MARKET RISK MEASURES
USING FINITE GAUSSIAN MIXTURES

ABSTRACT. Value at Risk (VaR) is the most popular market risk measure as
it summarizes in one figure the exposure to different risk factors. It had been
around for over a decade when Expected Shortfall (ES) emerged to correct
its shortcomings. Both risk measures can be estimated under several models.
We explore the application of a parametric model to fit the joint distribution
of risk factor returns based on multivariate finite Gaussian Mixtures, derive a
closed-form expression for ES under this model and estimate risk measures for a
multi-asset portfolio over an extended period. We then compare results versus
benchmark models (Historical Simulation and Normal) through back-testing
all of them at several confidence levels. Evidence shows that the proposed
model is a competitive one for the estimation of VaR and ES.

1. INTRODUCTION

According to the Basel Committee, failure to capture major on- and off-balance
sheet risks ... was a key destabalising factor during the crisis. In response to the
detected shortcomings in capital requirements, the enhanced treatment introduces
a stressed Value at Risk (VaR) capital requirement (see BCBS [4], paragraphs 11
and 12).

VaR, the most used market risk measure to estimate daily potential losses in
either trading or investment books, was not able to grasp the extent of the sub-
prime mortgage market collapse in the United States that triggered aggregated
losses in market value over 130 billion (from February 2007) for firms such as
Citigroup, Merryl Linch, Morgan Stanley, UBS, among many others.

This was mainly due to calculations based on historical simulations (heavily
dependent on sample window) or debatable assumptions whose validity was often
not even verified.

In spite of the above, VaR is still the most favored metric by institutions and
regulators to monitor and control market risk (see, for instance, CNBV [9]) and the
Basel Committee uses it to set minimum capital requirements. This Committee,
however, has recently agreed to move from VaR(99%) to ES(97.5%) (see BCBS [5]).

In the context of risk management, Behr and Poetter [3] model ten European
daily stock indexes returns using hyperbolic, logF and mixtures of Gaussian distri-
butions and conclude that the fit of the latter is slightly superior for all countries.
Tan and Chu [22] model the returns of an investment portfolio using a Gaussian
Mixture and estimate Value at Risk. Kamaruzzaman et.al. [15] fit a two-component
Gaussian Mixture to univariate monthly log-returns of three Malaysian stock in-
dexes. In a different work [14] they estimate VaR and ES (using an expression that
is a particular case of (3.9) below) for monthly and weekly returns of and index
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and find, through backtesting that GM is an appropriate model. Zhang and Cheng
[25] use Gaussian Mixtures with different number of components to estimate VaR
of Chinese market indexes, bound it with the VaR of the components and link it
to the behaviour of price movements and psychologies of investors.

Alexander and Lazar [2] use the normal mixture GARCH(1,1) model for ex-
change rates. They find that a two-component model performs better than those
with three or more components and better than Student’s t--GARCH models.

Haas et al [12] introduce a general class of normal mixture GARCH(p,q) models
for a stock exchange index. Their models have very flexible individual variance
processes but at the cost of parsimony: their best models require from 17 to 22
parameters to model the returns of only one index.

Hardy [13] fits a regime-switching lognormal model to monthly returns of two
equity indexes and estimates VaR and ES using the payoff function of a European
put option written on an index.

Several other distributions have been used to model risk factors returns, such as
non-symmetric t distribution (Yoon and Kang [24]) or Generalized Error Distribu-
tion (see Theodossiou [23]).

We propose the family of finite Gaussian Mixtures (GM) as an alternative model
to fit risk factors returns distributions and estimate risk metrics. The GM family
preserves parsimony of the usual parametric models while explicitly capturing high
volatility episodes through at least one of the components. We fit the portfolio
profit and loss distribution and then estimate VaR and ES at several confidence
levels using three models: a non-parametric one based on the empirical distribution
of the risk factors returns (Historical Simulation: HS) and two parametric models;
one based on the Normal distribution (Delta-Normal) and another one based on
the GM family (Delta-GM).

This paper is organized as follows. In Section 2 we introduce finite Mixture
distributions in general and finite Gaussian Mixtures in particular and review some
of their properties. In Section 3 we construct the portfolio loss random variable
and its distribution as a linear function of risk factor! returns. We formally define
VaR and ES and introduce their estimators under the three candidate models.
A description of backtesting procedures for each metric closes that section. In
Section 4 we propose a trial portfolio, estimate VaR and ES at different confidence
levels for several years and back-test models under study. In Section 5 we outline
conclusions and potential future work. The Appendix contains proof and derivation
of expressions used in Section 3.

2. FINITE GAUSSIAN MIXTURES

In this section we introduce the family of mixture distributions and review some
properties of finite Gaussian Mixtures in both the univariate and multivariate cases.

Definition 1. Let X € R? be a random vector. We say that it follows a finite
(g-component) mizture distribution if its density function can be written as

Fx(@) =) mifi(w),
j=1

1By risk factors we understand the variables that determine the market value of the asset,
specified through a valuation model.
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where f; : R — Rt,j = 1,...,g are density functions and w5 = 1,...,9 are
positive constants such that Z?Zl m; = 1.

Let us assume that the random vector X, is defined over a sample space ()
and follows a g-component mixture distribution. An intuitive interpretation is
that there exists a partition {Qq,s,...Q} of the sample space (2, where m; =
Pr[Q;],j = 1,...,9. Densities in the mixture f;,j5 € {1,...,g} correspond to
conditional probability densities of X given Q;,j € {1,..., g} respectively. In this
case, the posterior probability of ; given a realization x of X, is

g mhix)
PR\ X =x) = =72

Definition 2. We say that a random vector X € R? follows a finite Gaussian Miz-
ture distribution if its density function is a mizture of d-variate normal densities:

9
1
———17 __(;,;_p,,)'z,l(m_p,.)},
)= S|~y w5 e,
where {; }?:1 are as in the previous definition, p; € R and 3; € R4

definite matrices for each j =1,...,g.

are positive

Due to linearity of the integral, Definitions 1 and 2 may be written in terms of
cumulative distributions functions, instead of densities. Besides that, the family of
finite Gaussian Mixture distributions displays the following properties:

(1) it encompasses the Normal distribution (with g = 1),

(2) it is very flexible: a g-component univariate Gaussian Mixture distribution
can be defined using up to 3g — 1 parameters, and it can be used to model a
continuous distortion of the normal -skewness, leptokurtosis, contamination
models, multi-modality, etc- often with g = 2 only (see McLachlan and Peel
119]).

(3) it is not difficult to simulate, so it can be used in Monte Carlo or bootstrap
processes.

(4) it matches financial stylized facts (as opposed to other distributions like
Student ¢ or hyperbolic), markedly market volatility regimes.

(5) it is closed under convolution.

The last property is very important and will be used in Section (3.2) to obtain
aggregated risk measures. Since it inherits this property from the Normal distribu-
tion, we state it for both distributions and assign them a number for later reference.
The proof makes use of characteristic functions (see McNeil, et. al. [20]).

Property 1. (Normal case) IfX Nd(u,E) and l(x) = —(c+w'x), then I(X) ~
N, 02), with = —(c+ w'p) and 0 = W' Sw.

Property 2. (Gaussian Mizture case) If X ~ GMy(m, {uj}?zl , {Ej}?zl),
™ ;€ Rd,Ej eR™ j=1,...gandl(z) = —w'z, then
g g ’ ’
l(x) ~ GM(W,{;L,} ,{olzj)} ), with w; = —w p; and ofj =wljw,j =
if i 8 ,
1,...,9.
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Regarding estimation, we can obtain parameter estimators through the usual
methods of moments or maximum likelihood. Lopez de Prado and Foreman [17]
introduce a method that exactly fits the first three sample moments. On the other
hand, the likelihood equation (written for a univariate g-component Gaussian Mix-
ture)

) n g
g 108 L (0) = > log lszi (yj;m,oz')] =0
j=1 i=1

does not admit a closed-form solution. So it is necessary to use a numerical al-
gorithm to solve the equation for the parameters 8 = (71', {uj}jzl AZ; }?:1) and
obtain Maximum Likelihood Estimators. For this purpose, we favor the EM al-
gorithm published by Dempster, Laird and Rubin [10]. For details on the EM
algorithm, see McLachlan and Krishnan [18] and about its application to Gaussian
mixtures, see McLachlan and Peel [19].

3. L0oss DISTRIBUTION AND RISK MEASURES

In this section we derive the -aggregated- Portfolio Loss Distribution following the
lines of McNeil, et al [20]. We then linearize the loss function through a loss operator
that is approximately equal to it for small changes in the underlying risk factors.
Finally we formally define both market risk measures to be calculated on the loss
distribution and introduce their estimators under three different models.

3.1. Portfolio Loss Distribution. Given a portfolio of assets subject to market

risk, consider the aggregated -profit and- loss random variable for the time interval
[tA, (t+ 1A]:

Liya,t+1a) = Liv1 = —(Vign = Vi) = —=[f(t + 1, Zs + X4 11) — (L, Zy)]

where

Liia (t+1)a)¢ is the loss over the time interval [tA, (¢ 4 1)A],

A: is the time horizon (we will assume that ¢ is measured in days and that
A = 1), therefore

Lyyq: is the portfolio loss from day ¢ to day ¢ + 1,

Vi = f(t,Z;): is the portfolio market value at time ¢,

f: Rt x R4 = R: is a measurable function,

Z. € R%: is the d-dimensional vector of risk factors at time ¢,

Xy =72y — Z;_1: contains the risk factor returns from ¢ — 1 to ¢.

According to the above definitions, losses are positive and profits are negative.
As the value of risk factors Z; is known at time ¢, the loss distribution is completely
determined by the distribution of risk factor returns in the following period. It is
then possible to define the loss operator I; : R* — R that maps risk factor returns
into portfolio loss:

L(x)=—[f(t+1,Z; +x) — f(t,Z;)], x€R™ (3.1)

Observe that Lyy1 = 1;(X41). If the function f is differentiable, it is possible to

write the linear approximation (delta in derivatives nemotecnia) of the loss operator
l¢ in equation (3.1) as
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d
lfA(X) = — ft(t, Zt) =+ Z'fzj (t, Zt)xj = — (Ct + w;x) s (32)
j=1
where
¢t = fi(t,Zy) =~ 0 for small time increments, such as one day,
w;, = (fz, (¢, Zt))jzl is the vector of risk factor sensitivities, and

fult,) = 0f(t, )] 0.

If the function f has non-vanishing second-order derivatives, the approximation
(3.2) can include them, producing a Delta-Gamma model. The loss operator (and
random variable) moments are, from equation (3.2):

d
ELija ~ BIR(X) ==Y fz,(t Z)EX; = w,p = g
j=1
Var(Liyi) = Var(i® (X)) = w,Sw; = 02, (3.3)

with g’ = (EX;)1_, and % ; = cov(X;, X;).

In what follows we will assume that returns X; come from a stationary process
to ease notation, that is, they are independent and identically distributed (iid)
random vectors and so we can omit the ¢ subscript.

3.2. Market Risk Measures. Market Risk measures to be estimated are Value
at Risk and Expected Shortfall, as defined below, according to McNeil et. al. [20].

Definition 3. (VaR,). Let L be a -positive- loss random variable and Fr, : R —
[0,1] its distribution function. We define Value at Risk at confidence level o € (0,1)
as

VaR, :=inf{u € R: F(u) > a}.

Definition 4. (ES,). Let L and Fy, : R — [0,1] be as above. Suppose also that
E|L| < co. Expected Shortfall at confidence level o € (0,1) is defined as

1 1
ES, = —/ VaR,du.
l-—a/,

It is clear that VaR, is just the a-quantile of the loss distribution: VaR, =
4o(Fr) = F; '(a) and that ES, is the average of all quantiles above confidence
level a, as long as the loss distribution is continuous.

Acerbi and Tasche [1] provide a generalized E'S definition that includes the case
of non-continuous loss distributions (such as the empirical distribution), introducing
a term to correct the bias of VaR,, as an estimator of the a-quantile:

Definition 5. (GES, ). Let L and Fy, be as in Definition 4. Generalized Expected
Shortfall at confidence level o € (0,1) is

1 1
GES, = — U VaRudu+ qo (1 —a— P (L >VaR.))| .
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For continuous distributions Definitions 4 and 5 coincide and the following propo-
sition provides a useful tool for calculations. The proof is in the Appendix A.1.

Proposition 1. If L is a loss random variable with continuous distribution function
Fr, and E|L| < oo, then
ES,=FEI[L|L > VaR,]. (3.4)

If the distribution of L is a location and scale distribution, VaR calculation
depends only on the moments described in equations (3.3):

1/2
|7 = e+ gaos. (3.5)

VaR, = wlu + G [w’Ew
where ¢, is the quantile in Definition 3 for a distribution function Fj, with location
parameter zero and scale parameter one.

Property 1 guaranties that under the Delta-Normal model, the random variable
L follows a univariate Normal distribution and in this case equation (3.5) provides
our VaR estimator. For the non-parametric model (HS) the distribution of L is
the empirical distribution and it suffices to take the appropriate order statistic to
obtain

VaRa = L(jna)), (3.6)

where L ;) is the jth order statistic, n is the sample size, and || is the biggest
integer that is less than or equal to z. Finally, for the Delta-GM model, Property
2 ensures that the distribution of L is a univariate finite Gaussian Mixture and it
is necessary to solve for g, the following equality:

FL (C]mﬂ'alho') —a=0. (37)

With respect to ES, the Appendix contains derivations of closed expressions for
the estimator for both parametric models under consideration, whereas for the HS
model it is built using the empirical distribution and Definition 4 or 5 together with
expression (3.6). Final formulas for each model are

— 1 n

HS ES, = ——— L,

S S n—|nal Z (7

j=lnal+1
Delta-Normal ES, =pu+ ﬁqﬁ (@ *(a)) (3.8)
13 $(2j,0)
Delta-GM ESa = I—o J:lejq)(_zj’a) |:/14j + ij
with 2o = M,FL(%) = a.

0j

3.3. Backtesting and Model Comparison. Once risk figures are systematically
estimated over time, the performance of the estimation model can be monitored.
This process of monitoring is known as backtesting and can also be used to compare
performance among different models, as suggested by Campbell [6].
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Let us assume that for each time ¢ we have one-period a-level estimations for
VaR and ES, denoted VaR,: and ES, ¢, respectively. We can then define excess
indicator and excess loss random variables

Ta(Lt+1) = ]_(mmeroo) (Lt+1) and
Ma,t-{—l(Lt-l—l) = (Lt+1 — E?a,t) TQ(Lt_i_l). (39)

where 14(u) is the indicator function of the set A. The process {14(Lt)},cy is
a process of iid Bernoulli random variables with success probability 1 — . After
estimating VaR figures for times ¢t = 1,...,n, we can expect that

> Ta(Lt) ~ Bin(n,1—a).
t=1

Kupiec [16] constructs a test for Hy : p = po vs Ha : p # po based on the
likelihood ratio as test statistic. Asymptotically, this statistic follows a chi-square
distribution with one degree of freedom, but for any given sample size exact rejection
regions can be calculated for the binomial distribution, as shown in Casella and
Berger [8] based on work by Casella [7]. We have written a Matlab function that
implements the exact test at a confidence level equal to that of the corresponding
VaR estimation and returns a non-rejection interval.

Turning now to ES, we should expect that excess losses behave like realizations
of iid variables from a distribution with mean zero and an atom of probability mass
of size v at zero. Testing the latter property is equivalent to backtesting VaR, so
we will concentrate on a procedure to test the former: zero-mean behaviour.

Recall first the one sample test under normal population for Hg : g = pg. This
can be conducted using the test statistic z = /n({i — uo) /o, which follows a normal
distribution if ¢ is known or a Student ¢ distribution if it is estimated.

Efron and Tibshirani [11] propose a non-parametric bootstrap hypothesis test
based on the empirical distribution of the above test statistic under the null hy-
pothesis. We will use the non-parametric bootstrap test for HS and a parametric
bootstrap version for the Delta-Normal and Delta-GM models.

The bootstrap test is conducted as follows: draw N samples of size n with
replacement from {Ma¢(l;)};_,, as defined in (3.9), or from the fitted parametric
distribution and for each bootstrap sample, say my, ..., m,, compute the statistic

t(m) (3.10)

_m
~o/yn’
where ¢ is the standard deviation of the bootstrap sample. The Achieved Signifi-
cance Level (ASL) for the alternative hypothesis H : u > 0 is estimated as

AS Lpoot = # {t (m) > tops} /N, (3.11)
where tops = t(m,) is the value of the statistic (3.10) observed in the original
sample. We test against a one-sided alternative based on the evidence of lack of
symmetry of m, (see Figure 2).

As noted by Efron and Tibshirani, the estimate Zﬁ:boot has no interpretation
as an exact probability, but like all bootstrap estimates is only guaranteed to be
accurate as the sample size goes to infinity.
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4. VAR AND ES ESTIMATION IN PRACTICE

In this section we propose a portfolio of assets with exposure to the three usual
risk factor classes (interest rates, equities and foreign exchange). We then fit mul-
tivariate Normal and Gaussian Mixtures distributions to the historical daily risk
factor returns (using the EM algorithm to maximize the likelihood of the latter).
From daily sensitivities to each risk factor and assumed distributions, we estimate
market risk measures (VaR and ES) for both parametric models (Delta-Normal
and Delta-GM) as well as for the empirical distribution (HS model) at three differ-
ent confidence levels (95, 97.5 and 99%) for each asset and the portfolio, for 1700
consecutive days (from July 2007 until March 2014). Finally we compare models
through backtesting for each risk figure and asset.

The proposed portfolio contains three asset: a short position of 50 million in
US dollars (USD, this can be thought of as a debt), 15000 million face value (in
MXN) of a Mexican sovereign zero coupon bond maturing in 6 months (Cetes),
and 10 million shares of Naftrac02. This is an Exchange Traded Fund (ETF) that
replicates the performance of Mexican Stock Exchange Index (IPC). For the sake
of simplicity, it will be treated as an individual common share and not as a fund.
Table 1 shows the main features of selected assets, while Table 2 displays market
values and risk factor sensitivities as of April 30, 2013, under the assumption that
losses are positive. For VaR and ES estimation, sensitivities are updated for each
historical scenario.

Asset Class Instrument Face value (MXN) or Shares
FX USDMXN -50,000,000
Equity Naftrac02 10,000,000
Bond Cetes185d 15,000,000,000

TABLE 1. Portfolio description.

Price MtM Value

Instrument | (MXN) (MXN mln) | Sensitivity (MXN mln)
USDMXN | 12.1401 -607.005 | Delta FX -607.005
Naftrac(02 42.26 422.600 | Delta IPC 422.600
Cetes 9.8096  14,714.463 | DV0O1 (MXN rate) -0.742

TABLE 2. Portfolio market value and sensitivities as of Apr 30, 2013.

In order to estimate risk measures under HS, as well as parameters of paramet-
ric distributions (Normal and Gaussian Mixture) for each historical scenario, we
took samples of 1000 daily returns (approximately 4 years) from USDMXN for-
eign exchange (FX), Mexican 6-month sovereign rate and Naftrac02. Estimators
for the normal distribution are the usual unbiased estimators based on maximum
likelihood. In the case of GM, we have implemented the EM algorithm in VBA for
Microsoft Excel and fitted a tri-variate Gaussian Mixture with two components.
Tables 3 and 4 show an example of estimators for Normal and Gaussian Mixture
distributions, correspondingly, with standard errors in parenthesis.
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pt D
0.0070  -0.0064  0.4710
(0.0272) (0.0286) (8.2577)
(0.0080, 0.0288, -29.374) 0.0226  -0.7429
(2.2915) (4.1052) (972.4) (0.0872) (14.753)
1266.04
(4894.8)

TABLE 3. Example of estimators (x1072) for Normal Nj(u,>)
with standard errors (x10~%) in parenthesis.

jlom 1 D
0.0032  -0.0021  0.0371
(0.0001) (0.0001) (0.0039)
1| 81.11 | (-0.0130, 0.0782, -4.87) 0.0085  -0.0031
(1.14) | (0.0043) (0.0041) (0.19) (0.0002) (0.0051)
267.7
(8.06)
0.0233  -0.0243  2.4498
(0.0008) (0.0010) (0.1140)
2| 18.89 | (0.0983, -0.1834, -134.6) 0.0822  -4.1925
(1.14) | (0.0118) (0.0021) (7.05) (0.0035) (0.2275)
5412.2
(269.2)

TABLE 4. Example of estimators (x1072) for Gaussian Mixture
GMs(m,{p;}5_1,{X}3-,) with standard errors (x107*) in paren-
thesis.

Note that with obtained Gaussian Mixture distribution estimators, the stylized
two-component case interpretation holds: the first component describes the be-
haviour of the risk factor returns under the business as usual regime, while the sec-
ond component describes it under stressed times, so that its mean is well-separated
and its variance is significantly higher than that of the first component. If we take
the USDMXN risk factor, for instance, over the sample time span MXN experi-
enced an average daily depreciation of 0.008%, which can be decomposed into two
regimes: a slight daily appreciation of 0.013% under business as usual (81% of the
time), with and annual volatility of 8.97%(= v/3.2 %« 10~5 % 250), and a daily depre-
ciation of 0.098% for the remaining 19% of the time, with and annual volatility of
24.13%(= v/2.33 % 10=5 % 250), 2.7 times the volatility under the business as usual
regime.

Another important feature is that under any of the parametric assumptions the
mean of the daily portfolio -profit and- loss distribution is the same (MXN 290 906),
while standard deviations for both distributions are quite similar: MXN 10.708
million under normality and MXN 10.699 million under GM. This means that the
Gaussian Mixture model does not modify neither the mass center nor the dispersion
of the returns joint distribution, but only decomposes them into components, while
showing a higher kurtosis.
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We now turn to risk estimation under the three models (HS, Delta-Normal and
Delta-GM) at three confidence levels (95, 97.5, and 99%) for each asset and the
portfolio. To obtain portfolio risk measures, in each historical scenario we take the
weighting vector w to be sensitivities calculated as shown in the last column of
Table 2.

According to Definition 3, VaR has been estimated as the corresponding quantile
of the loss distribution. Calculations are straightforward for both the empirical
distribution and Normal assumption (equations (3.5) and (3.6)), but not for the
Gaussian Mixture. For this, we have developed a Matlab code to estimate any
given quantile for a univariate Gaussian Mixture with and arbitrary number of
components using equation (3.7). Table 5 displays average VaR figures over 1700
scenarios for each instrument and the portfolio under the three considered models.

Method USDMXN Naftrac02 Cetes | Portfolio
HS 13.461 14.034 7.148 27.695
Delta-Normal 11.560 10.961 6.462 21.803
Delta-GM 15.226 13.961 8.538 29.936

TABLE 5. Average VaR(99%) (figures in MXN mln).

As for ES, equation (3.8) provides closed-form expressions for its calculation
under the three models. Table 6 averages ES(97.5%) for each instrument and the
portfolio over the 1700 historical scenarios for each one of the models.

Method USDMXN Naftrac02 Cetes | Portfolio
HS 15.805 13.917 8.102 29.205
Delta-Normal 11.616 11.016 6.494 21.911
Delta-GM 15.283 14.011 8.555 30.004

TABLE 6. Average Portfolio ES(97.5%) (MXN mln).

To assess the performance of the different models and discriminate among them,
we have conducted backtesting for VaR and ES following the procedures described
in Section 3.3.

Confidence Model | USDMXN Naftrac02 Cetes Portfolio
HS 115 88 48 79

95% D-N 80 87 32 77
[68,103] D-GM 96 93 42 75
HS 54 43 25 40

97.5% D-N 59 56 20 51
[29, 58] D-GM 44 44 18 34
HS 31 24 14 19

99% D-N 40 37 14 31

[7, 28] D-GM 19 28 7 17

TABLE 7. VaR(95, 97.5, and 99%) excesses in 1700 trials. Viola-
tions of confidence intervals in italics.
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Table 7 shows the number of times loss in any given day exceeded estimated VaR
the day before (L¢11 > VaR, +) over 1700 scenarios for each confidence level, asset
and model. The first column also shows non-rejection intervals at corresponding
confidence level. We have written in italics the violations, whether figures were
too conservative (less violations than the lower bound: risk over-estimation) or too
aggressive (more violations that the upper bound: risk under-estimation). Fixed
income risk is over-estimated by all models at 95 and 97.5% levels. Those are the
only violations of Delta-GM model, making it the strongest one. On the other hand,
Delta-Normal is the only model that under-estimates FX, equity and portfolio risks
at the 99% level, making it the weakest of the three. Historical Simulation stands
in the middle, due to under-estimation of FX risk at 95 and 99% levels.

Figure 1 shows historical VaR(99%) development for the three models as well as
daily losses. Even though most excesses are concentrated in the months after the
bankruptcy of Lehman-Brothers with 13 out of 17 for Delta-GM from September
2008 to May 2009, it is worth mentioning the speed of adjustment for this model
after sudden changes in volatility. Over that period, HS shows 16 excesses while
Delta-Normal experienced 22.

VaR(t) vs Daily Loss(t+1)
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FIGURE 1. Backtesting VaR(99%)

Table 8 shows estimated bootstrap ASLs for each asset, model and confidence
level, according to (3.11). We compare each figure against one minus the corre-
sponding confidence level. For the Delta-Normal model, the null hypothesis that
ES properly estimates average excess loss is to be rejected for every asset class and
the portfolio, besides Fixed Income. HS and Delta-GM models, on the other hand,
are equivalent in the sense that every time the null hypothesis is rejected for one of
them, it is also rejected for the other. Moreover, the null hypothesis is rejected only
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in the case of Equities at 97.5 and 99% confidence levels. This is consistent with
findings of McNeil and Frey [21] for Normal and Generalized Pareto Distributions.
At any other instance, ES is a reasonable estimator of average excess losses for both
models.

Confidence ES p-values

level Method | USDMXN Naftrac02 Cetes Portfolio
HS 0.5212 0.6518 0.4068 0.4884

95% D-N 0.0054 0.0008  0.0968 0.0092
D-GM 0.5504 0.3904  0.6884 0.7782

HS 0.0576 0.0094  0.1438 0.0436

97.5% D-N 0.0084 0.0008 0.0998 0.0144
D-GM 0.0382 0.0062 0.1376 0.0500

HS 0.0146 0.0014  0.0770 0.0170

99% D-N 0.0064 0.0002 0.0840 0.0056
D-GM 0.0230 0.0018  0.1216 0.0300

TABLE 8. ES(95, 97.5, and 99%) non-parametrical significance levels.

Figure 2 displays excess losses over VaR(97.5%) for each model. Not only does
the Normal model shows more excesses, but they are bigger than those of the other
models. Negative excess losses are close to zero in the Normal case due to the small
difference between VaR and ES (see Tables 5 and 6). HS displays more and higher
excesses than GM (¢-statistics are 0.52 and 0.19), so the latter is slightly -but not
significantly- superior than the former.
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FIGURE 2. Backtesting ES(97.5%)

5. CONCLUSIONS

Among the three models under study, Delta-Normal is the most aggressive, in
the sense that it consistently produces the smallest figures for VaR and ES. We
believe, however, that its major drawback is that, having so little mass at the
tail of the distribution, switching from VaRggy, to ESgr 59 (as proposed by Basel
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Committee) means a uniform increase of 0.5% in risk figures. This has the benefit
of saving capital, but it can expose financial institutions to significant losses when
high volatility episodes happen.

When using Historical Simulation, there is a significant adjustment of 47, 37
and 30% between VaR,, and ES, for o = 95,97.5 and 99%. This is a confirmation
of its strong dependence on the sample window, given the fact that the sample
window includes the whole credit crisis time span. Over this period there existed
returns much higher than the mean of the empirical distribution as well as recurrent
changes in monetary policy rate that influenced short-term interest rates.

With respect to the finite Gaussian Mixture model, since it explicitly includes a
component to model high volatility periods, it usually (but not always) produces
the most conservative VaR figures: 10% higher than HS and 29% higher than
Delta-Normal on average. Going from VaRggy to ESgr 59, represents an increase
of only 0.2% on average, but it fluctuates across assets and along time, as volatility
changes. This is a distribution that displays excess kurtosis and can fit historical
volatility to each risk factor simultaneously.

A technical but relevant detail, noted in Section 4, is that the GM model does
not modify the mass center or the dispersion of the returns distribution, but only
segments them into components. This implies that Lopez de Prado and Foreman’s
[17] critique does not hold and therefore it is not necessary to explicitly fit sample
moments with ad-hoc estimators. We then have maximum likelihood estimators,
with their advantage over moment estimators, that in turn perfectly fit the first
sample moment and quite well the second one; making it unnecessary to compute
higher moments.

We believe that we have shown strong evidence that the finite Gaussian Mixture
model is appropriate to estimate tail risk measures in the context of changing
volatility. We have, however, based our model on a stationary assumption for
the returns distribution (or equivalently, the one-period loss distribution). We
should now relax this assumption and fit a regime-switching model to test whether
adding new parameters produces more precise estimators and assess its impact on
parsimony.
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APPENDIX A. PROOF AND DERIVATIONS.

In this appendix we prove Proposition 1 and derive closed-form expressions for
Expected Shortfall under the two studied parametric models. In Section A.2 we
derive ES under Normal assumption, filling in the details of the proof that can be
found in McNeil, et al [20]. The reason to include this proof is that from there
we can adapt the result to obtain the corresponding expression for finite Gaussian
Mixture distribution in Section A.3.

A.1. Proof of Proposition 1. If L is continuous with distribution function Fp,
and E|L| < oo, then ES, = F[L|L > VaR,].

Proof. Tt is well-known that the random variable U = Fp(L) follows a uniform
distribution on [0, 1] with density function fy(u) = 1,u € [0, 1]; therefore

1 1
/ VaR,du = / VaR,1(a1)(u)fo(u)du = E [VaRyl 1 (U)],
«a 0

where 14(-) is the indicator function of the set A. Using that VaRy = F; '(U)
and that continuity of Fy, implies F ! is strictly increasing:

1

/ VaR,du=FE [Fil(U)l(Fgl(a),Fgl(l))(FL_l(U))} = E[LLvaR, +o0)(L)] -
«

Dividing by 1 — «, we obtain:

E[Ll{1>var.}]
P(L > VaRa)

1 1
ES, = m/ VaR,du = = E[L|IL > VaR,)].

O

A.2. ES for Normal. Let L ~ N (u, 02) and let ¢, = VaR,, be the a-quantile of
Fp,ie., Fr(qo) = a. Let fr(-) = ¢(-, p,02) be the density function of L and let
o(-) = ¢(-,0,1) be the standard normal density function with a-quantile equal to
Zq- Using equation (3.4) and the distribution of L, we have:

ES,

I
E[LIL>q,) = m/ ufr(u)du
qo

= ! /+O<> wfr(u)du = L /+O<> ug(u, p, 0?)du, (A1)

1—a g, 1—a/g,
with the change of variable u = 0z 4+ 1 (24 = (¢a — 1)/ 0, du = 0dz):
I

ES, = / (zo + p) ¢(2)dz

l—a/,,
+oo +oo
1i04 |:U/z(‘, zqé(z)dz—i—,u/z (b(z)dz]
o e 1
= o) e =
1
1-—a

W+

o

[06(20) + 11 (1 — @(24))]

(06 (271 (@) +p(1 - a)] (A.2)

¢ (27N (o).

11—«
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A.3. ES for Finite Gaussian Mixtures. Let L ~ MN (m, u,0), recall that
da = VaR, is the solution of equation (3.7): FL (¢qo;m, p,0) —a = 0. From
Definition 3, equation (3.4) and the distribution of L, we have

ES, = L /+°° wfr(u)du

l -« qo

1 +oo g )
= / uijgb(u,uj,oj )du

o j=1

1 g +oo )
= 7 wj/ ug(u, pj, 05 )du.
- j=1 qo

The integral within the sum is the same as (A.1), with the only difference that the
lower limit of the integral depends on the specific component. Making the change
of variable u = 0z + p; and defining z; o = (go — 1t;)/0; we obtain an analogous
result to (A.2):

1 g
j=1
B 1 g ¢(Z ’,a)
T 1 a ;m@(_zj’a) [Mj PR

Note that z; o depends on o through ¢, and on the component through parameters
w; and o, but it is not the a-quantile of the j-th component distribution, that is
to say, it is not the case that ®(z; ) = a. In other words, p; + 0;0(2j,a)/P(—2j,a)
is not the E'S, corresponding to the j-th component.

It is possible, however, to write the finite Gaussian Mixture Expected Shortfall
as the weighted summation of the component-specific Expected Shortfalls. To see

this, let Lj ~ N (ij JJQ.), then, according to Section A.2:

ES&(LJ') = Mj-FUjM
. ESL (L) = Xg:)\jESa(Lj)

P(—zj0) My +0;0(2j0)/P(=2),a)
l—a pj+o;6(@71(a)/(1-a)

where A; =7
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