision rule about the occurrence of jumps whereby a thresh-

old ε > 0 is chosen by observing the plot of the empirical log-returns, such that

a jump occurs only if the absolute value of the log-returns is greater than ε.

Splitting the empirical log-return data into two categories D and J for

a given ε, the category D includes log-returns with no jump. The category

J includes log-returns with jumps. We will refer to the model parameters

estimated when one jump occur as primary estimates.

Case 1: Occurrence of one jump

Here the first and second moments of the log-return are

E∗[LJ
4t] = E∗[L4t|4Nt = 1]

=

(
µ− σ2

2
− k
)
4t+ µj

(11)

and

V ar[LJ
4t] = V ar[L4t|4Nt = 1]

= σ2
j + σ24t

(12)
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respectively. From equation 11 and 12, we estimate µj and σj as follows{
µ̂j = Ê∗[LJ

4t]− (µ̂− σ̂2

2
− k)4t

σ̂j =
√

V̂ar(LJ
4t)− σ̂24t

where Ê∗[LJ
4t] and V̂ar[LJ

4t] are the sample mean and the sample variance of

the empirical log-returns in category J.

Case 2: No occurrence of jumps

Here the first and second moments of the log-return are

E∗[LD
4t] = E∗[L4t|4Nt = 0]

= (µ− σ2

2
)4t

(13)

and

V ar[LD
4t] = V ar[L4t|4Nt = 0]

= σ24t
(14)

respectively. From equation 13 and 14, we estimate µ and σ as follows:
µ̂ =

2Ê∗[LD
4t]+V̂ar(LD

4t)4t
24t

σ̂ =

√
V̂ar(LD

4t)

4t

where Ê∗[LD
4t] and V̂ar[LD

4t] are the sample mean and the sample variance of

the empirical log-returns in category D.

Supposing time is measured in years, the parameter λ is estimated as follows

λ̂ = number of jumps per year

=
Total number of jumps

Total length in years

From ”Figure” 2, if we take for example ε = 0.01, we obtain the values for

our primary estimators as follows: λ̂ = 60.74, µ̂ = 0.1899, σ̂ = 0.0741, µ̂j =

−0.0012 and σ̂j = 0.0182.

To get optimal estimators let us consider the case below:

Case 3: occurrence of Nt = a jumps

For the estimates of Θ = (µ, σ, λ, µj, σj) when Nt = a, we will use the

Multinomial Maximum Likelihood Approach proposed by [7]. To be implement

this approach, we will do the folowing:
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1. Divide the empirical data set into categories of length n < length (empirical data),

which has already been achieved above. i.e. D and J.

2. Minimize the objective function by finding an optimal Θ̂ that minimizes

the likelihood function

L(Θ;x) = −
n∏
i=0

log(P(Li4t) ∈ B) B ⊂ R

where the Li4t represent the empirical log-returns.

The primary estimators obtained in the previous section is used to numerically

minimize the MJD model objective function. The presence of the sum of

accumulated jumps in the log-return evolution makes it non-normal. In section

2.2, we saw that the probability density function of L4t is given by

P(L4t ∈ B) =
∞∑
a=0

e−λ4t(λ4t)a

a!

1√
2π(σ24t+ σ2

ja)
e
−

(L4t−[γ4t+µja])
2

2(σ24t+σ2
j
a)

Some authors like [9] and [10, 11] highlight that minimization problem is easily

obtained through the regime switching technique. In this paper, the MATLAB

code fminsearch will ease the process of finding an optimal Θ̂ that minimizes

L(Θ;x).

2.3 Diebold-Mariano Test

This test is often used to compare time series models. Suppose we denote the

empirical data set by {yt, t = 1, . . . , N}. Let the samples from BS model and

MJD model be denoted by {ŷ1t, t = 1, . . . , N} and {ŷ2t, t = 1, . . . , N} respec-

tively. We refer to the BS model as model one and the MJD model as model

two. The question we ask ourselves is which forecasting model is actually good

to better represent the empirical data.

Define the forecast errors as

eit = ŷit − yt, i = 1 : 2

The loss associated with forecast i is assumed to be a function of the forecast

error, eit, and is denoted by g(eit). The function g(.) is a loss function, that is

a function such that:
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. takes the value zero when no error is made;

. is never negative;

. is increasing in size as the errors become larger in magnitude.

Typically, g(eit) is the square (squared-error loss) or the absolute value (absolute-

error loss) of eit. We define the loss differential between the two forecasts by

dt = g(e1t)− g(e2t)

and say that the two forecasting models have equal accuracy if and only if

the loss differential has zero expectation ∀t. So, we would like to test the null

hypothesis

H0 : E[dt] = 0, ∀t

versus the alternative hypothesis

H1 : E[dt] 6= 0, ∀t

The null hypothesis is that the two models have the same accuracy. The

alternative hypothesis is that the two models have different levels of accuracy.

In the case where both models have different accuracy, we perform another

test to detect which model is more accurate than the other using the hypothesis

below:

H0 : Model one and two have the same accuracy

versus the alternative hypothesis

H1 : Model two is more accurate than model one

For the level of significance α = 0.05, we fail to reject the null hypothesis if

the P-value > α

3 Main Results

Models are rough and wrong approximation of real world phenomenon. The

two option pricing models (BS and MJD) introduced in section 2 holds the

potential to reproduce their real world counter parts. Here we discuss the

modeling results obtained as describe in section 2.
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The model parameters are estimated from NASDAQ index. Table 1 presents

results under the BS model. Under the MJD model, we use the primary pa-

rameters estimated in section 2.2.2 and apply the MATLAB fminsearch code

to obtain optimal parameters for different thresholds ε. See results in table 2.

Table 1: Parameter estimates for BS model.

Parameters Estimates

µ 0.0005

σ 0.0101

Table 2: Relationship between MLE parameters and ε

Parameter
ε = 0.01 ε = 0.02 ε = 0.03 ε = 0.06

P.E Emle P.E Emle P.E Emle P.E Emle

µ 0.1899 0.3615 0.2424 0.3615 0.2170 0.3615 0.1291 0.12914

σ 0.0741 0.0655 0.1176 0.0655 0.1411 0.0655 0.1602 0.1601

λ 60.74 210.8795 15.6372 210.8795 4.2100 210.8795 0 -0.8072

µj -0.0012 -0.0028 -0.0076 -0.0028 -0.0216 -0.0028 NaN NaN

σj 0.0182 0.0097 0.0267 0.0097 0.0310 0.0097 NaN NaN

L −3.3085× 103 −3.3085× 103 −3.3085× 103 −3.3085× 103

From table 2, P.E and Emle represent the model’s primary and MLE es-

timates respectively. We observe that the MLE estimates of the parameters

µ̂, σ̂, λ̂, µ̂j and σ̂j are the same for ε ∈ {0.01, 0.02, 0.03}. For ε = 0.06 we obtain

different values of θ because the maximum number of function evaluations has

been exceeded. The values of ε are chosen by taking a close look at figure 2.

It is logical to think that if there are no jumps like the case of ε = 0.06, the

jump parameters would not have estimated values. From this same table 2,

we conclude that the MLE method is independent of the threshold ε.

From section 2.1.1 and 2.2.2 and considering the MLE estimates of the

model parameters, the values for the moments and mean square error under

the BS and MJD model are given in table 3 and 4 respectively.

From table 3, estimated means and variances of log-returns for the BS

model coincides with the real log-returns. The estimated variances of log-
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Table 3: Comparing moments of the BS model, MJD model with that of real

data.

Mean Variance Skewness excess Kurtosis

Empirical 0.0005 0.0001 -0.4658 9.1592

BS model 0.0005 0.0001 0 3

MJD model 0.0014 0.0001 -0.6494 5.4869

returns for both the BS model and the real log-returns coincides with MJD-

modeled log-returns.The MJD model captures the negative skewness of the

empirical log-returns since its skewness coefficient is closer to the real data.

Also, the kurtosis coefficient for the MJD model seems to be closer to the

empirical kurtosis than for the BS model indicating more pronounce fatter

tails for the log-returns distribution. The mathematical features of the MJD

model makes it possible to handle the large spikes in empirical log-returns, see

figure 2.

Table 4: Comparing mean square error of BS model and MJD model.

Mean Square Error

BS model 1.8734× 105

MJD model 1.6821× 103

Investigating the performance of both models in terms of mean square error,

table 4 clearly shows that the MJD model is better than the BS model since

its mean square error is smaller. Hence, we are tempted to conclude at least

for our empirical NASDAQ data that the MJD model is significantly more

suitable than the BS model for modeling log-returns.

For NASDAQ data considered in this paper, ”Figure” 5 and 6 clearly shows

that the distribution of the empirical log-returns is not Gaussian, and the MJD

model seems to reflect reality on the market since its density happens to be

above the kernel density of the log returns. On the other hand, the BS model

happens not to be very suitable in modeling log-returns as it assumes that the

log-returns of the underlying asset is Gaussian and our empirical log-returns

show far more extreme fluctuations than predicted by Gaussian statistics.

The Diebold-Mariano test carried out numerically we obtained a P-value
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Figure 5: Density for IXIC1 time series. Solid blue line: Kernel density es-

timator applied directly on data. Dashed line: MJD model simulation with

estimated parameters. Solid yellow line: BS model simulation with estimated

parameters

Figure 6: Logarithm density for IXIC1 time series.Kernel density estimator

applied directly on data. Dashed line: MJD model simulation with estimated

parameters. Solid yellow line: BS model simulation with estimated parameters

of 5.711 × 10−6 for the first test which is less than 0.05 showing that both

models have different accuracy. For the second test, we obtain a P-value of

7.664×10−4. This simply indicates that the MJD model is more accurate than

the BS model.
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4 Conclusion

In this paper we have compared the fitness to the data performances charac-

terizing the BS model and the MJD model, which is obtained from the BS

by adding a compensated compound Poisson process to the main stochastic

differential equation. The financial assumptions behind these market mod-

els makes them similar in many ways. Nevertheless, the BS market model is

complete, while the Merton model is incomplete. The latter fact is due to

the impossibility to completely mitigate the risk carried by the introduction

of sudden and unpredictable moves in the stock price. Hence, even if one

can consider the latter as an advantage carried by the BS-approach, at least in

terms of mathematical simplicity and numerical tractability, the Merton model

turns out to outperform the BS model, when one takes into account the per-

formances of the two with respect to real financial data. In particular, moving

from a theoretical comparison to an empirical one, the addition of the jump

parameters results in a great improvement in simulation of log-returns distri-

bution. Also, the log-returns leptokurtic feature is much more evident using

the Merton model approach instead of the BS model when we compare their

density functions with the kernel density estimation for the NASDAQ empir-

ical data. To boost our conclusion, we perform two tasks: first we compare

the moments and density functions of both models with empirical moments

and kernel density respectively and secondly we use the mean square error and

the Diebold-Mariano test to compare both models. Despite the advantages of

MJD model, it does not incorporate the volatility clustering effect. In future

works, we plan to apply the Vasicek model approach similar to the one pro-

posed by Merton, namely taking random jumps into consideration, to what

concerns the interest rates financial frameworks.
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