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Asian Options Greeks with Heston Stochastic Model Parameters
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Abstract

An Asian option is an example of exotic options. Its payoff depends

on the average of the underlying asset prices. In this paper we focused

on analytical approximations and a study of sensitivities (Greeks) of

Asian options with Heston stochastic volatility model parameters, af-

ter a brief introduction to the Black-Scholes theory. Only fixed strike

Asian options is considered. After a study of Greeks with Heston model

parameter, a comparison of some approximated Greeks against those

obtained previously with different approaches is also done.

This study is conducted to provide some knowledge and application

about the Greeks.

Mathematics Subject Classification : xxxxx
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1 Introduction

Asian options are securities with payoff which depends on the average of the

underlying stock price over certain time interval. The average may be over

the entire time period between initiation and expiration or may be over some

period of time that begins later than the initiation of the option and ends

1 Department of Mathematics, Pan African University, Institute of Basic Sciences, Tech-

nology, and Innovation, Kenya, e-mail: mamadouwalydia@gmail.com
2School of Mathematics, University of Nairobi, e-mail: philipngare@gmail.com
3 Universit Gaston Berger de Saint-Louis, Senegal ,

e-mail: mamadou-abdoulaye.konte@ugb.edu.sn

Article Info: Revised : xxx, xxxx. Published online : xxx, xxxx



2

with the options expiration. Asian options are hard to price each analytically

and numerically. These options are popular in financial markets where the

averaging feature introduces a smoothing effect. The Greeks are a collection

of statistical values that degree the danger involved in an alternatives agree-

ment in relation to sure underlying variables. They play an essential position

in hedging and risk management. It requires a good understanding of their

properties and qualitative behavior under changes in the model parameters.

For this reason, a exquisite deal of effort has been put into developing precise

computational methods for numerical evaluation of sensitivities. Most of these

methods are: the Monte Carlo method which is very popular because of its

flexibility and ease of implementation and Finite difference methods also pro-

vide a very flexible and efficient for pricing Asian options [11]. The pathwise

method which is one the most effective and is based on a technique generally

called infinitesimal perturbation analysis [4]. And the Malliavin calculus meth-

ods are also known to be more efficient and improve the speed of the Greeks

calculation [9].

Compared to standard vanilla options, Asian options have some obvious ad-

vantages. First of all, they are often cheaper and better suited for hedging

purposes. Secondly, Asian options reduce the risk of price manipulation near

the maturity date,when the underlying is a thinly traded asset or commodity.

But their Greeks are more challenging to price, due to the absence of analyt-

ical expressions for their prices. [17] gave the analytical approximations for

the Greeks of an Asian option in the Black Scholes model when the equiva-

lent implied volatility was obtained by the large deviation theory. The aim

of the existing paper is to study the sensitivities of the Asian options under

the assumption that the equivalent implied volatility is a function of the He-

ston stochastic volatility model parameters.We obtain analytical approximate

prices of Asian options in the case of the Black Scholes model. The pricing

of Asian options with continuous-time averaging in this model. We just con-

sider the case of European style Asian options and the fixe strike Asian options.

The academic literature proposes several methods that accommodate the

path dependency of Asian options. [22] proposed numerical approximations,

and Monte Carlo simulations were employed by [14] and also [3]. A great va-

riety of numerical and exact methods have been proposed for their pricing by
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[20], [7] and [10]. Most of these methods are numerically and computationally

intensive. We quote [23], who proposed a semi-analytical method for pricing

and hedging continuously sampled Asian options. [1] discus the problem of

approximating the price of options on discrete and continuous arithmetic av-

erages of the underlying, i.e., discretely and continuously monitored Asian op-

tions, in local volatility models. [8] also discussed Pricing Asian Options with

Stochastic Volatility and he use the fast mean-reverting stochastic volatility

asymptotic analysis to derive an approximation of the option price which takes

into account the skew of the implied volatility surface. Furthermore, [18] as

discussed about a study of the short maturity asymptotic for Asian options

with continuous-time averaging, under the assumption that the underlying

asset follows the Constant Elasticity of Variance (CEV) model. In the gen-

eral case, mean-reversion is considered to be an important feature of observed

volatility, and thus all plausible models are of the Ornstein-Uhlenbeck type

[13]. Many of researchers model the variance using a square root process, see

[21] and [12]. Monte Carlo simulation can be used to generate an unbiased

estimator of the price of the derivative securities [5]. [19] have discussed Com-

puting Option Price Sensitivities Using Homogeneity and Other Tricks and

have shown that most remarkably some relations of the Greeks are based on

properties of the normal distribution refreshing the active interplay between

mathematics and financial markets. The derivatives of Asian options call op-

tions prices has been discussed wherein an integral forms for key quantities in

the price of Asian option and its derivatives were presented see [6]. However,

a study of sensitivities of Asian options in the Black-Scholes model has been

done by [17], using using large deviations theory and following from a small

maturity/volatility approximation for the option prices.

We now give a short summary of the rest of the paper. In the next section

we introduce the Black Scholes model and the Heston stochastic volatility

model. Section 3 presents some Analytical Approximate formula for the Asian

Greeks, and present some new results for Vanna and Volga of the fixed strike

Asian options. In section 4 we implement a series of numerical tests and

discuss the behavior of these Greeks of Asian options with respect to some

Heston parameters. And finally, Section 5 provides a short summary of the

paper.
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2 Models Presentation

2.1 Black-Scholes Model and Option Pricing

We work on a probability space (Ω,P,F) with a filtration (Ft)t≥0 supporting

two Brownian motions and satisfying the usual conditions. In 1973, Fischer

Black and Myron Scholes published their ground-breaking paper [2]. [16] ad-

justed the Black Scholes formula to enable it to price European options on

stocks or stock indices paying a known dividend yield.

The Black-Scholes model assumes a market consisting of a single risky asset

and a risk-free bank account. This market is given by the equations.

dSt
St

= (r − q) dt+ σdWt (1)

Where Wt is Brownian motion under risk neutral measure and the interpreta-

tion of the parameters is as follows: r is the risk free rate,σ > 0 is the volatility

of the risky asset,q is dividend.

Let T be the maturity and K be the fixed-strike price. The price of the fixed-

strike call and put Asian options are given by

C (K,T, σ, r, q) = e−rTE

[
max{ 1

T

∫ T

0

Stdt−K, 0}
]
, (2)

P (K,T, σ, r, q) = e−rTE

[
max{K − 1

T

∫ T

0

Stdt, 0}
]
, (3)

The approximation has been proposed in [17] for the Asian option prices has

a form similar to the Black Scholes formula.

2.2 Heston Stochastic Volatility Model

The Black-Scholes model approximately describes the behaviour of underlying

asset prices and provides a convenient closed-form formula for option prices. It

provides an important benchmark to evaluate the performance of other models.

However, [12] assumes that the process St follows a log-normal distribution,

and the process vt follows a Cox-Ingersoll-Ross process (CIR) process (1985).

The model is given as:
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dSt
St

= (r − q) dt+
√
vtdWt (4)

dvt = k (θ − vt) dt+ σ
√
vtdZt (5)

dWtdZt = ρdt (6)

• r is the constant risk-free rate

• q is the dividend yield

• θ the mean reversion level for the variance

• k the mean reversion speed for the variance

• σ is the volatility of volatility

• St anb vt are the price and volatility process respectively

• To take into account the leverage effect, stock returns and implied volatility

are negatively correlated,dWt and dZt are correlated Wiener process, and the

correlation coefficients is ρ ∈ [−1, 1].

Note that 2kθ > σ2 ensures that zero is an unattainable boundary for the

process vt.

3 Analytical approximate formulas of Asian

option Greeks

Theorem 3.1. Consider the Cox-Ingersoll (CIR) interest rate Model.

dvt = k (θ − vt) dt+ σ
√
vtdZt (7)

Then the exact solution is

vt = v0e
−kt + θ

(
1− e−kt

)
+ σe−kt

∫ t

0

eku
√
vudZu (8)

According the theorem of the CIR model has no general explicit solu-

tion. Denote the mean and the variance, respectively, µv = E (vT ) and

σ2
v = V ar (vT )

where,

E (vT ) = v0e
−kT + θ

(
1− e−kT

)
(9)

V ar (vT ) = kv0θ
(
e−kT − e−2kT

)
+
θσ2

2k

(
1− e−kT + e−2kT

)
(10)
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The analytical approximations in the Black-Scholes framework to a Call and

Put options which are simmilary to the those given by [18] but here the equiv-

alent implied volatility is depended on time and it also depends on the Heston

stochastic volatility model parameters. these approximations are given as

C (K,T, σ, r, q) ≈ e−rT [F (T )N(d1)−KN(d2)] (11)

P (K,T, σ, r, q) ≈ e−rT [KN(−d2)− F (T )N(−d1)] (12)

where, N(.) is the cumulative function of the Normal distribution.

F (T ) = S0
e(r−q)T − 1

(r − q)T
(13)

d1 =
ln(F (T )

K
) +

σ2
AT

2

σA
√
T

(14)

d2 = d1 − σA
√
T (15)

and the implied volatility is a function not only of the explicit parameters,

namely, S, v and T , but is also a function of all the implicit ones, the strike

K,the interest rate r, and the dividend yield q. According to [15] on page 129,

the implied volatility can be approximated as,

σA(x) ≈ µv +
1

4

σ2
v

µ2
v

(
x2

T
− µv −

1

4
µ2
vT

)
(16)

where, x = log
(
K
S0

)
+ (r − q)T

Remark 3.1. 1. The Call Asian option is Out-of-the-money if K > F (T )

and when K < F (T ), the Put Asian option is Out-of-the-money

2. The prices of Call and Put Asian options are related by the Put-Call

Parity given as

C (K,T, σ, r, q)− P (K,T, σ, r, q) = e−rT [F (T )−K] (17)

Using the short maturity approximation (11), (12) one can derive simple

approximations for the Greeks of the fixed-strike Asian options. However,

numerical testing will show that they give reasonably good approximations for
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these sensitiv- ities with those Heston Model Parameters.

Delta

The Delta of the approximated Asian call/put option is defined as

∆Call =

(
∂C (K,T, σ, r, q)

∂S0

)
,∆Put =

(
∂P (K,T, σ, r, q)

∂S0

)
(18)

Using 11 we the get the explicit result as

∆Call = e−rT
F (T )

S0

{N(d1)−
√
Tn(d1)(σA)′} (19)

where, n(d1) = 1√
2π
e−

d21
2 is the density function of the Normal distribution.

(σA)′ = ∂
∂x
σA

Then from equation (16) we get,

(σA)′ =
1

2T

σ2
v

µ2
v

x (20)

Now from the Put-call parity (17) we get Delta Put,

∆Put = ∆Call −
e−rT

(r − q)T
{e(r−q)T − 1} (21)

Gamma

The Gamma approximated formulas of Asian call/put option are obtained by

using these following definitions,

ΓCall =
∂∆Call

∂S
,ΓPut =

∂∆Put

∂S
(22)

ΓCall = e−rT
F (T )

S2
0

1

σA
√
T
n(d1)

[(
1 +
√
T (σA)′

)(
1 +

(σA)′

σA
log

F (T )

S0

)
+ σA(σA)′′T

]
(23)

where,

(σA)′′ =
1

2T

σ2
v

µ2
v

(24)

Furthermore, the Gamma Put is equal to the Gamma call from equation 21

ΓPut = ΓCall

Vega

Vega is the first derivative of option price with respect to the implied volatility.



8

Since the implied volatility is dependent on strike and maturity, Vega is also a

function of strike and maturity. Therefore, strictly speaking, Vega is a risk sen-

sitivity only defined in the Black-Scholes model. In stochastic volatility models,

the constant volatility is displaced by the stochastic volatility whose process

is characterized by a set of model parameters. The volatility risk in terms

of Vega in the Black-Scholes model is then distributed to the corresponding

model parameters of the stochastic volatility. Note that Vega expresses essen-

tially the risks associated with the parallel change of the constant volatility,

hence it makes sense to formulate a similar Greek associated with the parallel

change of the volatility surface. In the Heston model, the spot value and the

mean level of the stochastic volatility are responsible for the level of volatility

dynamics. Hence, it is intuitive and reasonable in stochastic volatility models

to define the so-called mean Vegas based in the spot volatility and the mean

level (see [24]). But here, we are interested of the vega base on the spot. The

Vega approximated Asian option Call based on the spot volatility is define as

v1,Call = 2
√
v0
∂C

∂v0
(25)

and is given by

v1,Call = 2
√
v0e
−rTF (T )n(d1)

√
T
∂σA
∂v0

(26)

with,

∂σA
∂v0

= e−kT +
1

2

(
x2

T
− µv −

1

4
µ2
vT

)
β − σ2

v

4µ2
v

[
1 +

1

2
µvT

]
e−kT (27)

where,

β =
kθσvµv

(
e−kT − e−2kT

)
− σ2

ve
−kT

µ2
v

Vanna

The Vanna of the approximated Asian call option is defined as

V anna = 2
√
v0

∂2C

∂S0∂v0
(28)

and is given by

V anna = v1,Call
1

S0

( 1√
T

+ d1σ
′
A

) T
2
σ2
A − log

(
F (T )
K

)
√
Tσ2

A

− ∂σ′A
∂v0

/
∂σA
∂v0


(29)
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where,

∂σ′A
∂v0

=
x

T
β (30)

Volga

The Volga approximated Asian call option is defined as

V olga =
∂2C

∂v20
(31)

and is given as

volga = 2v1,call

[
1

2
√
v0
−
√
v0d1

∂d1
∂v0

+
√
v0
∂2σA
∂v20

/
∂σA
∂v0

]
(32)

where,
∂2σA
∂v20

= ∂f
∂v0
e−kT + 1

2

[
∂β
∂v0
h+ ∂h

∂v0
β
]

∂f
∂v0

= −1
2

[(
1 + T

2
µv
)
β + T

4
σ2
v

µ2v
e−kT

]
∂β
∂v0

= kθ β
σv

(
e−kT − 2e−2kT

)
− 2 β

µv
e−kT

∂h
∂v0

= −
(
1 + T

2
µv
)
e−kT

f = 1− 1
4
σ2
v

µ2v

(
1 + T

2
µv
)

h = x2

T
− µv − 1

4
µ2
vT

4 Numerical Tests

Let us fixe T = 0.5; σ = 0.016; k = 5; θ = 0.16; ρ = 0.01; r = 0.02; K = 100;

S0 = 100; v0 = 0.0625, q = 0. Next we change one of the variables at a time

and see how the Asian Call option changes as this particular variable changes

With the Heston model parameters.

Fisrt : Change the spot stock price from 80 to 130. Figure 1 shows that for

a Call option, the price increases when the underlying price, S , increases as

expected.
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Figure 1: Asian Call Price under different Stock Prices

Second: Change the instantaneous variance v0 from 0 to 0.5. Figure 2,

Figure 3, Figure 4 respectively show the volatility square, v0 , has a positive

effect on the Asian option price, the larger the volatility, the higher the price.

All three Figures have the same increasing trend indicating that the option

prices increases as v0 increases. ATM, ITM and OTM gives similar results in

terms of Option price differences but in terms of relative difference it is OTM

which is the most sensitive.

Figure 2: ATM Call Price under Different Instantaneous Volatility v0
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Figure 3: ITM Call Price under Different Instantaneous Volatility v0

Figure 4: OTM Call Price under Different Instantaneous Volatility v0

Consider an Asian Call option on an underlying S0 = 100 with half of year

to maturity; in order to study the implied volatility, different strike prices are

required. The strike prices have to be chosen carefully to avoid too large or

too small values. If the strike price is too high compared with the underlying

price, the option would be deep ITM and fall into the early exercise region. On

the other hand, if the strike is too low, the option would be deep OTM, which

has little value. Either case could cause the failure of the option pricing model.

Figure 5 is the implied volatility of an Asian options for T = 0.5; σ = 0.016;

k = 5; θ = 0.16; ρ = 0.01; r = 0.02; S0 = 100; v0 = 0.0625 with a number of

different strike prices (K from 80 to 130). The pattern that implied volatility

changes faster as the option goes from OTM to ITM is known in the literature
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as a ”volatility sneer”.

Figure 5: Implied Volatility of Asian Option with Heston Model parameters

Figure 6: shows that the delta of Asian call option is positive, which is to

be expected, since an increase in the stock price would make the call worth

more. A deep ITM call behaves as if one is long the underlying, and hence the

corresponding delta is 1. A deep OTM call would have very little change in

price as the underlying moves, hence the delta is 0. The range of delta for a

call is [0, 1].

Figure 6: Delta of Asian Option with Heston Model parameters

Now let K = 100; T = 0.5; σ = 0.016; k = 5; θ = 0.1; ρ = 0.01; r = 0.02;

S0 = 100;and v0 = 0.0625. Change one parameter at a time and hold others

constant to assess the effect of the six structure parameters on option pricing
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(ATM study):

Each time, we change one parameter while holding other parameters constant.

The frst columns contains the parameters to be changed. The second column

is the value of the changing parameter. The third and forth columns are the

Delta option values under each changed parameters with instantaneous volatil-

ity v0 = 0.02 and v0 = 0.0625 respectively.

Firstly Table 1 demonstrates that a large value of , θ and r leads to a higher

values of Delta under different v0. As we increase σ , and k the Delta values

decreases.

Parameters Values v0 = 0.02 v0 = 0.0625

3 0.55456540 0.55369519

k 4 0.55385066 0.55355740

5 0.55361246 0.55350922

0.1 0.55361246 0.55350922

θ 0.16 0.55787409 0.55840788

0.2 0.56434565 0.56502755

0.02 0.55361246 0.55350922

r 0.1 0.65569015 0.65173781

0.2 0.75796942 0.75117879

0.016 0.55361246 0.55350922

σ 0.02 0.55361246 0.55350922

0.3 0.55361206 0.55350808

Table 1: Delta Option with Heston Model Parameters

Figure 7 shows that Gamma is greatest when the strike price is close to

the stock price (ATM) and declines as the option moves away from the strike

price and becomes further ITM or further OTM. The Approximate Gamma of

an Asian option obtained is positive. As Figure 4.6 shows by considering the

case of Asian Call option. As the underlying increases, we know that the delta

increases, since it is more likely to be ITM. Hence, this tells us that Gamma,

which is the rate of change of delta, is positive.
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Figure 7: Gamma of Asian Option with Heston Model parameters

Secondly Table 2 demonstrates that a large value of k, θ and r leads to

a lower values of Gamma under different v0. As we increase σ , the Gamma

values increases. And Also, a larger v0 always results in a lower value of

Gamma.

Parameters Values v0 = 0.02 v0 = 0.0625

3 0.06763219 0.06067256

k 4 0.06232057 0.05856572

5 0.05948342 0.05735379

0.1 0.05948342 0.05735379

θ 0.16 0.03736405 0.03650562

0.2 0.02987800 0.02932280

0.02 0.05948342 0.05735379

r 0.1 0.05332333 0.05166676

0.2 0.04074747 0.04009666

0.016 0.05948342 0.05735379

σ 0.02 0.05948343 0.05735380

0.3 0.05948748 0.05736245

Table 2: Delta Option with Heston Model Parameters
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Figure 8: Vega of Asian Option with Heston Model parameters

Figure 8 shows that the Vega option is higher from OTM to ITM with a

lower value of k , which is the mean reversion speed. This figure indicates that

this pattern is more pronounced for ATM than ITM and OTM.

Figure 9: Vega of Asian Option with Heston Model parameters

Figure 9 shows that when θ is reduced then the values of Vega option for

both from OTM to ITM are reduced. This pattern is more notable for the

ITM and OTM options than the ATM options, as the three curves are almost

intersecting at around where S is equal to the strike price K.
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Figure 10: Vega of Asian Option with Heston Model parameters

Figure 10 shows that at around OTM, as the interest r grows, the value of

Vega Approximate is higher and at around ITM, it shows us the opposite phe-

nomena (the smaller the interest rate and the higher the value of approximate

Vega ). this pattern with r has the similar phenomena as the above with θ.

Furthermore, the figure 11 shows how Vanna oscillates with respect to the

changes in the underlying asset S:

Figure 11: Vanna of Asian Option with Heston Model parameters

This figure shows that Vanna Approximate of Asian option has positive

values when the underlying asset S is lesser than the strike K (OTM), and

it has negative values when the underlying asset S is greater than the strike

price K (ITM).
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Figure 12: Volga of Asian Option with Heston Model parameters

Figure 12 depicts a similar pattern Figures 4.6, it is because for volatility

movements, Volga Approximate is to Vega Approximate what Gamma Ap-

proximate is to Delta Approximate (for spot movement).

4.1 A Comparisons of some Greeks

Comparison is done by analyzing Sensitivities obtained from an approximation

with the Heston Model Parameters and those from the Black-Scholes model

see [17] and [23]. Consider an Asian option with the same scenario as previous

section: K = 100; T = 0.5; σ = 0.016; k = 5; θ = 0.1; ρ = 0.01; r = 0.02;and

v0 = 0.0625. For both figures 13 and 14, we consider the difference between

the Greeks approximate with the Heston Model Parameters against those from

[17] and [23]. Here, we only discuss about the Delta and the Gamma when the

Stock Price (S) is from 60 to 130.

Figure 13 shows that earlier around OTM, Delta of Asian call option with the

Heston Parameters is much higher than the Delta of Asian option obtained

from [23] with the Black Schole Model, While for ITM options, Delta of Asian

call option with the Heston Parameters is cheaper than Delta from Black Sc-

hole Model (see [23]). Furthermore, this figure shows the same pattern of Delta

of Asian call option with Heston Model Parameters compare against Delta ob-

tained from the large deviation theory ( see [17]).
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Figure 13: Delta Difference between Delta from Heston Model Parameters

and Black-Scholes Model

Figure 14 shows that for the Gamma approximate with the Heston model

Parameters is higher than Gamma obtained from [23] from OTM to ITM

options. This figure shows also that Gamma approximate with the Heston

model Parameters is higher than Gamma obtained from the Large deviation in

[17] only around ATM options but for OTM and ITM we observe the opposite

case. The option with higher Gamma have higher since an unfavorable move

in the the underlying stock have an oversize impact.

Figure 14: Gamma Difference between Delta from Heston Model Parameters

and Black-Scholes Model
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5 Conclusion

The valuation of Asian options is of both theoretical interest and practical

importance. Several approaches have been proposed to value these options.

This paper has provided an analytical formulas of Asian call options and theirs

Greeks with Heston model parameters. A study of Greeks with different Heston

model parameters shows the variations of the Greeks from out-of-the-money to

In-the-money options. Finally, a comparison of these approximations against

those from [17] and [23], confirm the better performance of the Heston model

against the Black-Scholes model.
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