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Abstract 

In this paper, we propose a multivariate least squares estimation procedure to estimate Global 

Vector Autoregressive (GVAR) models and show that it leads to consistent and asymptotically 

normal estimates of the parameters. We also provide computationally simple conditions that 

guarantee that the GVAR model is stable. 
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1. Introduction  

The GVAR model combines VAR models for several countries. The different VAR models for 

each country are linked by inclusion of a foreign variable which is constructed as a weighted 

average of endogeneous variables in other countries. The estimation strategy follows the 

suggestion of Pesaran, Schuermann and Weiner (2002), hereafter PSW, who estimated the model 

on a country by country basis ignoring the endogeneity of the foreign variable. The approach in 

this paper will be based on the argument that as the number of countries in the sample gets 

smaller (N→0), the foreign variable becomes strongly endogeneous. More so, the conditions for 



‘weak exogeneity’ as assumed in PSW (2002) might not be satisfied in many empirical settings, 

e.g. when using trade weights and there remain important trading partners even as the number of 

countries in the sample increases. Furthermore, in many situations, the asymptotic guidance 

should be derived keeping the number of countries fixed (N fixed, T→∞). 

As a result, it is of interest to be able to estimate the model consistently taking the endogeneity of 

the foreign variables into account. We provide a relatively simple multivariate least squares 

estimation procedure and show that it is consistent and asymptotically normal. In the next section 

we present the model and discuss the conditions under which the GVAR model is stable. Section 

3 then outlines the estimation procedure and provides the asymptotic results. Finally, section 4 

offers conclusions. Proofs of the claims made in the paper are contained in the appendix. 

2. Model 

Formulation of each country VAR*Y model 

In this model each country will be linked with the others by including foreign-specific variables. 

Since all countries are modeled individually, then in each country VARY* model, country 

specific variables are related to deterministic variables such as time trend (t) and a set of country 

specific foreign variables. Each country will be modeled as a VARY* model as shown below 
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     is a      vector of country specific domestic variables 

   
  

 is the   
    vector of foreign variables specific to country   

     is a       matrix of coefficients associated to lagged domestic variables 

     is a      
  matrices of coefficients related to contemporaneous foreign variables 



     is a      
  matrices of coefficients related to the lagged foreign variables           

     is a      vector of fixed intercepts 

     is a      vector of coefficients of the deterministic time trend 

     is a      vector of country specific shocks assumed to be serially uncorrelated with a zero 

mean and a non-singular covariance matrix. Specifically        ∑    

The domestic variables and foreign variables are grouped as 

    (     
 
  
)      

Each country model in (i) is then written as 

                                             

where it is assumed that     for ease of computation. 

In equation (3) 

                  

             
 

             
       

And the     coefficient matrices are all of size          
  . Equation 3 can be treated like a 

VAR (p) model by multiplying throughout by     
  . 

The GVAR model 

To examine the endogeneity of the foreign variable    
 , we need to solve the entire (global) 

model. Stacking over the countries model can be written as 

                                                          

Where  

            



            

            

                

                   

                     

The solution of the stacked model is obtained as 

              (                                           )    

Provided the innovations    are independent in the time dimension, the endogeneity of the 

regressors     follows from 

                            
         

Pesaran et al. (2002) assume that the weight matrices     are diagonal with 

         (   
       

 ) and that ∑ (   
 )

 
   

   , as                     

However, this implies that asymptotically the foreign variables have no explanatory power in the 

model. Asymptotic properties of such model should not be used as small sample guidance for our 

estimators if we actually expect some degree of cross sectional dependence in our model. 

The assumption ∑ |   
 | 

                       , where the constant   does not depend on 

the sample size N. This is clearly a weaker assumption but it turns out to be powerful enough to 

allow us derive asymptotic properties of our model. 

Assumptions 

The general assumptions that are maintained/applied throughout this section are listed below. 

The importance of such assumptions is also explained. 

Assumption 1 



The disturbances     are generated from 

            

Where                                                                   and  

a) The innovations      are totally independent (w.r.t                  ) and have 

uniformly bounded absolute     moments for some     

b) The sequence of       matrices      has uniformly bounded absolute row sums i.e. 

denoting         the      element of     , it holds that 

∑|       |

  

   

      

Where the constant    does not depend on T or N. 

This assumption allows for a general heterogeneity structure within a given time period. 

However, it imposes the restriction that the disturbances at different time periods are 

independent. Part (a) is a standard restriction required for deriving asymptotic results, 

while part (b) guarantees that the amount of heterogeneity in the disturbances is 

asymptotically limited as the number of countries in the sample increases. 

Assumption 2 

a) The sequence of the weight matrices   has uniformly bounded absolute row and column 

sums i.e. denoting       , the      -th element of    , it holds that 

∑ ∑ |      | 
   

 
         Where the constant    does not depend on        and the 

choice of indexes          But can partially depend on other parameters of the model. 

b) The sequences of matrices             and [                   

       (      )
  

]
  

 are well defined (the inverses exist) and have uniformly 

bounded absolute row and column sums. 

c) The parameter space is uniformly bounded i.e. the matrices                 have 

uniformly bounded absolute row sums and the vectors           have elements 

uniformly bounded in absolute value. 



Assumption 2 guarantees that the degree of international interactions in the data does not 

explode as the sample size (number of countries) increases. 

The existence of the inverses in the above assumption will be guaranteed by the following 

assumptions that imposes stability of the process in both         dimensions (i.e. 

assumptions 3 and 4) 

 

Notation 

Let A be any square     matrix with real entries. We denote its spectral radius as 

         {| |                         } 

Assumption 3 

The spectral radius of     is uniformly less than one i.e.             where the 

constant   does not depend on        

Assumption 4 

The spectral radius of                     and of            (      

       ) are uniformly less than one. 

Assumption 5 

The initial observations    are drawn from        

Where 

a) The innovations collected in the      vector   are totally independent of each other as 

well as of innovations            and the elements of   have uniformly bounded 

absolute     moments for some     

b) The sequence of       matrices    has uniformly bounded absolute row sums i.e. 

∑ |     |        
    where the constant    does not depend on          



This assumption is about the initial starting values of the process and it will enable us 

demonstrate that the observable process is a well-defined transformation of the underlying 

innovations. 

The following lemma will be useful in testing the stability of a GVAR model. 

Lemma 1 

Let A, B and C be square matrices with same dimensions and let ‖ ‖ and ‖ ‖ be less than one 

for some matrix norm. Then the matrix   ∑    
       is well defined and 

        [        ]         

Furthermore, the finite sum    ∑    
       can be expressed as 

                

 

 

Stability conditions of the GVAR process 

Inspecting the solution of the global model given in equation 7, it follows that to determine 

whether the GVAR model is stable, it is not sufficient to examine the stability of the country-by-

country models separately, ignoring the endogeneity of    
  i.e. to examine the Eigen values 

of          . Instead the stability of the global model is determined by the spectral radius of 

           (                 )    

Hence it does not suffice to impose stability of each country model (i.e. require that        . 

Accounting for the autocorrelation in the foreign variable i.e. imposing that  (        

         )     is also not sufficient. 

Instead, the stability of the process also depends on the strength of the contemporaneous global 

links in the models (i.e. on the parameters collected in   ) and it must be determined by the 

spectral radius of the entire matrix 



           (               )     

In general when both         are allowed to tend to infinity, the claim that this is sufficient is 

not straight forward and is demonstrated in the following proposition. 

Proposition 1 

Under the assumptions 1-5,    has well defined uniformly bounded     moments for some 

   . Furthermore, if     , then in the limit as    ,    converges in quadratic means to a 

random variable    which has well defined finite absolute     moments for some     with 

      [               (               )]
  

                 

If additionally,             
     , we have 

     [      ]  {      [                         ]}                 

Where  

              (                 )     and   is a duplication matrix 

such that 

                   

Proposition 2 

Assume that the maximum absolute row sums of W are less or equal to   , i.e. ‖ ‖    . 

Suppose that  

 ‖ ‖    (‖  ‖    ‖  ‖ )    

Then the spectral radius of            (                 ) is less than one. 

3. Multivariate least squares estimation 

The GVAR framework 

We can build a simple version of our GVAR model from each country models represented by 

equation 1 as follows.  



We collect all the domestic variables of all the countries to create the global vector 

   (

   
   

 
   

)        

Which is a     vector containing all endogeneous variables, where   ∑   
 
   . Following the 

step that gives rise to equation 48 and the one above, we obtain the identity 

                 

For                  is a country-specific link matrix of dimensions       
     

constructed on the basis of trade weights. This identity allows writing each country model in 

terms of the global vector in 78. By substituting 79 in 48, we obtain 

                                                  

The individual country models are then stacked, yielding the model for all the variables in the 

global model    to obtain 

           ∑  

 

   

                   

Where  

   (
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) 

Pre-multiplying equation 17 by     yields an autoregressive representation of the GVAR (p) 

model shown below 

          ∑  

 

   

               

Where 

                                        



Equation 18 can be treated like any other VAR equation of order p. 

Equation 18 can be re-written as 

                              

The estimator 

It is assumed that a time series         of the   variables is available, that is, we have a sample 

of size T for each of the   variables for the same sample period. In addition   pre-sample values 

for each variable,           are assumed to be available. Partitioning a multiple time series in 

sample and pre-sample values is convenient in order to define:- 

                                                          

  (         )                                 
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]                                          

                                            

                              

                                                          

           (         )                        

            (         )                     

                                                     

Here     is the column stacking operator as defined in appendix A5. 

Using the notation for        , the GVAR (p) model in (19) can be written compactly as  

              

Or 



                                                                         

                               

Or 

                                                           

Note that the covariance matrix of   is 

∑    
 

 ∑          
 

 

where   is the Kronecker product as defined in appendix A1. 

The multivariate LS estimation (or GLS estimation) of   means to choose the estimator that 

minimizes  

            ∑    
         ∑    

   

            [          ]
     ∑    

 [          ] 

                           ∑    
            

              [       ∑         
 ]        

In order to find the minimum of this function we note that 

            ∑    
               ∑    

                       ∑    
   

                   ∑    
          ∑     

        ∑    
          

Hence 

 
     

  
       ∑     

      ∑    
             

Equating to zero gives the normal equations 

      ∑     
     ∑    

           

This implies that  



  ̂           ∑      ∑    
   

       (      
    )             

The Hessian of      

   

     
       ∑  

  

 
        

is positive definite which confirms that  ̂ is indeed a minimizing vector. It has to be assumed 

that     is non-singular for these results to hold. 

The multivariate LS estimator  ̂ obtained above is identical to the OLS estimator obtained by 

minimizing 

 ̅        [          ]
 [          ]     

This result is due to Zellner (1962) who showed that GLS and LS estimation in a multiple 

equation model are identical if the regressors in all equations are the same. 

The LS estimator can also be written as 

  ̂               [  
        ] 

                                

Or 

     ( ̂)   ̂                       

                          (      
)         

Thus 

 ̂                                            

                            

             
      



Another possibility to write the LS estimator is 

 ̂     ( ̂ )                                

If we let     be the     row of  , that is,    contains all the parameters of the     equation. 

Obviously       
      

  .  

If we let                   be the time series available for the     variable, so that 

        [

    

 
    

]        

then  ̂               is the OLS estimator of the model 

                     

where                and  ̂    ̂      ̂   . 

Comparing equation (35) and equation (37), it is easy to see that the GLS estimator is equivalent 

to OLS estimator of each of the   equations in model (19) separately. 

 

3.4 Asymptotic properties of GLS estimators 

Consistency and asymptotic normality are established if the following results hold: 

       
   

 
        exist and is non-singular and 
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       ∑                  

where 
 
  denotes convergence in distribution. 

The theorem due to Mann and Wald (1943) shows that these results are true under suitable 

conditions for   , if    is a stable GVAR (p). For instance, the conditions stated in the following 

definition are sufficient. 



Definition 1: standard white noise 

A white noise process                 is called standard white noise if the    are continous 

random vectors satisfying        , ∑       
 
    is non-singular,    and    are independent 

for      and, for some finite constant c 

  |            |                                      

Condition (40) means that all fourth moments exist and are bounded. It is obvious that if the    

are normally distributed (Gaussian), then they satisfy the moment requirements. 

With this definition it is easy to state conditions for consistency and asymptotic normality of the 

LS estimator. The following lemma is important for proving the large sample results. 

Lemma 2 

If    is a stable, K-dimensional GVAR (p) process in equation (19) with standard white noise 

residuals    then results (38) and (39) hold. 

Proof 

see theorem 8.2.3 of Fuller (1976, p340) 

The Lemma holds also for other definitions of standard white noise. For example, the 

convergence result in equation (39) follows from a CLT for martingale differences or martingale 

differences arrays (See proposition D1) by noting that           
 
     is a martingale 

difference sequence under quite general conditions. The convergence result in (38) may then be 

obtained from the weak Law of Large Numbers (see proposition B1). 

We now formally state the asymptotic properties of the LS estimator. 

Proposition 3:Asymptotic properties of the LS estimator 

Let    be a stable, K-dimensional GVAR (p) process as in (19) with standard white noise 

residuals,  ̂             is the LS estimator of the GVAR coefficients  . Then 

      ̂           



And 

  ( ̂   )          ̂    
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Or equivalently 

  ( ̂   )       ( ̂    )
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Where       
   

 
 

 

3.5 Asymptotic properties of the white noise covariance estimators 

In order to assess the asymptotic dispersion of the LS estimator, we need to know the matrices   

and ∑    From (38) a consistent estimator for   is 

 ̂  
   

 
         

Because ∑       
 
   , a plausible estimator for the covariance matrix is  

∑̃  
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An adjustment for degrees of freedom is desired because in a regression with fixed, non-

stochastic regressors this leads to an unbiased estimator of the covariance matrix. Thus 

∑̂  
 

      
∑̃           



may be considered. 

Proposition 4: Asymptotic properties of the white noise covariance estimators 

Let    be a stable, K-dimensional GVAR (p) process as in (19) with standard white noise 

innovations and let  ̅ be an estimator of the VAR coefficients   so that        ̅     

converges in distribution. Using the symbols from (20) suppose that 

∑   ̅̅ ̅̅ ̅̅     ̅      ̅   

   
            where c is a fixed constant. Then 

      (
∑   
̅̅ ̅̅ ̅̅    

 
)           

Corollary 1 

Under the conditions of proposition 4 

    ∑̂      ∑̃      
   

 
 ∑     

 
   

Proof 

By proposition 3 it suffices to show that     
   

 
 ∑    which follows from proposition D3 (4) 

because 
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where   is the constant upper bound for    [       
 
  ]. This bound exists because the fourth 

moments of    are bounded by definition 1.                

 



4. Conclusion 

Although the endogeneity of the foreign variables is normally taken into account in the empirical 

implementations of the GVAR models when constructing impulse responses, the researchers 

have ignored it when estimating the model. This is common to other existing literature. In this 

paper we have argued that GVAR models should be estimated by assuming the exogeneity of the 

foreign variable. We have showed that a simple multivariate least squares estimation has 

desirable asymptotic properties and that it is easily implementable. This paper also provides easy 

to check stability conditions. 

Appendix  

A: Vectors and Matrices 

A1) Eigen values and -vectors- characteristic values and vectors 

The Eigen values or characteristic values or characteristic roots of an       square matrix A 

are the roots of the polynomial in   given by            or            . The determinant is 

sometimes called the characteristic polynomial of A. A number    is an eigen value of A if the 

columns of          are linearly dependent. Consequently there exists a       vector 

     such that  

             or          

A vector with this property is an eigen vector or characteristic vector of A associated with the 

eigen value   . 

Rule: All Eigen values of the       matrix A have modulus less than 1 if and only if 

            has no roots in and on the complex unit circle. 

A2) The Trace 

The trace of a       square matrix         is the sum of its diagonal elements. 

                   

A3) Definite matrices and Quadratic forms 



Let A be a symmetric       matrix and   an       vector. The function      is called the 

quadratic form in  . The symmetric matrix A or the corresponding quadratic form is positive 

definite if        for all               . 

Rule:         is positive definite if and only if its principle minors are positive. 

A4) The Kronecker product 

Let         and         be       and       matrices respectively. The         

matrix 

    [
         
   

         
] 

is the Kronecker product or direct product of A and B. 

Rules:-Assuming suitable dimensions for the matrices 

1)         

2)              

3)                     

4)                  

5) If A and B are invertible, then                 

6) If A and B are square matrices with eigen values           respectively and associated 

eigen vectors           then      is an eigen value of     with eigen vector       

7) If A and B are       and       square matrices respectively, then |   |  

| | | |  

8) If A and B are square matrices                     

A5) The vec and vech operators and related matrices 

 the operators 

Let             be an       matrix with       columns   . The vec operator 

transforms A into an        vector by stacking the columns, that is 



        [

  

 
  

] 

Rules:-let A, B and C be matrices with appropriate dimensions then 

1)                         

2)                       

3)                                   

4)                                       

5)                                            

6)                              

                                        

                                         

                                         

                                        

                                        

The vech operator stacks the elements on and below the main diagonal of a square matrix.  

 

 

 

B: Stochastic convergence and asymptotic distributions 

B1) Convergence in probability and in distribution 

Let          or {  }         be a sequence of scalar random variables which are all defined 

on a common probability space         . The sequence {  } converges in probability to the 

random variable   (which is also defined on         ) if for every     

   
   

    |    |       

Or equivalently 



   
   

    |    |       

This type of stochastic convergence is abbreviated as 

         or   

 
   

The sequence {  } converges almost sure (a.s) or with probability one to the random variable   

if for every     

   
   

   
|    |       

This type of convergence is often written as   

   
→   and is sometimes called strong convergence. 

Denoting the distribution functions of    and   by    and   respectively, the sequence {  } is 

said to converge in distribution or weakly or in law to  , if for all real numbers   for which   is 

continous 

   
   

           

This type of convergence is abbreviated as   

 
  . 

These concepts of stochastic convergence can be extended to sequences of random vectors 

(multivariate random variables) 

Suppose {               }         is a sequence of K-dimensional random vectors and 

             is a K-dimensional random vector. Then 

          or   

 
   if            for         

   

   
→   if    

 
    for         

   

 
   if               for all continuity points of  . 

In this case    and   are the joint distribution functions of    and   respectively. 

B2) Law of Large Numbers (LLN) and Central Limit Theorems (CLT) 



Suppose {  }         is a sequence of zero mean random variables and let    be an 

information set available at time   which includes at least {       } and possibly other random 

variables. The sequence {  } is said to be a martingale difference sequence with respect to the 

sequence    if         ⁄     for all         

It is simply referred to as a martingale difference sequence if         for         and 

             ⁄                 

More generally, a sequence {  } of K-dimensional vector random variables satisfying         

for all   and              ⁄                 is a vector martingale difference sequence. 

Proposition B1: law of large numbers (LLN) 

1) LLN for martingale differences 

Let {  } be a strict stationary martingale difference sequence with  |  |    t=1,2,…, 

then  ̅ 

 
   

2) LLN for martingale difference arrays 

Let {  } be a martingale difference array with  |    |
   

                     for 

some     and a finite constant  . Then 

 ̅     ∑    

 

   

 
   

Proposition B2: Central Limit Theorem (CLT) 

1) CLT for martingale difference arrays 

Let {                      } be a K-dimensional martingale difference array with 

covariance matrices 

 (     
 
   )      such that    ∑ ∑    

 
   ⅀        ⅀                       

Moreover suppose that    ∑          
 
   

 
 ⅀                              for all 

        and all            . Then 

   ̅ 

 
     ⅀  

2) CLT for stationary processes 



Let      ∑       
 
    be a K-dimensional stationary stochastic process with 

         , ∑ ‖  ‖
 
      and       ∑    iid white noise. Then 

    ̅    
 
     ∑   

 

    

     

where 

       [               ] 

 

C: STOCHASTIC INEQUALITIES 

Chebyshev 

Let X be a non-negative random variable with finite mean    and finite variance   
 . Then, for 

any         

  |    |   
  
 

 
   

Holder  

Let X and Y be random variables and let            
 

 
 

 

 
  . Then  

  |  |  [  | |  ]
 
 [  | |  ]

 
  

Cauchy-Schwartz 

For p=q=2, we have 

  |  |    | |   | |  

Lyapunov 

For Y=1, we have for     

  | |  [  | |  ]
 
  



Minkowski 

If for some       | |           | |    , then 

  |   |  [  | |  ]
 
 [  | |  ]

 
  

Jensen 

 Let X be a random variable and              be a convex realfunction. Then 

  [     ]      [     ]  

By selecting the random variables to be constants, the above inequalities can be applied in the 

deterministic case as well. 

Since the mean of a finite number of non-random variables in 𝐑 may be considered as 

mathematical expectations, it follows from Holder’s inequality that for real numbers         

  
 

 
 

 

 
   

|∑    

 

   

|  (∑|  |
 

 

   

)

 
 

(∑|  |
 

 

   

)

 
 

 

Similarly, from Lyapunov’s inequality  

|∑  

 

   

|
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And by Minkowski’s inequality 

|∑     

 

   

|

 
 

 (∑|  |
 

 

   

)

 
 

 (∑|  |
 

 

   

)

 
 

 

Note, if           are random variables, then the last three inequalities hold for all their 

realizations. As a result we can apply these inequalities also in cases where           are 

stochastic. The same also holds for triangle inequality. 

D: STOCHASTIC CONVERGENCE AND ASYMPTOTIC DISTRIBUTIONS 



D1: Concepts of stochastic convergence 

Let          or {  }         be a sequence of scalar random variables which are all defined 

on a common probability space         . The sequence {  } converges in probability to the 

random variable   (which is also defined on          if for every     

   
   

   |    |       

Or equivalently 

   
   

   |    |       

This type of stochastic convergence is abbreviated as 

              
 
 
  

The limit   may be a fixed, non-stochastic real number which is then regarded as a degenerate 

random variable that takes on one particular value with probability one. 

The sequence {  } converges almost surely (a.s) or with probability one to the random variable   

if for every     

  (    
   

|    |   )    

This type of stochastic convergence is often written as   
   
 

  and is sometimes known as strong 

convergence. 

The sequence {  } converges in quadratic mean or mean square error to  , written briefly as 

  
   
 

 , if 

   
   

            

This type of convergence requires that the mean and variance of the      and   exist. 



Denoting the distribution functions of          by                      , the sequence {  } 

is said to converge in distribution or weakly or in law to  , if for all real numbers   for which   

is continuous 

   
   

           

This type of convergence is abbreviated as   
 
 
 . 

All these concepts of stochastic convergence can be extended to sequences of random vectors 

(multivariate random variables). Suppose {              
 }          is a sequence of K-

dimensional random vectors and            
  is a K-dimensional random vector. Then the 

following dimensions are used 

               
 
 
                            

   
   
 

         
   
 

               

   
   
 

         [               ]    

   
 
 
                                                . 

Here    and   are the joint distribution functions of                      . 

Proposition D1: convergence properties of sequences of random variables 

Suppose {  } is a sequence of K-dimensional random variables. Then the following relations 

hold: 

1.   
   
 

    
 
 
     

 
 
   

2.   
   
 

    
 
 
    

 
 
   

3. If   is a fixed non-stochastic vector, then 

   
   
 

  [                   {        
         }   ] 



4. If   is a fixed, non-stochastic random vector, then   
 
 
    

 
 
  

5. Slutsky’s theorem 

If         is a continuous function, then   
 
 
       

 
 
             [          

         ] 

  
 
 
       

 
 
     and   

   
 

       
   
 

     

Proposition D2: properties of convergence in probability and in distribution 

Suppose {  } and {  } are sequences of     random vectors, {  } is a sequence of     

random matrices,   is a fixed     matrix 

1. If                          exist, then 

a)                           

b)                       

c)       
                      

d)                           

2. If   
 
 
  and                      

 
 
  

3. If   
 
 
  and         , then 

a)      
 
 
    

b)      
 
 
    

4. If   
 
 
  and                   

 
 
   

5. If   
 
 
  and                          

Proposition D3: weak laws of large numbers 

1. Khinchen’s theorem (Rao, 1973 p112) 

Let{  } be asequence of iid random variables with          . Then 

   
 

 
∑  

 

   

 
 
  



2. Let {  } be a sequence of independent random variables with           and 

 |  |
                              and a finite constant  . Then  ̅ 

 
 
  

3. Chebyshev’s theorem (Rao, 1973 p112) 

Let {  } be a sequence of uncorrelated random variables with           and 

      ̅              ̅ 
 
 
  

4. Corollary to Chebyshev’s theorem 

Let {  } be a sequence of independent random variables with                   

                                              ̅ 
 
 
   

E: Proof of claims 

Proof of proposition 1 

Given assumption 3, the matrix           is invertible (cf lemma 5.6.10 and corollary 5.6.16 

in Horn and Johnson (1985) and the endogeneous variable    can be expressed as in equation 7, 

that is, 

              (                                           ) 

By backward substitution, we then obtain 

                   

Where   

    ∑[ ] 
   

   

              

    ∑[ ] 
   

   

               

    ∑[ ] 
   

   

              

    [ ]    



By assumption (2b),             have elements uniformly bounded in absolute value. We 

demonstrate that the sequences of the stochastic vectors             have elements with 

uniformly bounded absolute     moments for some    . The claim in the proposition will 

then follow from Minkowski inequality (appendix C). 

Consider the stochastic term     ∑ [ ]    
                 

Note that given assumption 1, the random vector    and the sequence of matrices      satisfy the 

conditions of lemma B2 in Mutl (2006). Therefore the elements of the random vector    have 

uniformly bounded absolute     moments for some    . From assumption 2, we have that 

the absolute row sums of               are uniformly bounded in absolute value. Hence by 

repeated application of the lemma B2 in Mutl (2006) we have that                 has 

elements with uniformly bounded absolute     moments for some    . By Minikowski 

inequality, we then have that     has elements with uniformly bounded absolute     moments 

for some    . 

Next, consider the stochastic term     [ ]   . 

Again by assumption 2, the matrix    has uniformly bounded absolute row sums and hence 

given assumption 5, we have by the same lemma B2 that the elements of     have uniformly 

bounded absolute     moments for some    . 

We now turn to the asymptotic moments of    as    , assuming that     . Using lemma A1 

and theorem 5.6.12 in Horn and Johnson, it follows that     converges to 

                                                     

                              

Given assumption (2b), it follows that    has elements uniformly bounded in absolute value and 

it suffices to show that the elements of             converge in quadratic means to random 

variables           with finite     moments for some    . By assumption 1, the elements 

of     are independent of the elements of    . 



Denote the matrix                     and note that from assumption 1 and 2b it follows 

that 

 ∑ ‖   ‖ 
 
    ‖             ‖     

                          ‖  ‖       ‖         ‖       

                                   

Where    is the uniform bound for absolute row sums of matrices              are uniform 

bounds for absolute row sums of matrices             and          . 

Given assumption 1, the elements of     satisfy conditions of lemma B1 in Mutl (2006) and 

hence converge in quadratic means to a random variable with uniformly bounded absolute     

moments for some      

Finally, note that from assumption 4 and theorem 5.6.12, it follows that 

   
   

     

And hence given assumption 5, we have that the elements of     converge in quadratic means to 

zero. 

Therefore, the random variable    is well defined and we have 

                ∑    
                 

                              ∑    
                 

Hence  

                              

And using the independence of                   

        ∑    
                           

      

Using lemma 1, we find that 



     [      ]  {      [                         ]}             

Where D is a duplication matrix. 

We now examine the sufficient conditions for stability in more details. Note that, for any matrix 

norm, the spectral radius      is smaller than the norm ‖ ‖ (Horn and Johnson, 1985), hence 

using the sub-multiplicative property of the matrix norm, we have that 

  [            ]  ‖           (                 )‖ 

                                         ‖           ‖ ‖(                 )‖Note that from 

assumption 3 and lemma 5.6.10 in Horn and Johnson (1985), we have by corollary 5.6.16 in 

Horn and Johnson (1985) that the inverse             can be expanded as an infinite sum. 

Therefore, any norm of             can be bounded above by 

 ‖           ‖  ∑  ‖ ‖ ‖  ‖ 
  

    

Often, the weight matrices are row normalized. In this case we have that ‖ ‖    and hence 

 ‖           ‖  ∑ ‖  ‖ 
  

    

                                     
 

  ‖  ‖ 
 

                                     
 

          {‖   ‖ }
 

To satisfy assumption 3 (in the case of ‖ ‖   ) we can, for example, require that   

        {‖   ‖ }   . However, if there are global feedbacks in the model we have 

        {‖   ‖ }    and hence 

 

          {‖   ‖ }
   

In this case the requirement that ‖(                 )‖
 
   which is a stronger 

requirement than   (                 )    does not necessarily guarantee that 

the process is stable. This is due to the fact that the requirement ‖(              

   )‖
 
   is a sufficient condition for  (                 )   . 



The following proposition provides a sufficient condition under which the process is stable. 

Proof of proposition 2 

Observe by equation ‖           ‖  ∑  ‖ ‖ ‖  ‖ 
  

    (in the proof above) and the 

assumption in the proposition we have that  

  [                    ]  ‖           ‖ ‖(                 )‖
 
 

                                     [∑    ‖  ‖  
  

   ] [‖       ‖   ‖       ‖ ] 

                                    
‖       ‖ 

   ‖       ‖ 

    ‖  ‖ 
 

Next, note that from the condition in the proposition 

  ‖       ‖    ‖       ‖    ‖  ‖     it follows that 

 ‖       ‖    ‖       ‖      ‖  ‖  

And thus, observe that the condition also implies that 

   ‖  ‖                  ‖  ‖    

Hence, 

 
‖       ‖ 

   ‖       ‖ 

    ‖  ‖ 
   which proves the claim. 

The above proposition provides a simpler alternative to checking the eigen values of the entire 

matrix            (               ). Note that, when the weights are 

normalized to add up to one, we have      and it suffices to check whether for all country 

models it holds that the row sums of 

 |  |    |  |  |   |  |   |    |   | are less than one. 

However, the above proposition provides only a sufficient condition for stability. Necessary 

condition is that the spectral radius of  



            (               ) is less than one. 

 

Proof of proposition 3 

Using equation (34) 

     ( ̂   )        
   

 
      

   

 
       

By Lemma 2, because 39 implies      
   

 
  . Thus the consistency of  ̂ is established. 

Using equation (32) 

  ( ̂   )     (      
    )                                            

  (
 

 
         )

 

  
                

By proposition D2 (4) of appendix D,   ( ̂   ) has the same asymptotic distribution as 

[     
 

  
         ]

 

  
                

 

  
              

Hence the asymptotic distribution of   ( ̂   ) is normal by Lemma 2 and the covariance 

matrix is 

           ∑                ∑                                   

Proof of proposition 4 

 
 

 
    ̅      ̅        ̅ (

   

 
)     ̅       ̅ 

   

 
 

   

 
    ̅   

   

 
 

Under the conditions of the proposition,         ̅   . Hence by Lemma 2 

        ̅ 
   

  
           and     [    ̅ 

   

 
      ̅  ]         (see 

appendix C1) 



Thus       [
    ̅      ̅   

 
 

   

 
]            

The proposition follows by noting that as    , then 
 

   
   

The proposition covers both ∑̂      ∑̃  This implies that both ∑̂     ∑̃ have the same 

asymptotic properties as the estimator 

   

 
 

 

 
∑     

 

   

 

which is based on the unknown true residuals and therefore not feasible in practice. 

In particular, if       
   

 
 ∑    converges in distribution, 

      ∑̂  ∑              ∑̃  ∑    will have the same limiting distribution (see 

proposition D2 of appendix D1). 
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