THE CONVERGENCE OF MANN ITERATION FOR GENERALIZED Φ-HEMI-CONTRACTIVE MAPS

LINXIN LI,DINGPING WU

Abstract

Charles[1] proved the convergence of Picard-type iterative for generalized Φ-accretive non-self maps in a real uniformly smooth Banach space. Based on the theorems of the zeros of strongly Φ-accretive and fixed points of strongly Φ-hemi-contractive we extend the results to Mann-type iterative and Mann iteration process with errors.

Mathematics Subject Classification (2010): 47H09; 47H10
Key words and phrases: strongly Φ-accretive strongly Φ-hemicontractive Mann iteration process with errors fixed point

1. Introduction

$\operatorname{In}[2]$, we can see a Mann-type iteration method for a family of hemicontractive mappings in Hilbert spaces; In[3], we can see a Halpern-Mann type Iteration for fixed point problems of a relatively nonexpansive mapping and a system of equilibrium problems; $\operatorname{In}[4]$, we can see that convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings; $\operatorname{In}[5]$, we can see that some Mann-type implicit iteration methods for triple hierarchical variational inequalities, systems variational inequalities and fixed point problems; In[6], we can see a Mann-type iteration method for solving the split common fixed point problem; $\operatorname{In}[7]$, we can see that Mann and Ishikawa-type iterative schemes for approximating fixed points of multi-valued non-self mappings.

In 2009, Charles[1] proved the convergence of Picard-type iterative for generalized Φ-accretive non-self maps in a real uniformly smooth Banach space. In this paper, we will consider to extend the result of Charles[1] to Mann-type iterative and Mann iteration process with errors.

In 1995, Liu[8] introduced what he called the Mann iteration process with errors.

In 1998, Xu[9] introduced the following alternative definitions:
Let K be a nonempty convex subset of E and $T: K \rightarrow K$ be any map. For any given, the process defined by

$$
x_{n+1}=a_{n} x_{n}+b_{n} T x_{n}+c_{n} u_{n}, \quad n \geq 0,
$$

where $\left\{u_{n}\right\}$ is bounded sequences in K and the real sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$,
$\left\{c_{n}\right\} \subset[0,1]$ satisfy the conditions

$$
a_{n}+b_{n}+c_{n}=1, \quad \forall n \geq 0 .
$$

It called the Mann iteration process with errors.
However, the most general Mann-type iterative scheme now studied is the following: $x_{0} \in K$,

$$
\begin{equation*}
x_{n+1}=\left(1-c_{n}\right) x_{n}+c_{n} T x_{n}, n=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

where $\left\{c_{n}\right\}_{n=1}^{\infty} \subset(0,1)$ is a real sequence satisfying appropriate conditions (see, e.g., Chidume[10], Edelstein and O'Brian[11], Ishikawa[12]). Under the following additional assumptions (i) $\lim c_{n}=0$; and (ii) $\sum_{n=0}^{\infty} c_{n}=\infty$, the sequence $\left\{x_{n}\right\}$ generated by (1.1) is generally referred to as the Mann sequence in the light of Mann[13].

2. Preliminaries

Definition 2.1. [1] Let (E, ρ) be a metric space. A mapping $T: E \rightarrow E$ is called a contraction if there exists $k \in[0,1)$ such that $\rho(T x, T y) \leq k \rho(x, y)$ for all $x, y \in E$. If $k=1$, then T is called nonexpansive.
Definition 2.2. [1] Given a gauge function φ, the mapping $J_{\varphi}: E \rightarrow 2^{E^{*}}$ defined by

$$
J_{\varphi} x:=\left\{u^{*} \in E^{*}:\left\langle x, u^{*}\right\rangle=\|x\|\left\|u^{*}\right\| ;\left\|u^{*}\right\|=\varphi(\|x\|)\right\}
$$

is called the duality map with gauge function φ where X is any normed space.
In the particular case $\varphi(t)=t$, the duality map $J=J_{\varphi}$ is called the normalized duality map.

Proposition 2.3. [14] If a Banach space E has a uniformly Gateaux differentiable norm, then $J: E \rightarrow E^{*}$ is uniformly continuous on bounded subsets of E from the strong topology of to the weak*topology of E^{*}.

Definition 2.4. [15] A mapping $T: E \rightarrow E$ is called strongly pseudocontractive if for all $x, y \in E$, the following inequality holds:

$$
\begin{equation*}
\|x-y\| \leq\|(1+r)(x-y)-r t(T x-T y)\| \tag{2.1}
\end{equation*}
$$

for all $r>0$ and some $t>1$. If $t=1$ in inequality (2.1), then T is called pseudo-contractive. As we know that T is strongly pseudo-contractive if and only if

$$
\begin{equation*}
\langle(I-T) x-(I-T) y, j(x-y)\rangle \geq k\|x-y\|^{2} \tag{2.2}
\end{equation*}
$$

holds for all $x, y \in E$ and for some $j(x-y) \in J(x-y)$, where $k=$ $\frac{1}{t}(t-1) \in(0,1)$.
Definition 2.5. [1] Recall that an operator $T: D(T) \subseteq E \rightarrow E$ is strongly accretive if there exists some $k>0$ such that for each $x, y \in D(T)$, there exists $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq k\|x-y\|^{2} . \tag{2.3}
\end{equation*}
$$

Proposition 2.6. [1] A mapping $T: E \rightarrow E$ is strongly pseudo-contractive if and only if $(I-T)$ is strongly accretive, and is strongly φ-pseudo-contractive if and only if $(I-T)$ is strongly φ-accretive. Then T is generalized $\Phi-$ pseudocontractive if and only if $(I-T)$ is generalized Φ-accretive.

Definition 2.7. [1] Let E be an arbitrary real normed linear space. A mapping $T: D(T) \subseteq E \rightarrow E$ is called strongly hemi-contractive if $F(T) \neq \emptyset$, and there exists $t>1$ such that for all $r>0$,

$$
\begin{equation*}
\left\|x-x^{*}\right\| \leq\left\|(1+r)\left(x-x^{*}\right)-r t\left(T x-x^{*}\right)\right\| \tag{2.4}
\end{equation*}
$$

holds for all $x \in D(T), x^{*} \in F(T)$. If $t=1$, then T is called hemicontractive. Finally, T is called generalized Φ-hemi-contractive, if for all $x \in D(T), x^{*} \in F(T)$, there exists $j\left(x-x^{*}\right) \in J\left(x-x^{*}\right)$ such that

$$
\begin{equation*}
\left\langle(I-T) x-(I-T) x^{*}, j\left(x-x^{*}\right)\right\rangle \geq \Phi\left(\left\|x-x^{*}\right\|\right) \tag{2.5}
\end{equation*}
$$

It follows from inequality (2.5) that is T generalized Φ-hemi-contractive if and only if

$$
\begin{equation*}
\left\langle T x-x^{*}, j\left(x-x^{*}\right)\right\rangle \leq\left\|x-x^{*}\right\|^{2}-\Phi\left(\left\|x-x^{*}\right\|\right), \quad \forall n \geq 0 \tag{2.6}
\end{equation*}
$$

Definition 2.8. [1] Let $N(T)=\{x \in E: T x=0\} \neq \emptyset$. The mapping $T: D(T) \subseteq E \rightarrow E$ is called generalized Φ-quasi-accretive if, for all $x \in E, x^{*} \in N(T)$, there exists $j\left(x-x^{*}\right) \in J\left(x-x^{*}\right)$ such that

$$
\begin{equation*}
\left\langle T x-T x^{*}, j\left(x-x^{*}\right)\right\rangle \geq \Phi\left(\left\|x-x^{*}\right\|\right) \tag{2.7}
\end{equation*}
$$

Proposition 2.9. [1] If $F(T)=\{x \in E: T x=x\} \neq \emptyset$, the mapping T : $E \rightarrow E$ is strongly hemi-contractive if and only if $(I-T)$ is strongly quasiaccretive; it is strongly φ-hemi-contractive if and only if $(I-T)$ is strongly φ-quasi-accretive; and T is generalized Φ-hemi-contractive if and only if $(I-T)$ is generalized Φ-quasi-accretive.

Proposition 2.10. [1] Let E be a uniformly smooth real Banach space, and let $J: E \rightarrow 2^{E^{*}}$ be a normalized duality mapping. Then

$$
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, J(x+y)\rangle
$$

for all $x, y \in E$.
Proposition 2.11. [1] Let $\left\{\lambda_{n}\right\}$ and $\left\{\gamma_{n}\right\}$ be sequences of nonnegative numbers and $\left\{\alpha_{n}\right\}$ be a sequence of positive numbers satisfying the conditions $\sum_{n=1}^{\infty} \alpha_{n}=\infty$ and $\frac{\gamma_{n}}{\alpha_{n}} \rightarrow 0$, as $n \rightarrow \infty$. Let the recursive inequality

$$
\lambda_{n+1} \leq \lambda_{n}-\alpha_{n} \psi\left(\lambda_{n}\right)+\gamma_{n}, n=1,2, \ldots
$$

be given where $\psi:[0, \infty) \rightarrow[0, \infty)$ is strictly increasing continuous function such that it is positive on $(0, \infty)$ and $\psi(0)=0$. Then $\lambda_{n} \rightarrow 0$, as $n \rightarrow \infty$.

3. Main Results

In this section, we will consider to extend the result of Charles[1] to Manntype iterative and Mann iteration process with errors under the following assumptions. First, we extend the result of Charles[1] to Mann-type iterative.

Theorem 3.1. Suppose K is a closed convex subset of a real uniformly smooth Banach space E. Suppose $T: K \rightarrow K$ is a bounded generalized Φ-hemi-contractive map with strictly increasing continuous function Φ : $[0, \infty) \rightarrow[0, \infty)$ such that $\Phi(0)=0$ and $x^{*} \in F(T) \neq \emptyset$. For arbitrary $x_{1} \in K$, define the sequence $\left\{x_{n}\right\}$ iteratively by

$$
\begin{equation*}
x_{n+1}=\left(1-c_{n}\right) x_{n}+c_{n} T x_{n}, n=0,1,2, \ldots \tag{3.1}
\end{equation*}
$$

where $\left\{c_{n}\right\} \subseteq(0,1), \lim c_{n}=0$ and $\sum c_{n}=\infty$. Then, there exists a constant $d_{0}>0$ such that if $0<c_{n} \leq d_{0},\left\{x_{n}\right\}$ converges strongly to the unique fixed point x^{*} of T.
$\underline{\text { Proof. Let } r}$ be sufficiently large such that $x_{1} \in B_{r}\left(x^{*}\right)$. Define $G:=$ $\overline{B_{r}\left(x^{*}\right)} \cap K$. Then, since T is bounded we have that $(I-T)(G)$ is bounded.

Let $M=\sup \left\{\left\|(I-T) x_{n}\right\|: x_{n} \in G\right\}$. As j is uniformly continuous on bounded subsets of E, for $\varepsilon:=\frac{\Phi\left(\frac{r}{2}\right)}{2 M}$, there exists a $\delta>0$ such that $x, y \in$ $D(T),\|x-y\|<\delta$ implies $\|j(x)-j(y)\|<\varepsilon$. Set $d_{0}=\min \left\{1, \frac{r}{2 M}, \frac{\delta}{2 M}\right\}$. Claim1: $\left\{x_{n}\right\}$ is bounded.
Suffices to show that x_{n} is in G for all $n \geq 1$. The proof is by induction. By our assumption, $x_{1} \in G$. Suppose $x_{n} \in G$. We prove that $x_{n+1} \in G$. Assume for contradiction that $x_{n+1} \notin G$. Then, since $x_{n+1} \in K \forall n \geq 1$, we have that $\left\|x_{n+1}-x^{*}\right\|>r$. Thus we have the following estimates:

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & \leq\left\|x_{n}-c_{n}(I-T) x_{n}-x^{*}\right\| \\
& \leq\left\|x_{n}-x^{*}\right\|+c_{n}\left\|(I-T) x_{n}\right\| \\
& \leq r+d_{0} \cdot M \\
& \leq 2 r, \\
\left\|x_{n}-x^{*}\right\| & \geq\left\|x_{n+1}-x^{*}\right\|-c_{n}\left\|(I-T) x_{n}\right\| \\
> & r-c_{n} \cdot M \\
> & \frac{r}{2}, \\
\left\|\left(x_{n+1}-x^{*}\right)-\left(x_{n}-x^{*}\right)\right\| & \leq c_{n}\left\|(I-T) x_{n}\right\| \\
& \leq c_{n} \cdot M \\
& \leq \frac{\delta}{2}<\delta,
\end{aligned}
$$

therefore,

$$
\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\|<\varepsilon .
$$

Then from (3.1), the above estimates and Proposition 2.10 we have that

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|x_{n}-c_{n}(I-T) x_{n}-x^{*}\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 c_{n}\left\langle(I-T) x_{n}, j\left(x_{n}-x^{*}\right)\right\rangle \\
& -2 c_{n}\left\langle(I-T) x_{n}, j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\rangle \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 c_{n} \Phi\left(\left\|x_{n}-x^{*}\right\|\right) \\
& +2 c_{n}\left\|(I-T) x_{n}\right\|\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\| \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 c_{n} \Phi\left(\frac{r}{2}\right)+2 c_{n} \cdot M \cdot \varepsilon \\
\leq & r^{2}+2 d_{0}\left[\frac{\Phi\left(\frac{r}{2}\right)}{2}-\Phi\left(\frac{r}{2}\right)\right] \\
\leq & r^{2}
\end{aligned}
$$

i.e., $\left\|x_{n+1}-x^{*}\right\| \leq r$, a contradiction. Therefore $x_{n+1} \in G$. Thus by induction $\left\{x_{n}\right\}$ is bounded. Then, $\left\{T x_{n}\right\},\left\{(I-T) x_{n}\right\}$ are also bounded.

Claim2: $x_{n} \rightarrow x^{*}$.
Let $A_{n}=\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\|$, Note that $x_{n+1}-x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and hence by the uniform continuity of j on bounded subsets of E we have that

$$
A_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

We obtain that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \left\|x_{n}-x^{*}\right\|^{2}-2 c_{n} \Phi\left(\left\|x_{n}-x^{*}\right\|\right) \\
& +2 c_{n}\left\|(I-T) x_{n}\right\|\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\| \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}+2 c_{n}\left[Z_{n}-\Phi\left(\left\|x_{n}-x^{*}\right\|\right)\right] \tag{3.2}\\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 c_{n} \Phi\left(\left\|x_{n}-x^{*}\right\|\right)+2 c_{n} Z_{n}
\end{align*}
$$

where $Z_{n}=M A_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Let $\lambda_{n}:=\left\|x_{n}-x^{*}\right\|$ and $\gamma_{n}=2 c_{n} Z_{n}$, then from inequality (3.2) we obtain that $\lambda_{n+1} \leq \lambda_{n}-2 c_{n} \Phi\left(\lambda_{n}\right)+\gamma_{n}$, where $\frac{\gamma_{n}}{c_{n}} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, the conclusion of the theorem follows from Proposition 2.11.

The following corollary follow trivially,since definition 2.5.
Corollary 3.2. Suppose E is a real uniformly smooth Banach space, and $T: E \rightarrow E$ is a bounded generalized Φ-accretive map with strictly increasing continuous function $\Phi:[0, \infty) \rightarrow[0, \infty)$ such that $\Phi(0)=0$ and the solution x^{*} of the equation $T x=0$ exists. For arbitrary $x_{1} \in E$, define the sequence $\left\{x_{n}\right\}$ iteratively by

$$
x_{n+1}=\left(1-c_{n}\right) x_{n}-c_{n} T x_{n}, n=0,1,2, \ldots
$$

where $\left\{c_{n}\right\} \subseteq(0,1), \lim c_{n}=0$ and $\sum c_{n}=\infty$. Then, there exists a constant $d_{0}>0$ such that if $0<c_{n} \leq d_{0},\left\{x_{n}\right\}$ converges strongly to the unique solution of $T x=0$.

Now, we consider to generalize to a more general case, we extend the result of Charles[1] to Mann iteration process with errors as follows.

Theorem 3.3. Suppose K is a closed convex subset of a real uniformly smooth Banach space E. Suppose $T: K \rightarrow K$ is a bounded generalized Φ-hemi-contractive map with strictly increasing continuous function Φ : $[0, \infty) \rightarrow[0, \infty)$ such that $\Phi(0)=0$ and $x^{*} \in F(T) \neq \emptyset$. For arbitrary $x_{1} \in K$, define the sequence $\left\{x_{n}\right\}$ iteratively by

$$
\begin{equation*}
x_{n+1}=a_{n} x_{n}+b_{n} T x_{n}+c_{n} u_{n}, n=0,1,2, \ldots \tag{3.3}
\end{equation*}
$$

where $\left\{u_{n}\right\}$ is bounded sequence in K and $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ are sequences in $[0,1]$ satisfying the following conditions:
(i) $a_{n}+b_{n}+c_{n}=1, \forall n \geq 0$;
(ii) $\sum_{n=0}^{\infty} b_{n}=\infty$;
(iii) $\lim b_{n}=0, c_{n}=o\left(b_{n}\right)$;
(iv) $\sum_{n=0}^{\infty} c_{n}<\infty$.

Then, there exists a constant $d_{0}>0$ such that if $0<b_{n}, c_{n} \leq d_{0},\left\{x_{n}\right\}$ converges strongly to the unique fixed point x^{*} of T.

Proof. Let r be sufficiently large such that $x_{1} \in B_{r}\left(x^{*}\right)$. Define $G:=$ $\overline{B_{r}\left(x^{*}\right)} \cap K$. Then, since T is bounded we have that $(I-T)(G)$ is bounded.

Let $M=\max \left\{\sup \left\|(I-T) x_{n}\right\|, \sup \left\|x_{n}-u_{n}\right\|: x_{n} \in G\right\}$. As j is uniformly continuous on bounded subsets of E, for $\varepsilon:=\frac{\Phi\left(\frac{r}{2}\right)}{4 M}$, there exists a $\delta>0$ such that $x, y \in D(T),\|x-y\|<\delta$ implies $\|j(x)-j(y)\|<\varepsilon$. Set $d_{0}=\min \left\{1, \frac{r}{4 M}, \frac{\delta}{4 M}, \frac{\Phi\left(\frac{r}{2}\right)}{8 M r}\right\}$.

Claim1: $\left\{x_{n}\right\}$ is bounded.
Suffices to show that x_{n} is in G for all $n \geq 1$. The proof is by induction. By our assumption, $x_{1} \in G$. Suppose $x_{n} \in G$. We prove that $x_{n+1} \in G$. Assume for contradiction that $x_{n+1} \notin G$. Then, since $x_{n+1} \in K \forall n \geq 1$, we have that $\left\|x_{n+1}-x^{*}\right\|>r$. Equation (3.3) becomes

$$
\begin{equation*}
x_{n+1}=x_{n}-b_{n}(I-T) x_{n}-c_{n}\left(x_{n}-u_{n}\right) \tag{3.4}
\end{equation*}
$$

Thus we have the following estimates:

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & \leq\left\|x_{n}-x^{*}\right\|+b_{n}\left\|(I-T) x_{n}\right\|+c_{n}\left\|x_{n}-u_{n}\right\| \\
& \leq r+d_{0}(M+M) \\
& \leq 2 r \\
\left\|x_{n}-x^{*}\right\| & \geq\left\|x_{n+1}-x^{*}\right\|-b_{n}\left\|(I-T) x_{n}\right\|-c_{n}\left\|x_{n}-u_{n}\right\| \\
& >r-d_{0}(M+M) \\
> & \frac{r}{2}
\end{aligned}
$$

$$
\begin{aligned}
\left\|\left(x_{n+1}-x^{*}\right)-\left(x_{n}-x^{*}\right)\right\| & \leq b_{n}\left\|(I-T) x_{n}\right\|+c_{n}\left\|x_{n}-u_{n}\right\| \\
& \leq 2 d_{0} M \\
& \leq \frac{\delta}{2}<\delta
\end{aligned}
$$

therefore,

$$
\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\|<\varepsilon
$$

Then from (3.4), the above estimates and Proposition 2.10 we have that

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|x_{n}-b_{n}(I-T) x_{n}-c_{n}\left(x_{n}-u_{n}\right)-x^{*}\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 c_{n}\left\langle x_{n}-u_{n}, j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& -2 b_{n}\left\langle(I-T) x_{n}, j\left(x_{n+1}-x^{*}\right)\right\rangle \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}+2 c_{n}\left\langle x_{n}-u_{n}, j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& +2 b_{n}\left\langle(I-T) x_{n}, j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\rangle \\
& -2 b_{n}\left\langle(I-T) x_{n}, j\left(x_{n}-x^{*}\right)\right\rangle \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 b_{n} \Phi\left(\left\|x_{n}-x^{*}\right\|\right) \\
& +2 b_{n}\left\|(I-T) x_{n}\right\|\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\| \\
& +2 c_{n}\left\|x_{n}-u_{n}\right\|\left\|x_{n+1}-x^{*}\right\| \\
\leq & r^{2}+2 d_{0}\left[M \cdot \varepsilon-\Phi\left(\frac{r}{2}\right)+2 M r\right] \\
\leq & r^{2}+2 d_{0}\left[\frac{\Phi\left(\frac{r}{2}\right)}{2}-\Phi\left(\frac{r}{2}\right)\right] \\
\leq & r^{2}
\end{aligned}
$$

i.e., $\left\|x_{n+1}-x^{*}\right\| \leq r$, a contradiction. Therefore $x_{n+1} \in G$. Thus by induction $\left\{x_{n}\right\}$ is bounded. Then, $\left\{T x_{n}\right\},\left\{(I-T) x_{n}\right\}$ are also bounded.

Claim2: $x_{n} \rightarrow x^{*}$.
Let $A_{n}=\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\|$, Note that $x_{n+1}-x_{n} \rightarrow 0$ as $n \rightarrow \infty$ and hence by the uniform continuity of j on bounded subsets of E we have that

$$
A_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

We obtain that

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \left\|x_{n}-x^{*}\right\|^{2}+2 b_{n}\left\|(I-T) x_{n}\right\|\left\|j\left(x_{n+1}-x^{*}\right)-j\left(x_{n}-x^{*}\right)\right\| \\
& -2 b_{n} \Phi\left(\left\|x_{n}-x^{*}\right\|\right)+2 c_{n}\left\|x_{n}-u_{n}\right\|\left\|x_{n+1}-x^{*}\right\| \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}+2 b_{n} M \cdot A_{n}-2 b_{n} \Phi\left(\left\|x_{n}-x^{*}\right\|\right)+2 c_{n} M \cdot 2 r \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}+2 b_{n}\left[M \cdot A_{n}+2 \frac{c_{n}}{b_{n}} M r-\Phi\left(\left\|x_{n}-x^{*}\right\|\right)\right] \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}+2 b_{n}\left[Z_{n}-\Phi\left(\left\|x_{n}-x^{*}\right\|\right)\right] \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-2 b_{n} \Phi\left(\left\|x_{n}-x^{*}\right\|\right)+2 b_{n} Z_{n} \tag{3.5}
\end{align*}
$$

where $Z_{n}=M A_{n}+2 \frac{c_{n}}{b_{n}} M r \rightarrow 0$ as $n \rightarrow \infty$.
Let $\lambda_{n}:=\left\|x_{n}-x^{*}\right\|$ and $\gamma_{n}=2 b_{n} Z_{n}$, then from inequality (3.5) we obtain that $\lambda_{n+1} \leq \lambda_{n}-2 b_{n} \Phi\left(\lambda_{n}\right)+\gamma_{n}$, where $\frac{\gamma_{n}}{b_{n}} \rightarrow 0$ as $n \rightarrow \infty$. Therefore, the conclusion of the theorem follows from Proposition 2.11.

The following corollary follow trivially,since definition 2.5.
Corollary 3.4. Suppose E is a real uniformly smooth Banach space, and $T: E \rightarrow E$ is a bounded generalized Φ-accretive map with strictly increasing continuous function $\Phi:[0, \infty) \rightarrow[0, \infty)$ such that $\Phi(0)=0$ and the solution x^{*} of the equation $T x=0$ exists. For arbitrary $x_{1} \in E$, define the sequence $\left\{x_{n}\right\}$ iteratively by

$$
x_{n+1}=a_{n} x_{n}-b_{n} T x_{n}+c_{n} u_{n}, n \geq 0
$$

where $\left\{u_{n}\right\}$ is bounded sequence in K and $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ are sequences in $[0,1]$ satisfying
(i) $a_{n}+b_{n}+c_{n}=1, \forall n \geq 0$;
(ii) $\sum_{n=0}^{\infty} b_{n}=\infty$;
(iii) $\sum_{n=0}^{\infty} b_{n}^{2}<\infty, c_{n}=o\left(b_{n}\right)$;
(iv) $\sum_{n=0}^{\infty} c_{n}<\infty$.

Then, there exists a constant $d_{0}>0$ such that if $0<b_{n}, c_{n} \leq d_{0},\left\{x_{n}\right\}$ converges strongly to the unique solution of $T x=0$.

This work is supported by Applied Basic Research Foundation of Sichuan Province of China(Grant No. 2018JY0169).

References

[1] Charles,Chidume.;Geometric Properties of Banach Spaces and Nonlinear Iterations.(2009)
[2] Nawab Hussain, Ljubomir B Ciric, Yeol Je Cho and Arif Rafiq; On Mann-type iteration method for a family of hemicontractive mappings in Hilbert spaces,Hussain et al. Journal of Inequalities and Applications 2013, 2013:41.
[3] Norimichi Hirano; A Halpern-Mann Type Iteration for Fixed Point Problems of a Relatively Nonexpansive Mapping and a System of Equilibrium Problems,Volume 2011, Article ID 632857, 22 pages.
[4] H. Zegeye,N. Shahzad;Convergence of Mann's type iteration method for generalized asymptotically nonexpansive mappings,Computers and Mathematics with Applications 62 (2011) 4007-4014.
[5] Lu-Chuan Ceng and Xiaoye Yang;Some Mann-Type Implicit Iteration Methods for Triple Hierarchical Variational Inequalities, Systems Variational Inequalities and Fixed Point Problems,Mathematics 2019, 7, 218; doi:10.3390/math7030218.
[6] YONGHONG YAO, LIMIN LENG, MIHAI POSTOLACHE, AND XIAOXUE ZHENG;Mann-type iteration method for solving the split common fixed point problem,Journal of Nonlinear and Convex Analysis Volume 18, Number 5, 2017, 1-.
[7] Abebe R. Tufa and H. Zegeye;Mann and Ishikawa-Type Iterative Schemes for Approximating Fixed Points of Multi-valued Non-Self Mappings,Springer International Publishing 2016.
[8] Liu, L.; Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194(1995), no. 1, 114-125.
[9] Xu, Y.; Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224 (1998), 91-101.
[10] Chidume, C. E.; On the approximation of fifixed points of nonexpansive mappings, Houston J. Math. 7, (1981), 345-355.
[11] Edelstein, M. and O'Brian, R. C.; Nonexpansive mappings, asymptotic regularity and successive approximations, J. London Math. Soc. 17 (1978), no. 3, 547-554.
[12] Ishikawa, S.; Fixed points and iteration of nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 73 (1976), 61-71.
[13] Mann, W. R.; Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
[14] Cudia, D. F.; The theory of Banach spaces: Smoothness, Trans. Amer. Math. Soc. 110 (1964), 284-314.
[15] Browder, FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. In: Proc. Of Symposia in Pure Math., Vol. XVIII, Part 2 (1976).
Linxin Li
Department of Mathematics, Chengdu University of Information Technology, Chengdu, China.
e-mail: 1224020519@qq.com
Dingping Wu
Department of Mathematics, Chengdu University of Information Technology, Chengdu, China.
e-mail: wdp68@163.com

