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NonParametric estimation for

Nested Error Nonparametric Unit Level Model

Patrick Munyangabo1, Anthony Waititu 2 and Anthony Kibira Wanjoya3

Abstract

In this paper, we proposed a nested error nonparametric unit level

model, when the linearity assumptions have been violated. The model

formulation and parameter estimation of mean function were examined

and proposed two theorems for asymptotic properties of mean function

of proposed model were done. The simulation study was performed

and it has shown that the mean square errors (MSE) and bias of our

estimated were close to zero.

1 Introduction

In statistics, linear regression uses a linear approach to express the relation-

ship between a dependent and one or more independent variables. In small

area estimation, the approach for unit level model expresses the relationship
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between the variable of interest and the auxiliary variables as a linear regres-

sion model plus a random effect. It assumes the linearity among them. For

instance, the well known model is found in [6], In case, where that assumption

is violated, there are alternative approaches in the literature. [1] extended

the model found in [6] for solving the issue of complex estimation, by incor-

porating nonparametric regression unit level model in small area estimation.

The penalized spline regression was used. The work of [1] was extended by

[3] to handle non continuous response variables. To deal with the problem of

non-linearity in variable of interest, [7] proposed the M-quantile approach. A

unit level log-normal model was proposed by [8] to deal with the problem of

violation of normality assumptions. The proposed nested error in unit level

nonparametric model is the purpose of this paper. We begin by the model for-

mulation, then we perform parameter estimation of mean function and finally,

we derive the asymptotic properties of our estimator.

2 Formulation of Proposed model

We consider a situation where the variable of interest and the covariates of

auxiliary variable of proposed model has non linear relationship among them.

Because the assumptions of the linear model with normal errors are violated,

linear predictors are inefficient. That is why we look at the case where units

in the population are assumed to have log-normal distributions. The locally

weighted regression (loess or lowess) was used to approximate the mean func-

tion of local polynomial in the proposed model. The parameters of proposed

estimator can be derived using least square method. The proposed model for

the variable of interest, yjd, is defined as

log(yjd) := ljd = m0(xjd) + uj + ejd. (1)

where the function m0(·) is unknown, but estimated by locally weighted
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regression (loess or lowess), with parameter polynomial model in one variable

is given by:

m(x, β) = β0 + β1x+ β2x
2 + . . . βpx

p (2)

The model (2) is called the pth order model. According to [10], polynomial

models are also useful to approximating unknown functions and possibly very

complex non-linear relationship. The log(yjd) is the logarithm of variable of

interest, Xjd = (1, x1,jd, · · · , xp−1,jd) is a p-vector of auxiliary variables on unit

j of area d, ud is an area-level random effect, and ejd is the error term. The

ud and ejd are mutually independent with zero mean and variance σ2
u and σ2

e

respectively.

3 Parameter Estimation for mean function of

proposed Model

In order to estimate the parameters of mean function of proposed Model, the

weighted function for local weight regression (loess or lowess) was defined, to

get good approximation of local polynomial. The Taylor’s series expansion

were used to enable us the properties of the estimator, then the least square

method was employed to estimate the local polynomial parameters.

3.1 Weighted function

The local weight regression (loess or lowess) commonly uses the kernel function

known as the weight tricube [9]. The tricube weight function is defined as

t(d) =

{
(1− |d|3)3 ; 0 ≤ d ≤ 1

0 ; Otherwise
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The weight sequence is defined as

wi(x0) = t

(
|x0 − xi|

b

)
(3)

Where b is the bandwidth and depending on targets covariance x0.

3.2 Parameter estimation of Mean function

The local polynomial of mean function is

m(x) = β0 + β1x+ β2x
2 + · · ·+ βpx

p =

p∑
j=1

βpx
p (4)

and the kth, k > 0, derivative of m(x) is given by

m(k)(x) =

p∑
j=0

k−1∏
i=0

(j − i)βjxj−k (5)

The good approximation of local polynomial was obtained by application Tay-

lor’s Theorem as follows

m(x) = m(x0) +m′(x0)(x− x0) +
1

2!
m′(x0)(x− x0)2 + · · ·+ 1

p!
m(p)(x0)(x− x0)p

= m(x0) +

p∑
k=1

1

k!
m(k)(x0)(x− x0)k

(6)
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Now, assuming that x0 = 0, we have

m′(x0) =

p∑
j=0

0∏
i=0

(j − i)βjxj−10 =

p∑
j=0

jβjx
j−1
0 = 0 + β1x

0
0 +

p∑
j=2

jβjx
j−1
0︸ ︷︷ ︸

=0

= β1

m′′(x0) =

p∑
j=0

1∏
i=0

(j − i)βjxj−20 =

p∑
j=0

j(j − 1)βjx
j−2
0 = 2β2 +

p∑
j=3

j(j − 1)βjx
j−2
0︸ ︷︷ ︸

=0

m′′′(x0) =

p∑
j=0

2∏
i=0

(j − i)βjxj−20 =

p∑
j=0

j(j − 1)(j − 2)βjx
j−3
0 = 6β3 + 0

(7)

In general, considering the formula in (5)

m(k)(x0) =
k∑

j=0

k−1∏
i=0

(j − i)βjxj−k +

p∑
j=k+1

k−1∏
i=0

(j − i)βjxj−k︸ ︷︷ ︸
=0

=
k−1∏
i=0

(k − i)βjxk−k

= k!βk

(8)

Replacing the result from (8) in (6), gives

m(x) = m(x0) +

p∑
k=1

1

k!
k!βk(x− x0)k =

p∑
k=0

βk(x− x0)k

= m(x0) + β1(x− x0) + β2(x− x0)2 + · · ·+ βp(x− x0)p
(9)

We have kept low as possible the order of the polynomial due to the reason

that the arbitrary fitting of higher order polynomial can increase of risk of

over-fitting and to generate bad prediction of model (1)[13].

Putting (3) and (9), in model (2), we have

ζ =
{
li − [m(x0) + β1(x− x0) + β2(x− x0)2 + · · ·+ βp(x− x0)p]

}2
wi(x0).

(10)
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By minimize (10), we have

ζ =
∑

[li −m(x0)− β1(x− x0)− β2(x− x0)2 − · · · − βp(x− x0)p]2wi(x0)

(11)

The (11) can be written as

ζ = (L−Xβ)TW(L−Xβ) (12)

Where

L =


l1

l2
...

ln



X =


1 (x1 − x0)1 (x1 − x0)2 . . . (x1 − x0)p

1 (x2 − x0)1 (x2 − x0)2 . . . (x2 − x0)p
...

...
...

...
...

1 (xn − x0)1 (xn − x0)2 . . . (xn − x0)p



βT =
[
β0 β1 β2 . . . βp

]

W =



t

(
|x0 − x1|

b

)
0 0 . . . 0

0 t

(
|x0 − x2|

b

)
0 . . . 0

...
...

...
. . .

...

0 0 0 . . . t

(
|x0 − xn|

b

)


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Then from (12) , we have

ζ = (LTWL− LTWXβ − βTXTWL + βTXTWXβ) (13)

First derivative of (13) with respect of β gives

∂ζ

∂β
= −2XTWL + 2βXTWX (14)

Since W is a diagonal matrix and evaluating (14) at point 0, we have

β̂ = (XTWX)−1XTWL (15)

Given the condition that the (XTWX) is a nonsingular matrix. The quan-

tity m(x0) is then estimated by the fitted intercept parameter (ie. by β0) as

this defines the position of the estimated local polynomial curve at the point

x0[13].

4 Asymptotic Properties

4.1 Deriving the Asymptotic bias

Theorem 4.1. Proposed theorem: Let (x1; l1), · · · , (xn; ln) be a random

sample of bivariate data and x be a close point to x0 then m̂(x) is the consis-

tency estimator of m(x0) when the smoothing parameter satisfy the condition

b→ 0, as n→∞, then

m̂(x)
D→ m(x0).

Proof. Here, prove properties for p = 0 (Nadaya-Watson kernel estimation).

According to [12] the mean can be approximated as follows:

E[m̂(x0)] =

E
[∑n

i=1 t
(xi − x0)

b
li

]
E
[∑n

i=1 t
(xi − x0)

b

] =
A

B
(16)
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1.Assuming that (xi, li) are independent identically distributed, then

A = nE
[
t
(x− x0)

b
l

]
(17)

A = n

∫∫
t
(x− x0)

b
lf(x, l) dx dl (18)

Changing the variables s =
(x− x0)

b
, then

A = nb

∫∫
t(s)lf(sb+ x0, l) ds dl (19)

where

f(sb+ x0, l) = f(l|sb+ x0)f(sb+ x0) (20)

Using series expansion

f(sb+ x0) = f(x0) + f ′(x0)sb+
1

2
f ′′(x0)s

2b2 + O(s2b2)

m(sb+ x0) = (x0) +m′(x0)sb+
1

2
m′(x0)s

2b2 + O(s2b2)

2.Assuming that f and m are differentiable
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A = nb

[
f(x0)m(x0)

∫
(ts) ds+

1

2
f(x0)m

′′(x0)b
2

∫
s2t(s) ds+f ′(x0)m

′(x0)b
2

∫
s2t(s) ds+

1

2
f ′(x0)m(x0)b

2

∫
s2t(s) ds

]
+ O(s2b2) (21)

1.Notation σ2
t =

∫
s2t(s) ds that is Roughness of t

A = nb

[
f(x0)m(xo) +

1

2
f(x0)m

′′(x0)b
2σ2

t + f ′(x0)m
′(x0)b

2σ2
t +

1

2
f ′′(x0)m(x0)b

2σ2
t

]
+ O(s2b2)

(22)

A = nb

[
f(x0)m(x0) +

b2

2
σ2
t (f(x0)m

′(x0) + 2f ′(x0)m
′(x0) + f ′′(x0)m(x0))

]
+ O(s2b2)

(23)

Now, we have to calculate

B = E

[
n∑

i=1

t
(xi − x0)

b

]
(24)

Using assumption 1 and changing the variable s =
(x− x0)

b
, we have

B = nb

∫
t(s)f(sb+ x0) ds

Using the Taylor series expansion, we have

B = nb

∫
t(s)[f(x0) + f ′(x0)sb+

1

2
f ′′(x0)s

2b2] ds+ O(s2b2) (25)

B ≈ nf(x0)

∫
t(s) ds+ b2f(x0)

∫
st(s) ds+

1

2
b2f ′′(x0)

∫
s2t(s) ds (26)
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Application of assumption 2, we have

B ≈ nbf(x0)

[
1 +

1

2
b2
f ′′(x0)

f(x0)
σ2
t

]
(27)

A

B
=

m(x0) +
b2

2
σ2
t

[
f(x0)m

′(x0)

f(x0)

]
+

2f ′(x0)m
′(x0)

f(x0)
+
f ′′(x0)m(x0)

f(x0)

1 +
1

2
b2
[
f ′′(x0)m(x0)

f(x0)

]
σ2
t

(28)

4.Assuming that b→ 0, so

f ′′(x0)

f(x0)σ2
t

≈
(

1− 1

2
b2
f ′′(x0)

f(x0)
σ2
t

)−1

B = 1 +
1

2
b2
f ′′(x0)

f(x0)σ2
t

≈
(

1− 1

2
b2
f ′′(x0)

f(x0)
σ2
t

)−1 (29)

E[m̂(x0)] ≈ m(x0)−m(x0)
b2

2
σ2
t

f ′′(x0)

f(x0)
+
b2

2
σ2
tm
′′(m0) + 2

f ′(x0)m
′(x0)

f(x0)
+
f ′′(x0)m(x0)

f(x0)

(30)

E[m̂(x0)] ≈ m(x0) +
b2

2
σ2
t

[
m′′(x0) +

f ′(x0)m
′(x0)

f(x0)

]
(31)

E[m̂(x0)−m(x0)]→ 0 when b→ 0 and n→∞

m̂(x0)
D→ m(x0) (32)
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4.2 Deriving the asymptotic variance

Theorem 4.2. Proposed theorem: Let (x1; l1), · · · , (xn; ln) be a random

sample of bivariate data and x be a close point to x0 then V ar[m̂(x0)] ≈
1

f(x0)
provided that f(x0) is positive, as b2 → 0.

Proof. We that the variance can be obtained as:

V ar[m̂(x0)] = E[m̂(x0)
2]− {[E[m̂(x0)]}2 (33)

E[m̂(x0)] =

∑n
i=1 t

(xi − x0)
b

li∑n
i=1 t

(xi − x0)
b

=
A

B
(34)

E[m̂(x0)]
2 =

E[A2]

E[B2]
(35)

E(A2) = E

[(
n∑

i=1

t
(xi − x0)

b
li

)(
n∑

i=1

t
(xi − x0)

b
li

)]
(36)

Using the assumption 1, we have

E(A2) = n× E
[
t2

(x− x0)
b

l2
]

(37)

E(A2) = n×
∫∫

t2
(x− x0)

b
l2f(x, y) dx dy (38)

Changing the variables put s =
x− x0
b

, we get

E(A2) = nb

∫
t2(s)f(sb+ x0)[m

2(sb+ x0) + 1] ds (39)
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Using series expansion first order,

f(sb+ x0) = f(x0) + f ′(x0)sb+ O(s2b2)

m2(sb+ x0) = m2(x0) + (m2)′(x0)sb+ O(s2b2)

Now, we have

E(A2) = nb

∫ {
t2(s) [f(x0) + f ′(x0)sb]

[
m2(x0) + (m2)′(x0)sb+ 1

]
+O(s2b2)

}
ds

(40)

4.Assuming that
∫
st2 ds is negligible we have

E(A2) ≈ nbσ2
t

[
f(x0)m

2(x0) + 1
]

(41)

On the other hand, we have

E(B2) = E

[
n∑

i=1

t
(xi − x0)

b

]
(42)

Using the assumption 1, we get

E(B2) = n

∫
t2
(
x− x0
b

)
f(x) dx (43)

Changing the variables put s =
x− x0
b

, we have

E(B2) = nb

∫
t2(s)f(x0) + f ′(x0)sb+ O(sb2) ds (44)

then,

E(B2) ≈ nbf(x0)σ
2
t (45)
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Using(41) and (45), then (35) gives

E[m̂(x0)
2] ≈ nbσ2

t [f(x0)m
2(x0) + 1]

nbf(x0)σ2
t

E[m̂(x0)
2] ≈ m2(x0) +

1

f(x0)

(46)

Using (46) and (31) in (33), we have

V ar[m̂(x0)] ≈ m2(x0) +
1

f(x0)
−
[
m(x0) +

b2

2
σ2
tm
′′(x0)

]2
(47)

V ar[m̂(x0)] =
1

f(x0)
−m(x0)b

2σ2
tm
′′(x0)−O

(
b4

4

)
(48)

V ar[m̂(x0)] ≈
1

f(x0)
as b2 → 0 and given that f(x0) > 0 (49)

5 Simulation Study

We evaluate the performance of our estimator though out the simulation.

The model (1) was used for simulation, with one-dimensional covariate Xjd

was generated form normal distribution. The variable of interest yjd were

simulated from normal distribution. The mean and variance used for the

simulation were approximately calculated based on the (2013-2014) Rwanda

Integrated Household Living Conditions Survey(EICV4). In our simulation,

N = 10000 observations were generated and the small area population sizes

Ni i,= 1, · · · ,m = 25, were generated randomly so that
∑

iNi = N and was

kept fixed throughout the simulation. The random errors were independently

generated from a normal distribution with parameter N (0, σ2
e). The random

area effects vj were generated from N (0, σ2
u). The data plot is represented by

the figure 1.
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6 Conclusion

Considering that the normality assumptions were violated the proposed model

could work as an alternative in small area estimation. Since, our estimator was

found to give smaller MSE and Bias almost close to zero when the bandwidth

is equal to 0.5. Despite, the good performance of our estimator more research

is needed to derive its optimal bandwidth.

Acknowledgments.

The authors acknowledge African Union and Pan African University, Institute

for Basic Sciences Technology and Innovation, Kenya for funding and support-

ing this research project.

References

[1] Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G., and

Breidt, F. J. (2008).Non-parametric small area estimation using penal-

ized spline regression. Journal of the Royal Statistical Society. Series B:

Statistical Methodology, 70(1):265-286.

[2] Pratesi, M., Ranalli, M. G., and Salvati, N. (2009). Nonparametric m-

quantile regression using penalised splines. Journal of Nonparametric

Statistics, 21(3):287-304.

[3] Lombardia, M. J. and Sperlich, S. (2008). Semiparametric inference in

generalized mixed effects models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 70(5):913-930.

[4] Pratesi, M., Ranalli, M. G., and Salvati, N. (2008). Semiparametric m-

quantile regression for estimating the proportion of acidic lakes in 8-digit

hucs of the northeastern us. Environmetrics, 19(7):687-701.



15

[5] Salvati, N., Ranalli, M., and Pratesi, M. (2011). Small area estimation of

the mean using non-parametric m-quantile regression: a comparison when

a linear mixed model does not hold. Journal of Statistical Computation

and Simulation, 81(8):945-964.

[6] Battese, G. E., Harter, R. M., and Fuller, W. A. (1988). An error-

components model for prediction of county crop areas using survey and

satellite data. Journal of the American Statistical Association, 83(401):28-

36.

[7] Tzavidis, N., Salvati, N., Pratesi, M., and Chambers, R. (2008). M-

quantile models with application to poverty mapping. Statistical Methods

and Applications, 17(3):393-411.

[8] Berg, E., Chandra, H., and Chambers, R. (2016). Small Area Estimation

for Lognormal Data, pages 279-298. John Wiley Sons, Ltd.

[9] Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an

approach to regression analysis by local fitting. Journal of the American

statistical association,83(403):596-610

[10] Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its appli-

cations: monographs on statistics and applied probability 66, volume 66.

CRC Press.

[11] National Institute of Statistics of Rwanda, N. (2015). Rwanda poverty

profile report,2013/14.

[12] Seltman, H. (2012). Approximations for mean and variance of a ratio.

unpublished note.

[13] Irizarry, R. A. and Bravo, H. C. (2010). Lecture 7: Smoothing.

[14] L. L. Seknewna, P. N. Mwita and B. K. Muema, Smoothed conditional

scale function estimation in AR(1)-ARCH(1) processes, Journal of Prob-

ability and Statistics, 2018 (2018)



16

Figure 1: Plot of the simulated data and its fitting

Table 1: Calculated MSE and Bias for simulated data at different bandwidth

Bandwidth MSE Bias

0.01 2.212724e-07 7.602842e-17

0.1 2.212724e-07 7.602842e-17

0.3 1.395272e-07 7.602842e-17

0.5 6.800175e-08 1.012576e-17

0.8 1.395272e-07 -2.540015e-17

The MSE and Bias were found to be close to zero when the bandwidth is 0.5. For

the rest of our analysis a bandwidth(b = 0.5) was used to tackle the issue of over

and under estimation.
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Figure 2: The distribution of bias within districts at b = 0.5.
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