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Abstract. 

The problem of counterfactual and control group is at the core of impact evaluation. Almost all existing methods 

aim to find the best control group to compare with the treated group. What if it is not necessary to find a control 

group? But, just use treated and non-treated units in the same population to obtain treatment effect estimators. 

The aim of this study is to use imputation methods to estimate counterfactual and derive average treatment 

effect estimators from the data sets completed using the basic definition of treatment effect described in Rubin 

framework. The estimators obtained are called Imputation Based Treatment Effects estimators. A number of 

imputation methods are tested, among them there is Random Imputation, k-Nearest Neighbor, Maximum 

likelihood, Multiple Imputation, Linear and Quantile regressions. Using simulations and bootstrap 

methodology, we found that the best imputation methods in the framework of impact evaluation (on their 

ability to reconstruct data) are Quantile regression, Multiple Imputation and Linear regression. We also found 

that Imputation Based Treatment Effect estimators (taking average) obtained from data imputed are convergent 

and can perform as well as average treatment effects estimators obtained from classical methods mainly 

Difference in Difference, Propensity Score Matching, Instrumental Variable and Regression Discontinuity 

Design. Imputation Based Treatment Effect estimators are then tested on a real program (Lalonde data) and 

the results show that they can perform as well as existing estimators and even better in certain cases especially 

when there is a shortage in data. 

Key words. Average Bias, Estimator, Impact, Imputation, Treatment Effect. 

  

mailto:dongmezobrice@gmail.com


2 
 

1. Introduction 

First works on Impact Evaluation (IE) were done by Rubin in 1970’s. He developed what is called 

today “Rubin Framework” in which he explained how to get the effect of a specific action on a unit 

(Individual, County, Household etc.). Vocabulary used in that framework comes from medical 

experiments. Hence, what he calls “treatment” can be seen as administration of a drug, receiving a 

training, a given implemented policy or something else which is supposed to make a different between 

two groups in the same population. In IE, we are interested in the assessment of a treatment denoted 

by T  on another variable called potential outcome denoted by Y  in a given population. For a treated unit 

i , in the population, our variables take the values 1iT   and 1iY Y  while for a non-treated unit 0iT   

and 0iY Y . Therefore, for a given unit, Rubin defined the causal effect of the treatment T  by the 

following quantity 1 0i i iY Y   . The main problem of IE is, it is not possible to observe at the same 

time 
1iY  and 0iY  only one of them can be observed since units only have one existence: it is what is 

called the problem of counterfactual.  

Talking about counterfactual, it is impossible to compare units before and after only because 

parameters can change with time, this has to be controlled. A group or a twin unit is needed which will 

be close or equal to what would have happened in absence of the treatment. Consequently, all IE 

methods aims at estimating or approximating the counterfactual depending on the status of the unit 

considered. For example, for a treated unit 0i  in the population, IE methods will tend to find a twin 

in the population of non-treated units which is identical to 0i  in all characteristics except in the 

treatment status. Constructing the comparison group or building the counterfactual is done by IE 

method such as have Randomization, Difference in Difference (DID), Propensity Score Matching 

(PSM), Instrumental Variables (IV) and Regression Discontinuity Design (RDD). Assuming that the 

treatment was randomly assigned (Randomized experiments), the counterfactual will be a randomized 

group, with a sample big enough the bias of estimators of   will be very small. Using Matching, the 

counterfactual is a matched group, declared identical to treatment given some characteristics. For DID, 

it assumes constant change over time of control group and removes that effect before comparison. 

For IV regression, the causal effect is identified out of the exogenous variation of the instrument which 

is supposed to be those variables that affect participation in the program, but not outcomes conditional 

on participation. Finally, for the RDD, the counterfactual are individuals just below the cut-off who 

did not participate as the assignment to treatment is decided by the threshold of a given variable. For 

most of these methods, except the Matching, it is difficult to get a single control unit but they provide 
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a control group from which they can compute the average effect of the treatment. In incapacity to get 

individual effects, they will assume that average effect is in fact the same across all units. That is one 

of the biggest weakness of current IE methods. 

As a solution to overcome that drawback, our research proposes to address the problem of IE as 

a full missing data problem like some researchers ([1], [2], [3]) did. More than what they did, the study 

would like to solve it as a full missing data problem. In fact, given that counterfactual is an observation 

that is impossible to obtain in reality, it can be seen as missing value. So as a missing data problem, to 

study the missingness process which is quite close to the assignment of treatment process is the first 

goal. Then, from the missingness process the structure of missing values is studied: what percentages, 

how many variables have missing data, which information do we have to impute and derive the 

appropriate method of imputation taking into account different specificities. As imputation methods, 

the most popular are Conditional mean imputation, K-nearest neighbour imputation, Fuzzy K-means 

imputation, Singular value decomposition imputation and Multiple Imputation. The study shall also 

try Regression modelling imputation especially quantile regression to preserve rank. In addition to 

those methods, some impact evaluation methods like Matching shall be used also, just as the one 

developed by [1], [2] and [3] in IE framework. The idea or the challenge is to come up with one 

imputation method that performs very well as imputation methods in IE framework then from which 

the average treatment effects can be computed to obtain better estimators of impact than the ones 

obtained with classical method. That new class of estimators are called Imputation Based Treatment 

Effect estimators (IB-TE). The main advantage will be to have individual effect which aggregation will 

lead to average treatment effects. Secondly, with imputation methods, it is possible to have the 

treatment effect on the population, on the treated units and also on the non-treated unit depending of 

the type of treatment assigned.  

Among imputation methods used in IE framework, the most popular is regression imputation 

used by [1]. Propensity score matching is also one of the most popular methods used in IE framework 

and as imputation method. We can also highlight the Smooth Quantile Ratio developed by [3] and 

extended by [4]. 

The paper is outlined as follows: Section 2 develops the missingness process in general and then 

missingness in Impact evaluation setting, a focus will be done on the structure of data in practical IE 

setting. Section 3 discusses imputation methods in general, imputation method in IE framework and 

their specificities. Section 4 deals with simulation results in a context of hypothetical data base designed 
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by us. Section 5 discusses an application on a real database drew from an implemented program in 

Kenya. Section 6 concludes and gives some remarks and comments. 

2. Missingness in Impact Evaluation Framework 

This section develops the issue of missingness in IE framework. Recall that, the counterfactual is 

the side of the world that is not possible to observe. If a unit is treated, it is not possible to observe 

what would have happened at the same period if it was not treated. In a similar manner, if a unit is not 

treated, what would have happened if it was treated at the same period is not observed. Instead of 

looking for a twin or a control group (as counterfactual) as all of the IE methods do, the study considers 

counterfactual as a missing value. The side of the world that is not observed is a missing value the aim 

being to impute those missing values and rebuild completely the two parallel worlds.  

Considering the problem of IE as a missing value problem implies that the missingness process 

should be described, then from that the paper shall propose the appropriate imputation method. 

2.1 Missingness mechanism in general 

First works on missing data were done by Rubin ([5], [6], [7]). Close to that, some researcher like 

[8], [9], [10]. Most of those works done starts by the missingness mechanism.  

Prior to presentation of general imputation methods or how to handle missing data problems, it is 

good to know why these data are missing. We present different missing data mechanisms, meaning 

how in our data base missing values appeared? There are 4 main situations where data can be missing: 

✓ Missingness completely at random (MCAR): the probability of missingness is the same for all 

unit in the sample. For a given variable X  in the data base, the probability for an observation 

to be missing does not depend on X  itself and on other variables of the same data base. The 

perfect example will be if the choice is given to respondent to answer to a question or not 

given a random condition (rolling a dice for example). ([11], [12]) 

✓ Missingness at random (MAR): Most missingness is not completely at random, as can be seen 

from the data themselves. Probability can depend on an auxiliary variable in the same survey. 

Respondent can decide to answer or not, or interviewer may forget to ask some question to 

respondents. A more general assumption, missing at random, is that the probability a variable 

is missing depends only on available information. Thus, if for example sex, race, education, 

and age are recorded for all the people in the survey, then “earnings” is missing at random if 

the probability of nonresponse to this question depends only on these other, fully recorded 

variables. ([12], [13]) 
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✓ Missingness that depends on unobserved predictors (NMAR): Missingness is no longer “at 

random” if it depends on information that has not been recorded and this information also 

predicts the missing values. There are some underlying unobserved factors that could lead 

people not to answer a given question and they can differ from a person to another one. 

Therefore, the probability of missingness is different across unit in our survey. An example is 

when during a survey a corrupted person is not going to declare his revenue because he knows 

that if he declares he can be exposed to pursuit so because of corruption (information not 

recorded) the data will be missing. ([13]) 

✓ Missingness that depends on the missing value itself: Finally, a particularly difficult situation 

arises when the probability of missingness depends on the (potentially missing) variable itself. 

This often happens because of the value itself like people are unlikely to reveal a high income 

to avoid to be exposed. ([13]) 

All these types of missingness can happen during survey and can be observed in data base depending 

on variables and the data collection process. To identify the type of missingness, the final database 

ultimate user should be close to the data base constructor or be involved in data collection. The most 

frequent type of missingness mechanism is MAR. Practically, it’s the one which can easily happen.  

2.2 Missingness type in IE framework 

In IE framework, considering that the missing value is supposed to be the counterfactual, the 

missingness will be linked to the treatment assignment process. For each type of treatment assignment 

process, the missingness mechanism will follow. In fact, being treated means that what would have 

happened in the absence of treatment is missing. In IE settings, we can distinguish three main 

assignment to treatment processes:  

✓ Randomization: this means that the treatment or the treated group is randomly selected from 

a population. All units have the same chance to be selected or not in the treatment group. This 

process is usually observed in medical sciences when testing a new drug with a placebo. From 

this selection process, the missingness mechanism is MCAR;  

✓ Selection under fixed criteria: in this case, the probability to be selected in the treatment 

group differ from one unit to another. All units don’t have the same probability to be treated. 

Therefore, assuming that there is no other unobservable characteristics that can influence the 

probability to be in the treatment group, the missingness mechanism is MAR. But if there are 



6 
 

other factors that can modify the probability to be treated that are not recorded, the 

missingness mechanism is NMAR;  

✓ Selection given a single variable (RDD): In this case, given a variable (revenue for example), 

the decision maker can fix threshold and say below the threshold you are treated and above 

you are not. Being in the treatment group depends on both observable and unobservable 

characteristics that determine your score on the selected threshold variable. In this case, the 

missingness is NMAR.  

Except the randomization which is not common (only in medical studies), the missingness mechanism 

will be with a high probability a NMAR in the framework of impact evaluation. Let us therefore 

consider imputation methods according to the fact that missingness is at not at random at all but 

depends on some unobservable parameters or existing unquantifiable parameters that it is not possible 

to take into account in our analysis. Meanwhile, having many covariates or predictors in the dataset 

and including all of them can help to move from the NMAR hypothesis to the MAR hypothesis of 

missingness the aim being to control the missingness process or assignment to treatment process.  

2.3 Different structure of data in IE 

In practice, assignment process in a program is not clear especially for programs or projects ran in 

developing countries. In fact, given political issues, corruption and other factors, probabilities are not 

well mastered therefore the missingness cannot be MCAR but it is for sure MAR. In addition to the 

issue of assignment process, it is difficult to have data before and after the treatment administration. 

Usually data are just collected after the treatment because of budget issues, knowing who is treated 

and who is not.  

For the structure of data, this study distinguishes two cases:  

Case 1: Data are collected before and after 

That case is usually the best situation that an impact evaluator can have because with data before 

and after, almost all IE methods can be applied in this situation. In the data base, there is a variable 

representing the treatment (T ), the treated group ( 1T  ) and control group ( 0T  ). For each unit, 

there is a set of covariates ( X ) which can contain one or many other variables. We also have the 

potential outcome before ( bY ) and the potential outcome after ( aY ). It is true that even if we have data 

before and after, the set of covariates can be absent but usually it is available in that case. In summary, 

the data set is as follows:  , , ,b aY T Y X  assuming that the set of covariates does not change in time. 
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With change, the set looks like:  , , , ,b b a aY X T Y X . Applying IE methods and Imputation methods is 

done without extra difficulties.  

Case 2: Data are just collected after the treatment 

This case is where data are only collected after the treatment assignment. The probabilities of 

treatment are not well mastered and there is an important data shortage. It can be difficult to obtain 

the variable treatment (T ) because of lack of information about the background and the reasons for 

the program. This is usually the case in developing countries. Within this case we can have two sub 

cases. First one is when there are no covariates collected because of budget shortage therefore the data 

base will look like: ( , )aY T ;  Second one if there is the set of covariates, the dataset is: ( , , )aY T X . 

Applying IE methods here comes with additional difficulties that weaken the power of estimators of 

impact evaluation. Likewise, applying imputation methods will be more difficult and results can suffer 

from that.  

Imputation methods and IE methods to be used will take into account the structure of the data at 

our disposition. Of course, within the first case many methods are possible and the results will be more 

accurate. Although within the second case, our possibilities are limited and the results will be less 

precise.  

 

3. Customized Imputation Methods 

Facing missing data issues, the default methods in most of software is Listwise deletion or 

Complete case analysis. If a case has a missing value for one of the variables, simply exclude that 

case and run analysis. This method is excluded in this context, it is not possible to exclude cases because 

the classical methods of IE behave a bit like the latter and the consequences are probably a small 

sample for analysis, therefore a high variance for some estimators like mean. Another default method 

is called Available case analysis which recommend for a given variable to delete all cases with missing 

values and run analysis. This method will lead to indicators constructed on different sample sizes or 

on different subset of the database so they cannot be inferred on the population in the same way. Even 

Nonresponse weighting is not suitable for our context given that our research would like to catch 

specificities of effect on different case in our sample. In our work, given our main problem, missing 

data solutions that retain all the data is preferred therefore Imputation methods.  

This section first discusses the classical imputation methods used in the literature. They are 

classified into two main categories: Methods that don’t incorporate random variation and Methods 

that incorporate random variation. After that, some IE methods, actually few IE methods using 
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partially imputation to perform are presented. Thirdly, a choice is made, according to the problem of 

IE and the structure of data, on the type of methods suitable for IE imputation. Finally, a short 

presentation of imputation based treatment effect estimator is given. 

3.1 Classical Imputation Methods 

As we said earlier, our research focuses on methods that conserve all the cases in the dataset. Delete 

some case is not an option here. Classical imputation methods are divided into two main groups. Let’s 

assume that our variable of interest with missing observation is Y  and the set of covariates without 

any missing observation is X . To simplify notation, forget about the indexes specifying the case. A 

missing observation in the set is denoted by mY  and a non-missing one by nmY . Of course, the 

corresponding covariates will be mX  and nmX  but it does not mean that they are missing.   

3.1.1 Imputation methods that doesn’t incorporate random variation 

The main characteristic of these methods is that the missing value is replaced by a single estimator 

of the true value. They are deterministic methods meaning that there is no randomness in the set of 

values used for imputation. Running the same method on the same sample will always produce the 

same imputed values for unit missing with the same characteristics.  

Mean Imputation and Conditional Mean Imputation 

This method can be applied on any type of dataset, with or without covariates. It recommends to 

replace the missing value by the mean of the missing variable obtained using the non-missing 

observations. The user can just replace the missing observations in Y  by the marginal mean directly: 

( )m nmY E Y  or knowing some properties of Y , conditional mean can also be used. The mean of Y  

given certain existing covariates X  in our dataset: ( / )m nm mY E Y X x  . For example, if among our 

covariates, there is a variable sex and our variable of interest is determined by sex, we divide our sample 

into two groups: male and female, then perform mean imputation in each group. It is the most used 

method even if it leads to biased estimates and low variance and covariances (generally underestimate 

variances). 

Nearest Neighbours Imputation  

To apply this method, a database with a set of covariates is absolutely needed. The first step of this 

method is to define what is a neighbour using the set of covariates X . To define a neighbour, there is 

need to define a distance between case. The default distance is the Euclidian distance: 
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2 ( ) '( )ij i j i jd X X X X   . We can also use the Mahalanobis distance by introducing a transfer matrix 

in the Euclidian distance. After defining a distance, the user can now decide for a given missing value 

which case is close to it or not. You can replace the missing observation by the value of the nearest 

neighbour or by a fixed k  nearest neighbour (averaging) or use a value obtained by all the data set 

weighting each available case by the inverse of the distance between the missing case and all of them 

(weighting average). The simulation in this study used the Gower distance developed by [14] which 

aggregate all the distances between two points for each variable in one single quantity. The distance 

was included in the package VIM on R by [15].  

Last value carried forward 

This method recommends to use the last value known about the variable for imputation. It means that 

if we have another survey, collecting the same information a time before the actual survey, from that 

survey you take information from the same variable and impute to the missing value in the actual data 

set. This method assumes the value doesn’t change much with time. It can be true for some variables 

like sex but it is not always true. In our framework of IE, this method cannot be used because one of 

the main assumptions is that potential outcome changes with case and time no matter the time elapsed.  

Regression to perform deterministic Imputation 

The method is a model based method. It uses econometric (linear regression model or quantile 

regression for example) to build a model with available cases of Y  and their corresponding covariates. 

The deterministic part of that model is used to predict the missing values given that all the value of 

covariates for each of them are known: ( )m nmY f X . The main advantage of this method is the fact 

that it uses all information available on different units to predict the missing value. The disadvantages 

are it overestimates model fit and correlation estimates and weakens variance of the variable Y . 

Simple random Imputation (Hot deck imputation) 

This method recommends to randomly select a set of available cases among our non-missing 

observations and impute them to the missing observation. Or for each missing observation, randomly 

select another one among the set of observed data and impute: (1, )m nmY Sample Y . This method is 

quite simple and looks interesting but for some database and if you want to perform some specific 

studies, results can be very bad. It doesn’t take into account of covariates if they are available, 

consequently you can have some atypical case for example a 12 year old child with a PhD as school 
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level. This method is suitable if the population is stratified according to some determinant of our 

variable of interest. 

3.1.2 Imputation methods that do incorporate random variation 

This group of methods is characterized by the fact that it allows for randomness in the prediction 

of missing values. Running this method n  times in a given sample may produce n  different values for 

a single imputation. Some of the methods presented here can be repeated then the final imputed value 

will be the average of the different output obtained during repetition. 

Regression to perform random Imputation 

This imputation method is almost the same as regression presented in the previous section. It also uses 

suitable econometric models to build a function of covariates that are going to be used to predict the 

value of the missing observation. The difference now is the error. After estimation of the coefficients 

of the regression, we obtain the deterministic part of the model and the error. Knowing the distribution 

of the error, this method recommends to generate for each predicted value an error and add to the 

deterministic part to obtain the final predicted value. The result is of the form: ( )m nm mY f X  , with 

m  following a specific distribution determined by the econometric model. The main advantage here 

is the fact that the variance of the variable is preserved helped by the randomness of predicted values. 

The drawback is the same, estimation of coefficient comes with some bias because the coefficient that 

we are using in the model are not the true coefficients but just estimators which of course brings 

another bias.  

Multiple Imputation (MI) 

Among imputation methods, Multiple imputation is one the most interesting methods. The main 

objective of this method is to replace the full set of missing values by different sets of a possible 

candidate provided (each set) by different methods or by a single method allowing random variation. 

Multiple Imputation is a simulation procedure and the aim is not to obtain imputed values close enough 

to the real one but obtain acceptable estimators from the completed data bases ([16], [17]). 

Multiple imputation involves three main steps:  

a) For each missing observation, generate m  imputed values to obtain m  completed sets 

of data. After identifying which variable has missing values, the user should identify the 

missingness pattern and then decide which imputation methods to use keeping in mind that 

each should allow for randomness; 
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b) Analyse the m  set of completed data using standard procedures to produce estimators 

that we want. In our case, each completed data set will produce a treatment effect given the 

missingness process and the imputation method chosen; 

c) All the estimators produced from each completed data set are combined to form a 

single set of final estimates of the parameters of interest. In this step, the average can be 

used to obtain the final parameters with a standard deviation and confidence interval.      

As advantage, this method can be used with any kind of data and model. It is simulation based therefore 

any user good in programming can perform it in any software. When data is MAR, Multiple Imputation 

can lead to consistent, asymptotically efficient, and asymptotically normal estimates. The main 

drawback is instability of the method. Because of randomness, different users can perform it and 

obtain totally different results. Even the same user, every time you run the program, you obtain 

different results hopefully slightly different. In the simulations, the MI method used generates 

Multivariate Imputations by Chained Equations (MICE). In the MICE procedure, a series of regression 

models are run whereby each variable with missing data is modeled conditional upon the other 

variables in the data. This means that each variable can be modeled according to its distribution, with, 

for example, binary variables modeled using logistic regression and continuous variables modeled using 

linear regression. 

Maximum likelihood Imputation (ML) 

This method is used to obtain the variance-covariance matrix for the variable in the model based on 

all the available data points, and then use the obtained variance-covariance matrix to estimate the 

regression model ([16], [18]). This method is quite simple if you use an appropriate software, you only 

need to specify your model of interest and indicate that you want to use ML. Theoretically, the basic 

idea is the following. Given a set of data with n  independent observations and 1k   variables 

1( , ,..., )i i kiy x x  and assuming that there is no missing data in that set, the likelihood function is given 

by:  

1

1

( , ,..., ; )
n

i i i ki

i

L f y x x 


  

Where (.)if  is the joint probability function of i  observations and   the set of parameters to be 

estimated. The ML estimates are the values of   that maximise L. Now, in the specific case of this 

research, suppose that for some observations i , the first variable Y  has missing data that satisfies 

MAR assumption of missingness. Now the joint probability of the observed data is given by:  
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*

1 1( ,..., ; ) ( , ,..., ; )i i ki i i i ki

y

f x x f y x x dy    

For each observation’s contribution to the likelihood function, we integrate over the variables that 

have missing data, obtaining the marginal distribution of observing those variables that have actually 

been observed. 

Considering that there are m  missing observations in the first variable over n ,  ordered such that the 

first n m  lines are completed and the last m   have missing data, the likelihood function of the full 

data set becomes  

*

1 1

1 1

( , ,..., ; ) ( ,..., ; )
n m n

i i i ki i i ki

i i n m

L f y x x f x x 


   

   

This likelihood function can then be maximized to get ML estimates of   using several different 

methods. 

There are two main ML methods:  

a) Direct Maximum Likelihood: implies direct maximization of the multivariate normal 

likelihood function for the assumed linear model.  

b) The expectation – Maximization (EM) algorithm: provides estimates of the mean and 

covariance matrix which can be used to get consistent estimates of the parameters of interest. 

For the simulation, the R package MissMech is chosen. Two options are used to perform ML: firstly 

the program assumes that data follow a multivariate normal distribution then secondly no assumption 

is made on the distribution but a maximization algorithm is used to obtain the covariance matrix.  

 

3.2 Imputation Based IE Methods 

Imputation based on IE methods are developed initially to obtain the impact of a treatment on a given 

population. Some of them were designed to give an average impact but here they are going to be used 

as imputation method to obtain cases effects of a treatment. The main hypothesis here is 

unconfoundedness Unconfoundedness, meaning that given covariates taking the treatment or not is 

independent of the potential outcome.  

Regression imputation seen by [1] 

Given a data set ( , , )Y T X  of data, following the work done by [1], under assumption of 

unconfoundedness, Hahn defines:  

1 1 1( / ) ( / ) ( / X ) (Y / X ) ( / X ) ( )i i i i i i i i i i i i iE TY X E TY X E T E E T X    
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and at the same time:  

0 0 0((1 ) / ) ((1 ) / ) ((1 ) / X ) (Y / X ) ((1 ) / X ) ( )i i i i i i i i i i i i iE T Y X E T Y X E T E E T X        

From these two equations, it follows that:  

1 1 0 0

ˆ ˆ( / ) ((1 ) / )ˆ ˆˆ ˆ( ) ( )
ˆ ˆ( / X ) 1 ( / X )

i i i i i i
i i i i

i i i i

E TY X E T Y X
Y X and Y X

E T E T
 


   


 

The quantity 1
ˆ ( )iX  is estimation of the value of potential outcome that unit i  would have taken if 

it was treated (in this case unit i  is not treated). Likewise, 0
ˆ ( )iX  is estimation of the value of potential 

outcome that unit i  would have taken if it was not treated, in absence of treatment on him (in this 

case unit i  is treated). Therefore, under treatment for any unit treated in the population: 

1 1
ˆˆ (1 ) ( )i i i i iY TY T X    and under control 0 0

ˆˆ (1 ) ( )i i i i iY T Y T X   . Now estimation of the mean 

equation 1
ˆ ( )iX  and 0

ˆ ( )iX  is the choice of the statistician. Among methods than can be used, there 

is OLS regression, Non-parametric regression, or even simple sample mean or any other method link 

to regression methods. At the end of imputation, a completed data set is obtained from which 

estimations can be done. Hahn proposed a nonparametric method for imputation. In this research, a 

parametric imputation (OLS regression by quantile if possible) and a quantile regression imputation to 

take into account of the distribution of the potential output and try to keep rank or quantile are 

proposed.  

Propensity score matching Imputation 

The matching imputation is based on the calculation of two propensity score function. The first one 

is computed in the control group 0
ˆ

ip  and the second one 1
ˆ

ip  in the treatment group ([19]). Now the 

matching exercise shall be done in each group. In the control group as well as in the treated group, the 

values considered as missing values shall be imputed by the matching algorithm. Among the different 

types of matching, there is one-to-one matching, nearest-neighbor (NN) matching, caliper and radius 

matching, stratification and interval matching, kernel matching and finally local linear matching (LLM).  

For example, the Kernel Matching imputation is given by:  
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The quantities *

0N  and *

1N  are the respective numbers of control units and treated units after a 

given number of imputations. The two numbers vary and express the fact that imputed unit are used 

in the process of imputation. The quantity *

kjY  is the potential outcome of individual k  in the group j

, thus *

kjY  can be a non-imputed value or an imputed value depending on the number of imputation 

done. It is a kind of iterative imputation method.  

Smooth Quantile Ratio (SQUARE) Imputation 

The intuitive idea behind the SQUARE imputation is to replace empirical quantiles by theoretical 

quantiles using some assumption on the structure of data and/or the distribution of one of the groups. 

The SQUARE estimator was first developed by [3]. The method was used to proposed an estimator 

of the mean difference between two highly skewed distributions. We are going to use it as a quantile 

imputation method for estimating the distributional impact of a treatment.  

Considering the general form developed by [4], they define:  

1

0

Q ( )
( , ) ( , )

Q ( )
h S X


    



 
  

 
 

With h  a chosen function according to the structure of data, S  and X  are smoothed regression 

function and   is the smoothing parameter. If we replace the quantile 1Q  and  0Q by the empirical 

quantiles represented by the ordered data 
( )1iY  in the treatment group and 

( )0iY  in the control group 

we get:  

     
1

* 1 * 1

( )1 ( )0 ( ) ( )0 ( )1 ( )
ˆ ˆ( , ) ( , )i i i i i iY Y h X and Y Y h X     


    

By doing that, the method replaces or completes the sample by smoothed quantile estimation of 

missing values. Therefore, from that sample one can compute whatever estimator we want including 

QTE estimators. Unfortunately, this method doesn’t suit the objective of imputation here which is 

point imputation not quantile imputation. 
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3.3 Quantile Regression Imputation 

This research proposes to use quantile regression as imputation method to achieve the objectives. 

In fact, neither in the literature on imputation nor in the IE literature, no one has used literally quantile 

regression as imputation method. The advantage that IE data can provide is having data before and 

after the treatment. Assumption that is made here is the following: The effect of the treatment is 

monotonous. This assumption means that the treatment preserves the rank of the potential outcome 

after the treatment (in this case not the rank but the quantile). The treatment preserves the quantile of 

cases after the treatment. It is weaker than the rank preservation or the constancy in the impact of the 

treatment that many IE methods uses.  

Given a potential outcome Y , the cumulative distribution function is defined by 

( ) ( )YF y P Y y  . As reminder, the order   quantile is given by ( ) inf{ : ( ) }Yq Y y F y   . If YF  is 

continuous, the classical definition is valid: ( ( ))P Y q Y   . Basically, quantile regression tries to 

evaluate how conditional quantiles defined by ( ) inf{ : ( ) }
Y X

q Y X y F y    change with change of 

the covariates X  considered as determinant of the potential outcome. In fact, there is no reason to 

consider that the effect of X  is the same over the distribution of the potential outcome. 

In the standard quantile regression, the assumption made is that the conditional distribution is a linear 

function of covariates meaning: ( ) 'q Y X X  , for every   we have a vector of coefficients 

1 2( , ,..., )p        corresponding to a set of covariates with p  independent variables. To use the 

classic linear regression, the quantile regression can be written as following: 

' , ( ) 0Y X with q X         

Here, the coefficients of the regression are allowed to change from a given quantile to another one. 

From that basic model of quantile regression, different variants can be defined:  

• Simple shift quantile regression model when independent variables do influence only the 

mean of the potential outcome (not on the Variance for example). In this case, conditional 

distributions (
Y X x

F


) are parallel when x  changes. So, ( ) ' ( )q Y X X q    . The 

coefficients are the following 
1, 1 ( )q      for the constant and for the rest of variables, 

,k k   for 1k  . There is a homogeneity on the slope for each quantile as the model looks 

like a homoscedastic model;     
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• Scale quantile regression model where by independent variables do influence the mean and 

the variance of the potential outcome. It is a kind of heteroscedastic model where 

( ) '( ( ) )q Y X X q     . In this case, the coefficients are ( )q      . Impact of 

covariates is different for different quantiles therefore there is heterogeneity in slopes induced 

by the parameter  . 

In general, to have a regression model where the coefficients are linked to the covariates and the 

changes in the dependent variable; it is recommended to use what is called Random coefficient models. 

Quantile regression is one of them. Those models allow the regression coefficient to change according 

to changes in the dependent variable and the covariates. The general form is:  

' ,UY X   U  independent to X  and following a uniform distribution on  0,1  

The function ' uu x   is strictly increasing for every x . In that model, U  can be seen as unobserved 

characteristic which affects the position of the unit in the distribution of the potential outcome Y . 

This model generalised the two models presented early: the Shift model if for 1k   the coefficient 

does not depend on U  meaning 
,k U k   and the Scale model if the coefficient is defined as 

( )U Uq     .  

In the case where U  is defined by the quantile on Y  (independence of U  and X  is verified, and the 

increasing property also), the coefficient   is interpreted as follows: a marginal change of covariates 

X  no matter the quantile (independently of U ) is reflected on Y  by the coefficient  . Therefore, 

  is the marginal effect of X  for units in the 
th  quantile of the distribution of unobserved 

characteristics U  .    

In this research, the model built using quantile regression or more generally random coefficient 

models will be used for imputation. In fact, having information before and after the treatment allows 

us to have the initial quantile of all units. Then, making the assumption that the treatment is 

monotonous (Monotonicity assumption) helps us to identify which model will be used to impute which 

missing value after the treatment is assigned to all units. 

3.4 Imputation Based Treatment Effect (IB-TE) Estimator 

As described earlier, the aim of imputation is to estimate counterfactual in a program. From the basic 

definition of treatment given by [5], 
1 0i i iY Y   , one of the quantities is unknown. If the unit i  is a 

treated unit, 0iY  is not observed therefore it is a missing value and has to be imputed using information 
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on characteristics non-treated units of the population. Similarly, if unit i  is a non-treated unit, 1iY  is 

not observed and is considered as a missing value that has to be imputed using information on treated 

unit characteristics of the population. Applying imputation method leads to an estimation of the 

counterfactual 0iY  or 1iY  depending on the status of the unit. Let’s consider 
1iY  and 

0iY  as imputed 

values of counterfactual. An estimation of the effect defined by Rubin is given by 1 0
ˆ

i i iY Y    if the 

unit is treated and 1 0
ˆ

i i iY Y    if the unit is not treated. From that single unit estimator, the following 

quantities can be defined:    

     

   

   

1 0 1 0

1 0

1 0

ˆ_ 1 0

ˆ_ 1 1

ˆ_ 0 0

i i i i i

i i i

i i i

IB ATE E E Y Y T E Y Y T

IB ATT E T E Y Y T

IB ATNT E T E Y Y T

       

     

     

 

They are respectively the Imputation Based Average Treatment Effect in the population (IB-ATE), on 

Treated units (IB-ATT) and on Non-Treated units (IB-ATNT). Each imputation method produces its 

own IB-TE estimators. As estimators, the properties are studied empirically in the next section. 

Simulation and Bootstrap are used to study asymptotic bias, asymptotic convergence and average bias 

is used to compare them together and with classic IE estimators.  

4. Simulation and Summary of Results 

The first objective of this section is to use simulation to test our hypothesis that imputation 

methods can lead to better estimators of average impact than IE estimators or at least as good as 

existing ones. The second objective is to come up with the best imputations method that best complete 

the data set, those are going to be used in the next step of our research which is to obtain the 

distributional effects of a program through quantile treatment effect. In this section, description of 

simulation procedure and parameters is done, then simulation are performed under Random 

Assignment (MCAR missingness) hypothesis and under Deterministic Assignment (MAR missingness) 

hypothesis. 

4.1 Description of simulation procedure 

The aim of this simulation is to come up with the best imputation methods, two or three, suitable 

for impact evaluation framework. Best in terms of imputation of course but also in terms of 

performance of imputation based estimators of average effect produced by the given imputation 

methods.  
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The simulation recreates a hypothetical situation where a treatment (project or program) has to be 

assigned in a population with all the parameters being known. For example, assignment process is well 

known, the potential outcome is known, decision to treat everyone or not to treat everyone can be 

taken so that computation of the true impact of the project can be done easily. In brief, all parameters 

are mastered and they can be modified to obtain different results according to the objectives fixed. 

Therefore, for a given assignment process (impact evaluation method), simulation results will tell which 

imputation method is suitable and why. Imputation methods will be judged at two levels: first the 

capacity to complete faithfully the initial dataset that can be used to better estimate the true impact of 

the treatment (compare the impact got from completed data set with the one got from uncompleted 

data set and the true value simulated) and second, the capacity to reconstruct the exact value of the 

missing observation (RMSE indicators are used). After imputation, Imputation Based average 

treatment effects are produced and compare to existing ones in IE framework. 

In the simulation process, a data base of 10,000 cases is generated. The potential outcome ( bY ) 

and the covariates before the treatment assignment or before the program are generated. Since we are 

in the simulation, a situation where by all units are not treated ( 2NTY ) and a situation where all units are 

treated ( 2TY ) is simulated at the same time. From that, the true average impact of the treatment is 

computed in the overall population as follows 2 2( )true T NTATE mean Y Y  .  

The next step now is to create the treatment variable (T ), by deciding which case is treated and 

which case is not treated according to the assignment process decided. In this study, two cases are 

decided: Random assignment leading to MCAR missingness mechanism and Controlled assignment 

leading to MAR missingness mechanism. If 1T   the case is treated and if 0T   the case is not 

treated. From this stage of simulation, the true average impact of treatment in the population can be 

computed by: 2 2( 1)true T NTATT mean Y Y T   .  

The potential outcome in the real world is now generated in the variable aY  as follows: 

• For non-treated ( 0T  ), 2a NTY Y , the value of 2NTY  is just reported when 0T  ;  

• For treated ( 1T  ), 2a TY Y , the value of 2TY  is just reported when 1T  .  

Using aY  the potential outcome with missing values are generated ( TY and NTY ), if you are treated, 

what would have happened if you were not treated is a missing value and also if you are not treated, 

what would have happened if you were treated is consider as a missing value.  
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✓ For treatment case, create TY  as follows: report all observations of potential outcome for 

treated and for non-treated consider as missing values: T aY Y  if the unit is treated and 

. ( )TY miss  if the unit is not treated and has to be imputed;  

✓ For non-treatment case, create NTY  as follows: report all observations of potential outcome 

for nontreated and for treated consider as missing values: NT aY Y  if the unit is not treated 

and . ( )NTY miss  if the unit is treated and has to be imputed. 

Knowing that in our simulation we hypothetically have all of them, the aim is to estimate them 

using imputation methods and on the way, compute the associated imputation based estimators. Those 

estimators will be compared to the true values and the IE estimators produced by classical methods 

like Randomization, Difference in Difference, Matching, Instrumental variable regression and 

Regression Discontinuity Design.  

The final data base after simulation of population looks like:  

MATRIX OF DATABASE AFTER SIMULATION OF POPULATION 

 Bef treatment Hypothetical  Aft Treatment Pot Out With miss 

Case N° bY  bX  2TY  2NTY  T  aY  aX  TY  NTY  

1          

2          

.          

.          

.          

i  ,b iY  
,b iX  

2 ,T iY  
2 ,NT iY  1 ,a iY  

,a iX  
,T iY  . 

j  
, jbY  

, jbX  
2 , jTY  

2 , jNTY  0 , jaY  
, jaX  . , jNTY  

.          

.          

.          

N           

 

Y  denote the potential outcome;  

X  a set of covariates collected for identification of each case;  

T  is the treatment indicator for treated (1) and non-treated (0); 

b  index means before the treatment;  

a  index means after the treatment;  

2TY  is the hypothetical outcome if everyone is treated;  

2NTY  is the hypothetical outcome if everyone is not treated; 

TY  is the potential outcome in which non-treated cases are considered as missing values;  
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NTY  is the potential outcome in which treated cases are considered as missing values; 

With 
, ,a i T iY Y  and 

, j , ja NTY Y .   

Under the large class of existing imputation methods, the chosen ones are: Mean imputation, 

Random imputation, Linear regression imputation (deterministic and random), Nearest Neighbour 

imputation, Multiple Imputation, Maximum Likelihood imputation, Propensity score matching 

imputation and finally Quantile regression imputation which is not commonly used.  

To test the performance of imputation methods, the Root Mean Squared Error is computed and 

comparisons are made among different methods. To test the performance of our computed 

Imputation Based Average Treatment Effect estimators (IB-ATE), the average bias is computed             

( ˆ( )AvrgBias E    ) and compared to the one for existing IE methods. Of course, this is done 

under a bootstrap procedure of 1000 replications.  

4.2 Random Assignment hypothesis results (MCAR)1 

Assuming that the treatment is randomly assigned as in medical experiments for a new drug, the 

first consequence is the missingness process which is MCAR. A proportion of treated is fixed to be 

40% of the total population (binomial distribution of parameter 1 and 0.4 for the population) and for 

the simulation we made sure that each sample draw from the population had the same proportions. 

The IE methods implemented here were Randomization (RA), PSM and DID. The performance of 

the IE estimators is evaluated using the average bias and the performance of imputation methods 

among them is evaluated using the RMSE.  

For all purely IE methods, the estimators (ATE and ATT) were asymptotically convergent. The 

average bias was decreasing as the sample size was increasing. The best method among no matter the 

size of the sample was DID. For example, the average bias for N=50 was 0.5 for DID, -5.8 for PSM 

and finally -7.1 for RA. Also for N=1500, the average bias was close but the DID bias was still the 

smallest. At the same time, the standard deviation was always small for the estimators of DID. In 

consequence, the DID was the best one among the IE methods (see Appendix 2 for more details).  

When we look at the results of imputation methods, we found that three imputations methods 

were indisputably the best for all sample sized. The best one was Quantile regression (QR Imp), the 

second best was Deterministic Linear Regression (Det LM) and the third one was Multiple Imputation 

(MI). They always recorded the smallest RMSE, and that RMSE was decreasing with sample size. 

                                                            
1 See Appendix 2 for an example of bootstrap simulations more detailed on this section 
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Looking at the performance of imputation methods related to impact evaluation estimators, estimators 

of all of them were asymptotically unbiased except for the PSM as imputation method and the QR 

Imp. For those two methods, the bias was increasing for large sample size especially for ATT. As 

example, for N=800, the bias was -148 for PSM ATT and -33 for QR Imp ATT.  

For the convergent estimators, the bias was decreasing and tend to 0 as the sample size was 

increasing. According to the sample size, the best Imputation Based Treatment Effects Estimators 

(IB-TE) were changing. For N=50, the best was QR for ATE and Deterministic Linear regression for 

ATT. For N=100, the best one was random linear regression imputation for ATE and k-NN for ATT. 

For large samples, N=1500, the best one was ML imputation for ATE (-0.0205 average bias) and mean 

imputation for ATT (-0.0163 average bias). On average, the best IB-TE estimators no matter the 

sample size was the Maximum Likelihood (ML) and Deterministic Linear Regression model (Det ML), 

methods which was always among the three best IB-TE when changing the sample size. For the case 

of mean imputation, IB-TE and IE estimators are the same theoretically and empirically. Increasing 

the sample size (N=2000 see appendix) leads to very good estimators as good as DID estimators.  

Table 1: Average bias of treatment effect estimators given the sample size (MCAR) 

General summary of 
results 

Average Bias 

N=50 N=100 N=200 N=500 N=800 N=1500 

ATE ATT ATE ATT ATE ATT ATE ATT ATE ATT ATE ATT 

IE 
Meth 

RA -7.1 -7.4 -2.6 -2.4 1.508 1.464 0.665 0.662 -0.2277 -0.3652 0.081 -0.0163 

PSM -5.8 -3.5 -2.3 -1.3 1.476 0.237 1.067 1.82 -0.8602 -0.5916 -0.5571 -0.3682 

DID 0.5 0.2 -0.1 0.1 0.066 0.022 0.069 0.066 0.2315 0.094 0.089 -0.0083 

IB 
Results 

Mean 
Gen -7.1 -7.4 -2.6 -2.4 1.508 1.464 0.665 0.662 -0.2277 -0.3652 0.081 -0.0163 

Condi -7.4 -7.7 -2.3 -2.2 1.581 1.484 0.705 0.654 -0.1764 -0.3013 0.0837 -0.0376 

Rand 
Imp 

General -8.3 -12.1 -2.3 -1 0.887 1.325 0.057 0.681 -0.4384 -0.4303 0.0742 0.1673 

Hot-deck -7 -5.4 -2.4 -1.4 0.916 -2.499 0.177 0.53 -0.5034 -0.1834 -0.1004 0.3516 

Det LM -4.6 -4.5 -2.1 -1.4 0.181 -0.062 0.667 0.646 -0.0167 -0.1851 -0.264 -0.2871 

k-
NN  

V1 -5.5 -7.3 -2.6 -0.1 0.974 -0.412 0.645 1.235 0.058 0.3965 -0.189 -0.4415 

V2 -5.4 -6.9 -1.9 1.6 0.996 -0.37 0.797 1.679 0.0439 0.5487 -0.1389 -0.3363 

Rand LM -7.1 -8.7 -1.4 -3.5 0.773 0.884 0.76 0.264 -0.2642 -0.478 -0.2268 -0.4668 

MI Mice -6.8 -7.2 -1.9 -0.3 0.705 -0.384 0.655 1.03 -0.0967 -0.0561 -0.4629 -0.3876 

ML 
Imp 

Normal -4.5 -5.3 -2.1 -1.9 0.624 -0.168 0.615 0.082 -0.1837 -0.4964 -0.0205 -0.2943 

Dist-free -6 -5.8 -2.7 -2.4 0.312 -0.363 0.637 0.693 0.1239 -0.3309 -0.2242 -0.3261 

PSM Imp -9.4 -11.6 -14.2 -15.7 -32.0 -29.9 -90.0 -91.2 -148.1 -148.0 -198.4 -198.5 

QR Imp 2.7 -30.8 5.5 -31.4 6.072 -32.096 7.138 -32.239 6.92 -32.59 6.8 -32.8 

Source: Our simulation with R 

We now want to compare the IE estimators with IB-TE estimators. Since all of them are 

asymptotically convergent we compared them using the speed of convergence and the standard 

deviation in certain cases. For N=50, the DID was better than all IB-TE estimators, average bias of 
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0.5 for ATE and 0.2 for ATT far smaller than average bias of others IB estimators. As the sample size 

increased, the average bias of IB-TE were close to the average bias of DID which is the best method 

used in IE framework. For example, N=100 the average bias of DID was -0.1 for ATT and it was the 

same average bias for k-NN method. For N=200, the average bias of DID was the smallest for ATE 

and ATT but quite close to the best IB-TE estimators. When increasing again the sample size, from 

200 to 500, the average bias was respectively 0.069 and 0.066 for ATE and ATT for the DID method 

and 0.057 for ATE Random imputation and 0.082 for ML ATT imputation. Imputation performs 

better than DID for ATE but quite close for ATT. For N=800, k-NN performed far better than DID 

for ATE (0.04 against 0.23 for average bias) and also MI performed better than DID for ATT (-0.05 

against 0.09 in terms of average bias). For larger sample, there was always an IB-TE estimator 

performing better than DID estimators or as well as.  

To summarize, it is true that the DID methods gave better results on average for all sample given 

the standard deviation and compared to a single method of IB-TE but at the same time for some IB-

TE estimators, the average bias was smaller than the average bias of DID even if the standard deviation 

was bigger. In addition, to implement the DID method, the used need information before the program 

which is not always available. In that case, DID is not applicable and the second-best IE methods is 

PSM which is less better than IE method especially ML imputation of k-NN no matter the sample 

size.  

4.3 Assignment controlled by Variables (NMAR or MAR)2 

Assuming here that the treatment is not randomly assigned but depends on a given variable called 

instrument (A single variable in this simulation to simplify), the missingness process is MAR. From a 

population of 25000 units, a proportion of 40% of unit was drawn around a given threshold fixed on 

the instrument. This was done to be able to apply at the same time the IV regression and the sharp 

RDD. From that subpopulation around the threshold, we have drawn our sample with an increasing 

sample size making sure that the share of treated in each sample is 40% as in the previous experiment. 

Finally, repeating what is done in the first case, IE methods and imputation methods were applied in 

each sample to obtain best IE estimators and best imputation method.  

When looking at the results of the simulations recorded in table 2, all the average bias of IE 

methods was decreasing meaning that the estimators are asymptotically convergent or unbiased. When 

looking at the variance of each estimator, it was also decreasing to zero. DID method is almost the 

                                                            
2 See Appendix 3 for an example of bootstrap simulations more detailed on this section 
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best method in general no matter the sample size. Out of the six sample size presented here, DID was 

the best 5 times and the second best, for N=100 where the smallest average bias for RA was 

respectively -0.17 and -0.43 for ATE and ATT and for DID the average bias was -0.48 and 0.74. For 

the others sample size, the average bias of the DID method was the smallest and decreasing. For 

example, N=200, the average bias of DID estimators were respectively -0.74 and -1.01 for ATE and 

ATT, the second-best method was PSM estimators with -1.91 and -1.55 respectively for ATE and 

ATT. Indubitably, DID estimators were the best again despite IV estimators and RDD estimators.  

Table 2: Average bias of treatment effect estimators given the sample size (MAR) 

General summary of 
results 

Average Bias 

N=50 N=100 N=200 N=500 N=800 N=1000 

ATE ATT ATE ATT ATE ATT ATE ATT ATE ATT ATE ATT 

IE 
Meth 

RA -4.93 -5.19 -0.17 -0.43 -2.71 -2.98 0.687 0.42 -1.50 -1.76 -1.22 -1.48 

PSM -1.54 -1.82 -3.42 -2.15 -1.91 -1.55 -1.680 -0.85 -2.38 -1.87 -2.10 -2.20 

DID -0.83 -1.10 -0.48 -0.74 -0.74 -1.01 -0.366 -0.63 -0.37 -0.63 -0.23 -0.49 

IV -8.40 -8.66 -5.83 -6.09 -5.43 -5.69 -5.200 -5.46 -5.18 -5.45 -5.12 -5.38 

RDD -4.04 -4.30 -2.10 -2.37 -2.23 -2.49 -0.829 -1.09 -2.39 -2.66 -1.92 -2.18 

IB 
Results 

Mean 
Gen -4.93 -5.19 -0.17 -0.43 -2.71 -2.98 0.687 0.425 -1.50 -1.76 -1.22 -1.48 

Condi -4.29 -3.73 -0.12 -0.50 -2.54 -3.10 0.740 0.407 -1.43 -1.72 -1.12 -1.45 

Rand 
Imp 

General -3.54 -5.86 1.39 0.67 -1.70 -1.60 -0.005 -0.026 -1.56 -1.42 -0.51 -0.91 

Hot deck -6.57 -6.82 0.48 -2.08 -1.72 -2.09 -0.519 0.028 -1.88 -1.47 -1.07 -1.35 

Det LM -4.88 -3.92 -1.86 -2.84 -2.12 -2.76 -0.84 -1.07 -2.38 -2.68 -1.91 -2.21 

k-NN  
V1 -3.40 -3.48 -4.01 -1.50 -4.00 -3.96 -1.37 -1.14 -3.81 -3.92 -3.03 -2.88 

V2 -3.49 -3.90 -3.69 -0.85 -4.07 -4.00 -1.19 -1.06 -3.50 -3.49 -2.76 -2.24 

Rand LM -3.74 -2.47 -1.88 -3.27 -1.68 -1.65 -1.26 -1.95 -2.41 -3.20 -1.32 -1.20 

MI Mice -4.42 -3.82 -2.61 -2.42 -2.46 -3.10 -1.35 -0.89 -2.73 -3.40 -2.24 -2.33 

ML 
Imp 

Normal -5.59 -4.46 -1.39 -2.01 -2.19 -2.57 -0.86 -0.77 -2.81 -2.99 -1.80 -2.19 

Dist-free -5.21 -3.87 -2.06 -2.16 -2.41 -2.68 -0.95 -0.96 -2.42 -2.51 -1.52 -1.73 

PSM Imp -11.6 -22.3 -16.7 -33.5 -34.04 -75.02 -89.4 -177.87 -146.0 -196.1 -171.5 -199.1 

QR Imp 0.12 -33.5 3.88 -35.4 5.28 -34.00 5.99 -34.00 4.88 -35.02 5.82 -34.10 

Source: Our simulation with R 

Looking at the imputation methods, again here the best imputation methods were the same 

regarding ability to reconstruct the initial data. The methods that recorded the smallest RMSE was 

Quantile regression (QR Imp), the second best was Deterministic Linear Regression (Det LM) and the 

third one was Multiple Imputation (MI). If the imputation methods are assessed on their ability to 

estimate the treatment effect, given the different sample sizes, all the average bias was decreasing to 0 

except for PSM imputation and QR imputation. So, except those two methods, here again IB-TE are 

asymptotically unbiased. Mean imputation and Random imputation were the best methods among all 

of them. As it is recorded in table 2, the smallest average bias is either from mean imputation or from 

random imputation except for N=50 where QR Imp and k-NN were the best IB-TE estimators. The 
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others methods, like MI also performed well but not as well as Mean and Random imputation. For 

example, N=500, the average bias for MI estimators was respectively -1.35 and -0.89 for ATE and 

ATT while for the best IB-TE estimators it was -0.005 and 0.026. That bias is acceptable since MI is 

among one of the best imputation methods. Imputation Methods were able to produce acceptable 

average treatment effect estimators no matter the sample size.  

Comparing classical IE estimators with IB-TE estimators, it was found that with all data available 

(especially data before the program and a large set of covariates), the only IE method that was as good 

as the IB-TE was DID especially for large sample and because of its smallest variance.  For small 

samples (N=50 and 100), DID was not the best QR Imp and Conditional mean imputation were the 

best, smallest average bias but with a bigger variance than DID. For N=500 and ATE, the smallest 

average bias was recorded for general random imputation -0.005, the second smallest was -0.366 from 

DID; for ATT, the smallest average bias was -0.026 for general random imputation and the second 

was 0.028 from hot deck imputation. For large sample strictly greater than 500, DID got the smallest 

average bias and the smallest variance even if the others IB-TE estimators were close in terms of 

average bias and variance. The others IE methods did not perform well compared to DID and IB-TE 

estimators, especially IV and RDD which were supposed to produce better estimator given the 

assignment process. For IV, the average bias was decreasing then became constant around 5 when the 

sample size increased. For RDD, the estimator was asymptotically convergent and perform as well as 

some IB-TE estimators but still less than the best three.   

In summary, except DID which gives asymptotically unbiased estimators with smallest variance, 

one can always find an imputation method that gives small average bias and small variance than other 

IE methods. This is to say IB-TE estimators can perform as well as DID estimators but with a bigger 

variance. In addition, in case of shortage of data (if it is not possible to get data before the program), 

IB-TE is the best solution if the assignment process is not random.  PSM, IV and RDD produce 

convergent estimators but not as good as IB-TE estimators.  

4.4 Advantages of IB-TE and Discussions  

The first advantage of having IB-TE estimators is related to availability of data. By using bootstrap, 

we obtained estimators (IB-TE) as good as the one obtained with IE methods. Some of those 

estimators used only the potential outcome of the treatment after the treatment to produce good 

estimators (Random imputation estimators). While DID needs data before the assignment of the 

treatment, MI method does not need that to produce a good estimator as DID estimators. When 
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covariates are not available or not enough, IE methods like PSM, IV and RDD cannot be performed 

but still Random imputation and Mean imputation can be performed. In case of shortage of data in 

impact evaluation framework, IB-TE estimators are the best ones to use. Another advantage of using 

IB-TE estimators is the fact that from them we can have all types of treatment effects. Imputation 

gives the possibility to produce ATE, ATT and ATNT which are average treatment effect on every 

units, on treated units and also on non-treated units. In addition to that, with IB-TE it is easily possible 

to obtain case effect. For each unit of the program treated, an estimation of the impact of the program 

can be given therefore the distributional effect across the different subgroups of the population. The 

last one is very important in medical experiment where the treatment is randomly assigned, one may 

want to know what would have been the impact of the drug the other way round after experience. 

Instead of starting experience again, IB-TE can give that result without effort. The last advantage is 

the simplicity of the methods. All of those imputation methods are implemented in R and the only 

effort to make is the bootstrap program. It is a small price to pay for good estimators in a context of 

data shortage.  

Simulations performed are of course subjected to the distribution of the potential outcome, the 

share of treated unit in the sample and the distribution of covariates. This does not mean that changing 

the parameters of the simulation will lead to different results absolutely but the results can lean on the 

simulation parameters. By changing the parameters, the results can be in favour of IB-TE or IE 

methods. For the case of distribution of potential outcome, it does not matter a lot but assumptions 

made before and after and for the treatment can influence the results. The share of the treated unit is 

not an issue because in practice, the treated units are always less than non-treated units therefore it is 

always possible to complete the sample of treated by non-treated to obtain a share of 40%. Simulation 

of covariates is tricky because with simulation anything can happen. Assuming that the program is 

simulating age and education level, if the user is not careful, simulation can produce a teenager with a 

PhD level which is quite rare even impossible. In addition, the instrument which is also used as for the 

threshold is questionable. For all these reasons, IB-TE estimators are tested on a real program in the 

next section to see how they perform for a real program.  

5. Applications 

After simulations, where the results showed that IB-TE estimators can perform as well as classic 

treatment effect estimators otherwise better, the next step is to apply these results to real set of data 

since simulation are always questionable.  
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Firstly, the Lalonde ([20]) data set is considered for application. Lalonde data ([20]) set contain the 

treated and control units from the male sub-sample from the National Supported Work 

Demonstration. The NSW Demonstration [Manpower Demonstration Research Corporation 

(MDRC) 1983 was a federally and privately funded program implemented in the mid-1970s to provide 

work experience for a period of 6-18 months to individuals who had faced economic and social 

problems prior to enrolment in the program. Those randomly selected to join the program participated 

in various types of work, such as restaurant and construction work. Preintervention variables where 

collected by the program to allow Lalonde to used control groups, selected using preintervention 

variables to compare and obtain the treatment effect on treated.  

Based on pre-intervention variables, [21] extracted a further subset of Lalonde's NSW experimental 

data, a subset containing information on RE74 (earnings in 1974). Applying the same method of 

Lalonde they come up with an average treatment effect on treated of $1794. Later, they used the 

propensity score method and hey come up with a treatment effect on treated range of $1473 to $1774, 

quite close to the result of Lalonde with the same dataset according to them.  

As reminder, IB-TE estimators combines imputation methods and bootstrap to obtain treatment 

effects estimators. In this case, we applied our methods on the subset of [20] draw by [21]. 

Table 3: IB-TE estimators using Lalonde Subsample 

General summary of results 

Bootstrap With subsample of Lalonde's Data 

n=200 n=400 

ATE SD ATT SD ATE SD ATT SD 

IE Meth 
Rand 1794 767 1794 767 1785,3 252 1785,3 252 

PSM 1632,4 995 1925,8 996 1772,8 458 2039,4 454 

IB 
Results 

Mean Gen 1794 767 1794 167 1785,3 252 1785,3 252 

Rand 
Imp 

General 1792,4 903 1806,7 967 1773,1 418 1792,3 494 

Hot deck 1784 1073 1769,1 1067 1812,1 586 1789,5 616 

Det LM 1576,6 759 1836,8 785 1606,9 246 1816 251 

k-NN  
V1 1538,3 923 2003,4 1015 1920,2 343 2377,6 393 

V2 1611,7 913 2174,8 993 1853,2 336 2178,2 369 

Rand LM 1591,2 891 1834,1 1010 1586,2 420 1804,6 499 

MI Mice 1670,5 898 1668,2 892 1631,9 371 1620,8 378 

ML Imp 
Normal 1572,2 927 1797,4 961 1613,4 407 1782,1 459 

Dist-free 1585,1 918 1802,3 940 1629,1 406 1782,8 444 

Source: Our computation in R 

For a fixed sample size of n=200 draw from a population of 445 (respecting the share of 41% of 

treated) and after 1000 replications, results recorded in table 3 are interesting. The bootstrap of mean 
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imputation method led to exactly the same treatment effect on treated as the results of [20] which is 

$1794. IB-TE estimators produce by ML imputation ($1797.4), and Random Imputation ($1769.1) are 

closer to the benchmark of Lalonde and better than the results obtain by [21] in their work (a range 

from $1473 to $1774). Also looking at the standard errors, they are smaller than the ones obtain by 

Lalonde and Dehejia et al, implying a smaller confidence interval. For n=200 and R=1000 replication 

in the bootstrap, the best 3 IB-TE estimators are close to the benchmark and better than those obtain 

by the propensity score using additional costly data from comparison groups. Increasing the sample 

size of the bootstrap, results were still the same but with a much more smaller confidence interval. As 

conclusion, instead of spending money and time to find additional control groups and perform 

propensity score, combining ML imputation or Random imputation with the bootstrap led to better 

results of average treatment effect on treated than propensity score matching and as good results as 

the one obtains by Lalonde. On top of these results, IB-TE gives effect on the population and effect 

on those who were not treated if they have been treated.  

 

6. Conclusions 

The problem of impact evaluation has always been counterfactual: what would have happened in 

the absence of the treatment if a unit is assigned to the treatment? and what would have happened in 

the presence of the treatment if a unit is not assigned to the treatment? So far, the classical impact 

evaluation methods have been addressing the problem by using a control group which is supposed to 

be identical to the treatment group in all aspects except the treatment status and the potential outcome. 

The first consequence of that is the sensitivity of the results to the quality of the control group. Added 

to that there is the impossibility to have individual effects since most of those methods give the average 

treatment effects.  

This study, trying to overcome those weaknesses, has proposed a new class of estimators of 

treatment effects called Imputation Based Treatment Effects estimators (IB-TE). To achieve that 

objective, we addressed the problem of impact evaluation as a missing data problem. The study 

consider counterfactual as a missing value then combining imputation methods and bootstrap, it came 

up with an estimator of treatment effect as good as existing one. We have tested a small number of 

imputation methods but there are many others and the process of producing this class of estimator is 

the same no matter the type of imputation method that you chose. The IB-TE estimators were applied 

under simulations and on real database. We found that results were as good as the classical estimators 

in some case and in others even better than classical IE estimators. For the application case, we found 
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exactly the same result as Lalonde (1986) and comparing the results with Dehejia et al (1999), IB-TE 

estimators were better.  

The new estimator came with some advantages as the possibility to have case effects and possibility 

to perform better than classics IE estimators in a context of shortage in data. Also, there is a possibility 

to improve the quality of these estimators by improving the imputation method. Many others 

imputation methods have to be tested in accordance to structure of data and availability of data. In 

case of a not well design program or in case of shortage of data, we advise program evaluator to use 

IB-TE estimators to evaluate treatments.  
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Appendices 

Appendix 1 : R Code to generate the population for simulation 

RANDOM ASSIGNMENT 
rm(list=ls()) 
N=10000 
#####Generate data base Potential outcome and covariates before and after 
###Covariates (Sex, Education level, Age, CSP respectively) 
Xb1=rbinom(N,1,0.55) 
Xb2=rbinom(N,3,0.25) 
Xb3=round(runif(N,15,60)) 
Xb4=rbinom(N,2,1/3) 
###Potential outcome before (Normal distribution then chi fat tail) 
Yb=11*Xb1+12*Xb2+13*Xb3+14*Xb4+rnorm(N,500,250) 
###Potential outcome in two worlds (Normal distribution then chi fat tail) 
Y2T=Yb+runif(N,250,500) 
Y2NT=Yb+runif(N,100,250) 
###Generation of treatment variable, Two cases (Random Assigment) 
##MCAR Process of missingness 
T=rbinom(N,1,0.4) 
###Generation of potential outcome after treatment 
Ya=Y2NT 
for (i in 1:N){if (T[i]==1) {Ya[i]=Y2T[i]}} 
Ya 
###Generation of potential outcome after treatment with missings 
Yt=Ya 
for (i in 1:N){if (T[i]==0) {Yt[i]="NA"} } 
Yt=as.numeric(Yt) 
Yt 
Ynt=Ya 
for (i in 1:N){if (T[i]==1) {Ynt[i]="NA"} } 
Ynt=as.numeric(Ynt) 
Ynt 
###Generation of data base in a data frame format and in a matrix format 
DataF=data.frame (Ind=1:N, Yb, Xb1, Xb2, Xb3, Xb4, Y2T, Y2NT, T, Ya, 
Yt, Ynt ) 
#DataF 
DataMatF=data.matrix(DataF) 
#DataMatF 

ASSIGMENT DEPENDING ON A SINGLE VARIABLE 
 
 
N=25000 
ID=1:N 
Cvt1=rbinom(N,1,0.55) 
Cvt2=rbinom(N,3,0.25) 
Cvt3=round(runif(N,15,60)) 
Cvt4=rbinom(N,2,1/3) 
 
POb=11*Cvt1+12*Cvt2+13*Cvt3+14*Cvt4+rnorm(N,500,250) 
PO2T=POb+runif(N,250,500) 
PO2NT=POb+runif(N,100,250) 
#Inst=13*Cvt3+14*Cvt4 
Inst=runif(N,10,6000) 
TR=quantile(Inst, prob = 0.5, type = 5) 
Tr=rep(0,N) 
for (i in 1:N){if (Inst[i]<=TR) {Tr[i]=1}} 
POa=PO2NT 
for (i in 1:N){if (Tr[i]==1) {POa[i]=PO2T[i]}} 
POt=POa 
for (i in 1:N){if (Tr[i]==0) {POt[i]="NA"} } 
POt=as.numeric(POt) 
POnt=POa 
for (i in 1:N){if (Tr[i]==1) {POnt[i]="NA"} } 
POnt=as.numeric(POnt) 
PoPData=data.frame (ID, POb, Cvt1, Cvt2, Cvt3, Cvt4, PO2T, PO2NT, Tr, 
POa, POt, POnt, Inst ) 
PoPDataMat=data.matrix(PoPData) 
 
EvalData=subset(PoPData, Inst>=quantile(Inst, prob = 0.3, type = 5)  & 
Inst<=quantile(Inst, prob = 0.7, type = 5)) 
Eval1=subset(EvalData, Tr==1) 
Eval0=subset(EvalData, Tr==0) 
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Appendix 2: Example of bootstrap simulation for N=800 in case of Random Assignment 

Parameters 
N (Sample size) 800           
P (Share of treated) 0,4           

True 
values of 
Impact 

ATE 200,0985           

ATT 200,236           

        

IE 
Methods 
Results 

 Mean (RA) Matching Diff in Diff 
IV 

Regression RDD method  

 ATE ATT ATE ATT ATE ATT ATE ATT ATE ATT  
IE Methods Results (avrg) 199,8708 199,8708 199,2383 199,6444 200,33 200,33   

   
SD 22,5 22,5 22,9 24,4 4,5 4,5   

   
B Inf 198,5 198,5 197,8 198,1 200,1 200,1   

   
B Sup 201,3 201,3 200,7 201,2 200,6 200,6   

   

    

Imputation 
Based 
results 

Imputation Methods 

Imp Based Estim RMSE 

ATE ATT 
Treated NonTreated 

Avrg Val SD B Inf B Sup Avrg Val SD B Inf B Sup 

Mean Imputation (1) 
Gen Mean 199,8708 22,5 198,5 201,3 199,8708 22,5 198,5 201,3 240,7 192,6 

Conditional 199,9221 22,5 198,5 201,3 199,9347 22,5 198,5 201,3 241,1 192,8 

Random Imputation (2) 
General 199,6601 24,5 198,1 201,2 199,8057 28,1 198,1 201,6 339,2 271,7 

Hot deck 199,5951 27,4 197,9 201,3 200,0526 30,7 198,2 202 340,5 271,4 

Deterministic linear regression Imp (3) 200,0818 18,9 198,9 201,3 200,0509 18,8 198,9 201,2 202,9 160,5 

k-NN imputation (4) 
V1 200,1565 23,6 198,7 201,6 200,6325 25,7 199 202,2 285,9 225,3 

V2 200,1424 23,6 198,7 201,6 200,7847 26,7 199,1 202,4 285,9 226,2 

Random linear regression Imp (5) 199,8343 21,2 198,5 201,1 199,758 23,6 198,3 201,2 285,5 226,9 

Multiple imputation (6) Mice 200,0018 19,8 198,8 201,2 200,1799 21 198,9 201,5 221,9 175,6 

Maximu Likelihood Imp (7) 
(MissMech package) 

Normal 199,9148 19,4 198,7 201,1 199,7396 20,2 198,5 201 378,5 300,3 

Dist-free 200,2224 19,8 199 201,5 199,9051 20,7 198,6 201,2 378,6 300,2 

Propensity score matching Imp (8) 51,9894 43,4 49,3 54,7 52,2697 47,8 49,3 55,2 438,23 466,64 

Quantile Regression Imp (10) 207,0142 15,2 206,1 208 167,6476 14,6 166,7 168,6 139,5 105,3 
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Appendix 3: Example of bootstrap simulation for N=1000 in case of controlled assignment  

Parameters 
N (Sample size) 1000           

P (Share of treated) 0,4           
 

 Value           

True values 
of Impact 

ATE 198,334           

ATT 198,5964           

             

IE Methods 
Results 

 Mean (RA) Matching Diff in Diff IV Regression RDD method  

 ATE ATT ATE ATT ATE ATT ATE ATT ATE ATT  

IE Methods Results (avrg) 197,1118 197,1118 196,2389 196,4002 198,104 198,104 193,2146 193,2146 196,4159 196,4159  

SD 19 19 19,1 21,9 3,8 3,8 18,7 18,7 16,1 16,1  

B Inf 195,9 195,9 195,1 195 197,9 197,9 192,1 192,1 195,4 195,4  

B Sup 198,3 198,3 197,4 197,8 198,3 198,3 194,4 194,4 197,4 197,4  

             

Imputation 
Based results 

Imputation Methods 

Imp Based Estim RMSE 

ATE ATT 
Treated NonTreated 

Avrg Val SD B Inf B Sup Avrg Val SD B Inf B Sup 

Mean Imputation (1) 
Gen Mean 197,1118 19 195,9 198,3 197,1118 19 195,9 198,3 241,7 194,7 

Conditional 197,211 19 196 198,4 197,1434 19 196 198,3 242,2 194,8 

Random Imputation (2) 
General 197,8251 21,6 196,5 199,2 197,6858 24,8 196,2 199,2 342,9 275,2 

Hot deck 197,2592 24,2 195,8 198,8 197,2424 28,4 195,5 199 342,6 275,6 

Deterministic linear regression Imp (3) 196,4246 16,1 195,4 197,4 196,3827 16,1 195,4 197,4 203,3 163,1 

k-NN imputation (4) 
V1 195,3001 19,6 194,1 196,5 195,7154 22,5 194,3 197,1 288,4 229,3 

V2 195,5732 19,7 194,3 196,8 196,3547 23,5 194,9 197,8 288,4 230,3 

Random linear regression Imp (5) 197,0166 18,3 195,9 198,2 197,4009 20,6 196,1 198,7 288,3 229,4 

Multiple imputation (6) Mice 196,091 16,8 195,1 197,1 196,2681 17,6 195,2 197,4 222,9 178,4 

Maximu Likelihood Imp (7) 
(MissMech package) 

Normal 196,5308 16,7 195,5 197,6 196,4096 17,6 195,3 197,5 381,7 304,6 

Dist-free 196,8137 16,6 195,8 197,8 196,8617 17,5 195,8 197,9 381,8 304,8 

Propensity score matching Imp (8) 26,81655 31,9 24,8 28,8 -0,5065 32,5 -2,5 1,5 442,1 473,6 

Quantile Regression Imp (10) 204,1574 12,6 203,4 204,9 164,5 12,3 163,8 165,3 138,5 106,2 
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Appendix 4: Bootstrap with increasing sample size using Lalonde data 

  ATT               

Lalonde results 1794 usd               

Dejejia Results 1473 to 1774 usd               

                   

General summary of results 

Bootstrap with Lalonde's Data 

N=50 N=100 N=200 N=400 

ATE SD ATT SD ATE SD ATT SD ATE SD ATT SD ATE SD ATT SD 

IE Meth 
Rand 2071,9 2210 2071,9 2210 1754,8 1259 1754,8 1259 1794 767 1794 767 1785,3 252 1785,3 252 

PSM 1694,6 2910,1 2013,5 3061,4 1588,8 1619 1886,1 1647 1632,4 995 1925,8 996 1772,8 458 2039,4 454 

IB 
Results 

Mean Gen 2071,9 2210 2071,9 2210 1754,8 1259 1754,8 1259 1794 767 1794 167 1785,3 252 1785,3 252 

Rand 
Imp 

General 1989,6 2731 2295,5 2449 1733,5 1445 1745,9 1507 1792,4 903 1806,7 967 1773,1 418 1792,3 494 

Hot deck 2663,7 2620,8 2424,1 2022 1776,9 1623 1790,4 1628 1784 1073 1769,1 1067 1812,1 586 1789,5 616 

Det LM 1818,5 1916,4 2328,3 2322,8 1511 1286 1788,5 1312 1576,6 759 1836,8 785 1606,9 246 1816 251 

k-NN  
V1 2029,1 2639,1 23,69,3 2986,4 1578 1496 2008 1547 1538,3 923 2003,4 1015 1920,2 343 2377,6 393 

V2 2064,7 2578,7 2458,4 2950,3 1604,9 1492 2075,8 1578,6 1611,7 913 2174,8 993 1853,2 336 2178,2 369 

Rand LM 1848,2 2201,7 2346,4 2743,2 1492,4 1470 1734,1 1573 1591,2 891 1834,1 1010 1586,2 420 1804,6 499 

MI Mice 1940,8 2479,8 1980,5 2601,6 1702,9 1466 1562,6 1415 1670,5 898 1668,2 892 1631,9 371 1620,8 378 

ML 
Imp 

Normal 1896,2 2948,5 2239,1 2878 1498,3 1495 1746,9 1544 1572,2 927 1797,4 961 1613,4 407 1782,1 459 

Dist-free 1698,6 2755,8 2089,6 2697,1 1482,4 1507 1730,9 1501 1585,1 918 1802,3 940 1629,1 406 1782,8 444 

 


