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Abstract

This paper investigates the optimal number of regimes that can better describe the corresponding condi-

tional variance to different stock market indices. We compared several GARCH models using the Deviance

Information Criterion (DIC), provided by the Bayesian approach Markov chain Monte Carlo (MCMC), con-

sidering many stylized facts such as asymmetry (i.e., leverage effect), fat-tailed distributions, and volatility

clustering. The results show clearly that the four selected models exhibit a leverage effect and have at least

two regimes, whatever the GARCH specifications are. In addition, the optimal number of regimes in the

conditional variance process may change from a series to another depending on their structure. A predictive

test using the Value-at-Risk confirms that the selected processes provide accurate volatility forecasts.
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Indices.

JEL Classification: C1, C52, C58.

1. Introduction

Volatility has been a critical element in the risk management world and decision-making. Many mathe-

maticians consider Louis Bachelier as the origin of modern finance (i.e., mathematical finance), particularly

the ”theory of speculation” thesis (1900). Since that time, several studies have been oriented toward fore-

casting and modeling volatility. The most popular used class of Auto-regression Conditional Heteroskedastic

(ARCH) was introduced by Engel (1982)[15] and generalized by Bollerslev (1986)[11], gives more flexibility

for the conditional variance process structure and allows more capturing to high persistence and clustering

of conditional volatility. From a business perspective, negative shocks affect the conditional variance process

more than positive ones (i.e., the asymmetry).

Consequently, Glosten-Jagannathan-Runkle (1993)[19] suggested a new specification (GJR-GARCH) in order

to capture the leverage effect (asymmetry) exhibited in the conditional variance process. Different studies

have investigated the forecasting difficulties of GARCH model class, such as Hamilton and Susmel (1994)[24]

and Lamoureux and Lastrapes (1993)[28], which mentioned that the GARCH models class might lead to a

worse multi-period volatility forecasting than even the constant variance models do. Friedman and Laibson

(1989)[18] highlighted that the weakness of the GARCH class models in forecasting volatility comes from not
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allowing the conditional variance process to be flexible with ”small” or ”large” shocks and structural breaks,

which can lead to high estimated persistence.

Many researchers have focused on some features of stock market indices. The appropriate model should be

able to capture stylized facts observed in financial markets; nonlinearity and asymmetry, for instance. Hamil-

ton (1989) [23]introduced a Markov-switching model to capture structural breaks by allowing conditional

variance parameters to switch across different regimes. A way to introduce the ”switch” to the return process

is provided by the Markov-switching regimes GARCH (MS GARCH) models. These structures can adapt

quickly to many variations in the volatility level (see Ardia, 2008[1] and Marcucci, 2005[29]).

Using MS GARCH models lead to path-dependence issue. Gray (1996)[20], Dueker (1997)[14], and Klaassen

(2002)[26] handled this problem through approximation by collapsing the past regime conditional variance.

Bauwens et al (2014)[5] recommended using the MCMC method to estimate complex models such as MS

GARCH, avoiding the path-dependence issue.

In the present paper, we analyze four stock market indices from different financial markets. The primary

purpose is to test the optimal number of regimes in volatility presented in each series. The idea was, for

different series, the most appropriate model should take into consideration various specifications such as the

number of regimes presented in the conditional variance process.

The remainder of this paper is organized as follows: presenting the Markov-switching GARCH (MS GARCH)

model in Section 2, while in Section 3, we analyze and investigate about data and the methodology of this

work. The empirical results are discussed in Section 4. Finally, Section 5 summarizes the results of this study.

2. Markov-Switching GARCH Model

One of Hamilton and Susmel’s (1994)[24] main recommendations is that ARCH models refer to much

persistence in stock return volatility that leads to a poor forecast due to the leverage effect, i.e., the large

shocks affect more the volatility than small breaks. The idea to avoid this phenomenon is to allow the ARCH

model parameters to change and come from different regimes governed by Hidden Markov Chains (HMC).

By introducing Markov chains on ARCH specifications, we benefit from the primary Markov propriety:

P (St+1 = j|St = i, St−1 = it−1, ..., S0 = i0) = P (St+1 = j|St = i), (1)

with (i0, i1, ..., it−1, i, j) ∈ Nn+2 and (St)t∈N is a stochastic process.

Unfortunately, the moderate coefficient or ARCH term cannot capture the conditional heteroskedasticity

within regimes. Then we need the GARCH term to explain better the volatility clustering in financial

markets. This section introduces the Markov-Switching GARCH (MS GARCH) model following Bollerslev

(1986)[11]. Let us consider a stock market index price Pt at time t, the log-return rt is defined as the

continuous rate of returns as:

rt = log(Pt/Pt−1),

we assume that E(rt) = 0 and (rt) is serially uncorrelated.

The MS GARCH model following Ardia et al. (2018) can be defined as:

rt|(St = k,Tt−1) ∼ f(0,V(k)
t ,Φ(k)), (2)
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where f(.) is a continuous distribution with zero mean and switching conditional variance V(k)
t within the

regime (k). Φ(k) denotes all additional parameters and Tt−1 is the accumulated information set at time t− 1

generated by {rt−1, rt−2, ...}. In all models, the conditional variance V(k)
t is allowed to switch across a Markov

process St ∈ {1, 2, ...K} ⊂ N. We define the matrix of transition for St as follows:

P =


p11 p12 · · · p1K

p21 p22 · · · p2K
...

...
. . .

...

pK1 pK2 · · · pKK

 ,

where pij = Pr[St = j|St−1 = i] is the probability of switching from regime (St−1 = i) to regime (St = j)

and
∑K
j=1 pij = 1 for i fixed. When (i = j), pij is called the persistence probability within the regime (i). In

this study, we will consider up to three regimes (i.e., St ∈ {1, 2, 3}).

So far, the idea of MS GARCH specifications is to combine GARCH structure with parameters that change

over time in order to capture structural breaks presented in the conditional variance. However, this operation

leads to a path-dependence problem; as the conditional variance at time t depends on all regimes path

St(t = 1, ...,K). To avoid this issue, we refer to Haas et al. (2004)[22] and Ardia et al. (2017)[4].

Many studies have already shown that GARCH(1,1) provides better descriptions of market volatility behavior

than even high order of ARCH specifications (see Haas, 2004)[22]. Following Bollerslev (1986)[11], the

GARCH(1,1) conditional variance process expression can be written as follows:

rt = εtV1/2
t ; εt

iid∼ f(0, 1), (3)

Vt = ω + αr2
t−1 + βVt−1 = ψ(rt−1,Vt−1), (4)

with ω > 0, α > 0 and β > 0 to ensure a positive variance, where (εt) is a sequence of independently

and identically distributed (i.i.d) random variables with zero mean and unit variance. f(.) a conditional

distribution needs to be specified.

In all that will come, Vt is assumed to be a Markov-switching GARCH (1,1) process, governed by St(t =

1, ...,K):

Vt = ψ(rt−1,Vt−1, St), (5)

We apply St on equation (4) and the conditional variance in switching regimes will be presented as:

Vt = ω(k) + α(k)r2
t−1 + β(k)Vt−1, (6)

Gray (1996) [20] uses the information set at time t− 1 for integrating out hidden regimes to avoid path-

dependence issue as follows :

Vt =
K∑
k=1

p
(k)
t V(k)

t , (7)

where V(k)
t is the conditional variance of rt within the regime (k) and p

(k)
t = Pr(St = k|Tt−1) is the probability

to be in the regime (k) according to the information up to t− 1.
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Let us assume that St ∈ {1, 2}, the conditional distribution of rt is a switching of distributions f(V(k)
t ) within

regimes (k):

rt|Tt−1 ∼

 f(V(1)
t ) With probability p

(1)
t

f(V(2)
t ) With probability p

(2)
t

, (8)

f(.) denotes a conditional distribution that should be specified (i.e., Normal, Student’s-t, GED, ...).

We use equation (7) to replace equation (6) by specifying GARCH expression for each regime (k),

V(k)
t = ω(k) + α(k)r2

t−1 + β(k)Vt−1, (9)

Vt−1 represents a regime-independent past variance. The matrix expression is used to simplify the expressions

as follows:

Vt = Π× (Ω×Υ), (10)

with Π = [p(1)
t , p

(2)
t , ..., p

(K)
t ], Ω =


ω(1) α(1) β(1)

ω(2) α(2) β(2)

...
...

...

ω(K) α(K) β(K)

 and Υ = [1, r2
t−1,Vt−1]t.

So far, one of the most interesting phenomena in financial markets is what we call the ”leverage effect”, caused

by the fact that negative returns have an important impact on conditional volatility. However, the standard

GARCH(1,1) structure gives the same considerations to negative as positive returns in terms of influencing

the future volatility.

To avoid this issue, we will refer to the GJR-GARCH model proposed by Glosten et al. (1993)[19] to capture

the asymmetry effect in our time series. The conditional variance process can be expressed as:

V(k)
t = ω(k) + (α(k) + γ(k)1(rt−1 < 0))r2

t−1 + β(k)Vt−1, (11)

where 1(rt−1 < 0) = 1 if rt−1 < 0 and 0 otherwise. For k ∈ {1, ...,K}, γ(k) > 0 is the asymmetry measure

parameter in the conditional variance process.

One other dimension which influences the performance of our conditional volatility modeling is the distribution

of standardized innovations (εt) that needs to be assumed and specified. In this study, we focus on three

distributions, namely, normal, Student’s-t, and generalized error distribution (GED). Regarding the presence

of asymmetry, skewed distributions are required. We refer to Fernández & Steel (1998) [17] to define the

skewed density as follows:

fξ(z) = 2σξ
ξ + ξ(−1) f

∗(zξ), (12)

where

zξ =


ξ−1(σξz + µξ) if z > −µξ

σξ

ξ(σξz + µξ) otherwise

,
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with µξ = m(ξ − ξ−1), σ2
ξ = (1−m2)(ξ2 − ξ−2) + 2m2 − 1 and m =

∫∞
0 2tf∗(t)dt.

0 < ξ <∞ is the degree of asymmetry parameter and f∗(.) is a symmetric density function with zero mean

and unit variance.

3. Data and Methodology

In this section, we present the data set used within this study to look at some features that describe

the stock market indices series. We selected four major stock market indices, namely, S&P500, FTSE 100,

CAC40, and Nikkei 225, respectively, reflecting the USA, UK, France, and Japan markets. All historical

data have been obtained from the Yahoo Finance platform. We consider daily log-returns during the period

range from January 02, 1990, until October 10, 2019, with around 7,500 observations to ensure that we have

captured the maximum of the market behavior. The calculations used the formula; rt = log(Pt/Pt−1) in

percentage, where Pt is the adjusted-close price at time t.

Figure 1: Presentation of stock market indices log-return (%) and price evolution

In Figure 1, we provide a graphic representation for our series to check the volatility clustering. Clearly,

we see that there are ”low (high)” fluctuations followed by ”low (high)” fluctuations. In addition, the level
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of changes varies from one series to the other, while the level of changes is more significant for CAC40 and

Nikkei 225 series compared to S&P500 and FTSE 100 series. The correlation between the level of fluctuations

in log-returns and their stock market index evolution is presented as well.

Table 1 reports daily log-returns summary statistics for S&P500, FTSE 100, CAC40 and Nikkei 225:

Table 1: Descriptive statistics of the return data.

Statistic S&P500 FTSE 100 CAC40 Nikkei 225

Mean (%) 0.028 0.014 0.013 -0.008

Median (%) 0.053 0.0316 0.035 0.0155

Maximum (%) 10.957 9.384 10.594 13.234

Minimum (%) -9.469 -9.264 -9.471 -12.111

Std.Dev (%) 1.102 1.082 1.354 1.450

Skewness -0.264 -0.131 -0.073 -0.149

Kurtosis 8.789 6.170 4.744 5.474

JB-Statistic 24250 12033 7095.5 9169

JB p-value < 0.01 < 0.01 < 0.01 < 0.01

LM (12) 1972.7 1686.9 1222.6 1282.9

LM p-value < 0.01 < 0.01 < 0.01 < 0.01

The mean is quite small and close to zero for S&P500, FTSE 100, CAC40, and Nikkei 225 with values of

0.028%, 0.014%, 0.013%, and -0.008%, respectively which defend the assumption of keeping the mean zero.

The standard deviation (Std.Dev) is around unity. However, the Std.Dev for CAC40 and Nikkei 225 are

more important with values of 1.35% and 1.45% respectively. A high standard deviation indicates high level

of volatility (hypothesis to be verified).

The skewness (asymmetry coefficient) is significant and negative showing that the distribution tail spread to

the left. The normalized kurtosis (excess kurtosis) is significantly higher than the normal distribution value

of 0, indicating that the distributions have fatter tails.

Lagrange multiplier (LM) test demonstrates the presence of ARCH effect in all series, under the null hypoth-

esis of ”no ARCH effect”, where q = 12 is the number of lags. The results show also that the distributions

are far to be normal distributions according to Jarque-Bera test under the null hypothesis of ”normal distri-

bution”.

The main purpose of this paper is to identify the appropriate number of regimes in each series, which better

describe the behavior of each stock market index. The idea is to test various models with several specifications,

where the number of regimes is one of the parameters that constitute model specifications. Therefore, the

optimal number of regimes is that which corresponds to the best specification. We present the optimization

problem as follows:

Φ̂ ≡ arg min
Φ≡(G,f,K)

DIC(Φ), (13)
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DIC is the Deviance Information Criterion (see Spiegelhalter et al. 2002[30]).

The output of this optimization refers to the optimal model specification Φ̂, where G is the GARCH model

class1, f(.) denotes the distribution of the standardized innovations, and K is the number of regimes.

As we mentioned before, the introduction of MS-GARCH to model the dynamic volatility leads to the path-

dependence issue. The solution is to orient toward the Bayesian estimation MCMC (Markov Chain Monte

Carlo) technique, which requires evaluation of the likelihood function:

L(Θ,Tt) =
T∏
t=1

f(rt|Θ,Tt−1), (14)

where Θ is the vector of the model parameters and f(rt|Θ,Tt−1) is the conditional density function of rt

according to the available information in t− 1; Tt−1. In our case of the MS-GARCH model, the conditional

density f(.) can be written as:

f(rt|Θ,Tt−1) =
K∑
i=1

K∑
j=1

pijf(rt|St = j,Θ,Tt−1)p(i)
t−1, (15)

where pij = Pr[St = j|St−1 = i] is the transition probability from regime (St−1 = i) at t − 1 to regime

(St = j) at t and p
(i)
t−1 = Pr[St−1 = i|Θ,Tt−1] is the filtered probability of regime (St−1 = i) at time t− 1.

- For K = 2 :

f(rt/Θ,Tt−1) = p
(1)
t−1[p11f(rt/St = 1,Θ,Tt−1) + (1− p11)f(rt/St = 2,Θ,Tt−1)]

+ p
(2)
t−1[p22f(rt/St = 2,Θ,Tt−1) + (1− p22)f(rt/St = 1,Θ,Tt−1)].

The estimation of Θ̂ used the Bayesian approach MCMC based on the adaptive random-Walk-Metropolis

sampler (see Vihola, 2012[33]) to generate draws from the posterior distribution, where the model parameters

are treated as random variables.

The power of MCMC comes from the fact that all inferences are based on the joint posterior distribution

of the model parameters. Therefore, normality is not an essential requirement, and the convergence of the

estimation algorithm to be judged by ourselves. The posterior estimation accuracy can be evaluated by the

Monte Carlo Standard Error (MCSE) for each parameter. The more number of iterations increases, the more

posterior estimation accuracy increases (i.e., MCSE → 0).

In this study, we generated 20,000 draws, then we discarded the first 5,000 iterations as the burn-in sample,

and we considered a lag of 5 to reduce the autocorrelation in the Markov chain. By the end, we built a

sample of size 3,000. To ensure the convergence of our model-fitting algorithm, we check the output results

with different seeds. 2.

In the present paper, we share the same logic with Box (1978); ” all models are wrong. However, some of

them are useful ”. To compare the fitting-quality of our models, we are using DIC for the Bayesian model

selection problems where the posterior distributions of the model parameters obtained by MCMC that can

1We consider two classes of GARCH model, the symmetric standard GARCH(1,1) against asymmetric GJR-GARCH(1,1).
2The R package provided by Ardia et al., (2017)[4] is used to estimate model parameters implementing the MCMC method.
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be viewed as the AIC (Akaike Information Criterion) or the BIC (Bayesian Information Criterion):

DIC = D̄ + PD, (16)

where D̄ is the posterior mean deviance that measures the adequacy of fit, while PD is the effective number

of parameters describes the model complexity (for further details, see Spiegelhalter et al., 2002[30]).

The DIC is not a criterion to identify the correct model, but it can be used to compare different specifications

to determine the most appropriate one since the helpful model is the one with a smaller DIC, which means

the goodness of fit is penalized by the model complexity.

4. Empirical results and discussion

So far, we have presented the most efficient auto-regression models (i.e., Standard GARCH and GJR-

GARCH) with different specifications to get more flexibility in capturing the persistence of the stock market

indices conditional volatility. We have also shown the best approach to fit complex models such as MS-

GARCH models using MCMC/ Bayesian approach. The suitability of our models is judged with DIC criterion

to select the most appropriate models.

In this section, we provide log-returns results analysis of S&P500, FTSE 100, CAC40, and Nikkei 225. In

our in-sample analysis, we fit all models (i.e., 4× 18 = 72 models) using the whole data set from January 01,

1990, until October 10, 2019.

Table 2: Deviance Information Criterion

S&P500 FTSE 100

k=1 k=2 k=3 k=1 k=2 k=3

S-GARCH

Sk-N 19579.78 19418.08 19450.18 20060.04 19985.10 19981.48

Sk-STD 19278.53 19272.02 19434.17 19936.01 19936.25 19967.61

Sk-GED 19250.42 19234.04 19352.87 19947.17 19958.45 19994.52

GJR-GARCH

Sk-N 19320.12 19059.54 19174.34 19882.81 19833.83 19813.35

Sk-STD 19067.71 19070.24 19028.94 19790.42 19738.61 19945.14

Sk-GED 19054.80 19014.57 19112.39 19799.58 19798.73 20604.14

CAC40 Nikkei 225

k=1 k=2 k=3 k=1 k=2 k=3

S-GARCH

Sk-N 23927.91 23814.4 23777.05 24998.95 24804.86 24789.35

Sk-STD 23738.48 23738.33 23759.03 24748.38 24733.34 24710.19

Sk-GED 23764.90 23736.23 23742.65 24760.17 24727.94 24716.21

GJR-GARCH

Sk-N 23734.96 23572.45 23540.55 24827.91 24644.45 24627.53

Sk-STD 23547.75 23527.04 23512.13 24614.89 24597.53 24585.36

Sk-GED 23593.04 23552.82 23685.67 24626.19 24599.99 24543.25

Before we start fitting models, we filtered our series with AR(1) model recommended by AIC (results not

reported) to ensure the uncorrelated between log-returns (rt) observations.
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For the four stock market indices, the DIC of different specifications is reported in Table 2. Berg et al.

(2004)[10] and Ardia (2008)[1] have shown many DIC advantages in selecting the adequate model to describe

stochastic volatility better.

For the S&P500 index, almost all two-regimes models provide a better trade-off in terms of fitting adequacy

and model complexity, except the GJR-GARCH skewed student’s-t distribution, which can be preferred with

three regimes. The comparison leads to select the GJR-GARCH skewed GED distribution model within two

regimes that outperform all other specifications.

Regarding the FTSE 100 Index, the skewed student’s-t and GED distributions with single-regime provide

more adequacy for the standard symmetric GARCH (i.e., S-GARCH). However, two-regimes GJR-GARCH

skewed student’s-t distribution offer once again better adequacy compared to the complexity of the model.

For the CAC40 index, Markov switching GARCH specifications outperform signal-regime. The most appro-

priate model to describe CAC40 log-returns behavior is the three-regimes GJR-GARCH skewed student’s-t

distribution. In addition, using standard symmetric GARCH requires two-regime specifications.

Finally, for the Japanese stock market index Nikkei 225, as a result of the high market volatility, the com-

parison has shown that three-regimes are required, whatever the GARCH specifications and the conditional

distribution are. In fact, there is an additional advantage for the GJR-GARCH skewed GED distribution

model within three-regimes.

Table 3 summarizes the results of our comparison. The results show clearly that the MS GJR-GARCH is

strongly favored to describe market stock indices volatility, a justification for the presence of leverage effect.

Table 3: Selected specifications

Specification (Φ̂) Unconditional Probabilities (πk)

Class Dist Regimes Regime 1 Regime 2 Regime 3 UnVol (%)

S&P500 GJR-GARCH Sk-GED K=2 0.7575 0.2425 - 1.031

FTSE 100 GJR-GARCH Sk-STD K=2 0.5515 0.4485 - 1.120

CAC40 GJR-GARCH Sk-STD K=3 0.3113 0.6766 0.0121 1.955

Nikkei 225 GJR-GARCH Sk-GED K=3 0.3494 0.6457 0.0048 1.445

We also present some additional proprieties such as the unconditional volatility (UnVol); the values are

coherent with the standard deviation mentioned before. We observe high unconditional volatility in both

CAC40 and Nikkei 225, with values of (' 1.95%) and (' 1.44%), respectively.

The estimation results show that the French index CAC40 and the one of Japan Nikkei 225 are more volatile.

This logic explains the necessity of considering three regimes to capture three levels of change (i.e., low,

medium, and high). The More volatility increases, the more we need a considerable number of regimes.

From the posterior Means of the MS GJR-GARCH models, the regime’s (k)unconditional probabilities 3 are

respectively, (' 76%) for the first regime and (' 24%) for the second one in case of S&P500, where we see

more stability in the first regime. For FTSE 100, there is a significant balance between regimes. In the case

3For K = 2 : π1 = 1−p22
1−p11−p22

and π2 = 1−p11
1−p11−p22

where π1 + π2 = 1
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of CAC40 and Nikkei 225, the results show more stability in the second regime with values of (' 68%) and

(' 65%) respectively, and with significant stability in the first regime comparing to the third one as well.

These remarks can be expressed with the help of the smoothed probabilities Pr[St = k|TT ] presented in

Figure 2, which are easier to interpret. From Figure 2, we can observe certain stability in the time within

regimes for different series.

Figure 2: Smoothed probability

Table 4 presents the parameter estimates of the most appropriate MS GJR-GARCH specifications as-

sociated with S&P500, FTSE 100, CAC40, and Nikkei 225; two-regimes skewed GED, two-regimes skewed

student’s-t, three-regimes skewed student’s-t, and three-regimes skewed GED, respectively. We report in

Table 4, for each stock market indices and a given regime (k), the parameters of GJR-GARCH(1,1) ;

(ω(k), α(k), γ(k), β(k)), where the leverage effect is controlled by γ(k).Further, Φ(k) ≡ (η(k), ξ(k)) are the pa-

rameters of the skewed distribution with η(k) and ξ(k) measure the tail and the asymmetry, respectively.
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We also provided the elements of the transition matrix pij = Pr[St = j|St−1 = i] where pkk represents the

regime’s (k) persistence probability.

Table 4: Selected model parameters

SP500 FTSE 100 CAC40 Nikkei 225

Parameter Mean Std.Dev MCSE Mean Std.Dev MCSE Mean Std.Dev MCSE Mean Std.Dev MCSE

ω(1) 0.0196 0.0036 0.0001 0.0103 0.0096 0.0003 0.0667 0.0229 0.0007 0.1204 0.0415 0.0013

α(1) 0.0001 0.0000 0.0000 0.0140 0.0081 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ(1) 0.1672 0.0223 0.0007 0.0929 0.0871 0.0028 0.2416 0.0716 0.0023 0.3035 0.0746 0.0024

β(1) 0.8829 0.0129 0.0004 0.9265 0.0485 0.0015 0.8076 0.0606 0.0019 0.7339 0.0765 0.0024

η(1) 1.3046 0.0526 0.0017 29.9671 33.5484 1.0609 9.3118 8.8656 0.2804 1.3459 0.0843 0.0027

ξ(1) 0.9020 0.0170 0.0005 0.9327 0.0518 0.0016 0.8902 0.0364 0.0012 0.8743 0.0313 0.0010

ω(2) 0.0512 0.0085 0.0003 0.0254 0.0122 0.0004 0.0431 0.0110 0.0003 0.0864 0.0125 0.0004

α(2) 0.0002 0.0001 0.0000 0.0045 0.0083 0.0003 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000

γ(2) 0.1597 0.0175 0.0006 0.2356 0.1044 0.0033 0.1414 0.0621 0.0020 0.1339 0.0287 0.0009

β(2) 0.8905 0.0054 0.0002 0.8531 0.0548 0.0017 0.9053 0.0371 0.0012 0.8928 0.0176 0.0006

η(2) 1.6208 0.0823 0.0026 74.5030 34.7333 1.0984 24.1334 9.0266 0.2854 1.7187 0.0829 0.0026

ξ(2) 0.8913 0.0292 0.0009 0.8540 0.0625 0.0020 0.9280 0.0327 0.0010 0.9675 0.0245 0.0008

ω(3) - - - - - - 11.2702 10.5682 0.3342 3.5627 1.1113 0.0351

α(3) - - - - - - 0.0000 0.0000 0.0000 0.0150 0.0120 0.0004

γ(3) - - - - - - 0.1976 0.0577 0.0018 0.0302 0.0128 0.0004

β(3) - - - - - - 0.8724 0.0312 0.0010 0.8188 0.0410 0.0013

η(3) - - - - - - 76.9845 11.8973 0.3762 9.3191 3.3499 0.1059

ξ(3) - - - - - - 4.7675 2.1488 0.0680 1.0110 0.3378 0.0107

p11 0.9968 0.0014 0.0000 0.9438 0.0440 0.0014 0.9921 0.0023 0.0001 0.9923 0.0018 0.0001

p12 - - - - - - 0.0073 0.0021 0.0001 0.0049 0.0016 0.0001

p21 0.0099 0.0026 0.0001 0.0691 0.0483 0.0015 0.0036 0.0025 0.0001 0.0041 0.0013 0.0000

p22 - - - - - - 0.9961 0.0027 0.0001 0.9903 0.0024 0.0001

p31 - - - - - - 0.0036 0.0095 0.0003 0.0147 0.1190 0.0038

p32 - - - - - - 0.0295 0.0157 0.0005 0.9461 0.1296 0.0041

V
(1)
per 0.967 - - 0.987 - - 0.928 - - 0.886 - -

V
(2)
per 0.971 - - 0.975 - - 0.976 - - 0.960 - -

V
(3)
per - - - - - - 0.971 - - 0.849 - -

In addition, for a given series, the volatility reaction to negative past returns is different from one regime

to another, especially for FTSE 100 with values of (γ(1) ' 0.09) and (γ(2) ' 0.24) for the first and the second

regime, respectively.

The estimation results for Nikkei 225 also imply that in comparison to the second regime (γ(2) ' 0.13) and

the third one (γ(3) ' 0.03), the volatility reaction to past negative returns is stronger (γ(1) ' 0.30) within

the first regime.

A significant parameter also provided in Table 4 is the volatility persistence (V
(k)
per ).We observe a balance

between the first and second regimes for S&P500 and FTSE 100 where the corresponding values are close

to one, indicating highly persistent in the volatility process. Regarding the CAC40 index, the persistence is

higher within the second regime (V
(2)
per ' 0.98) and the third one (V

(3)
per ' 0.97).

The estimation shown that the volatility persistence is significantly important (V
(2)
per ' 0.96) within the second

regime compared with the first (V
(1)
per ' 0.89) and the second one (V

(2)
per ' 0.85) concerning the Japanese index
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Nikkei 225.

We have developed our regime-switching models that shown high flexibility regarding the persistence of

volatility for different stock market indices. Moreover, we would evaluate the performance of the selected

models from the out-of-sample analysis point of view.

The out-of-sample period started from January 3, 2014, to October 10, 2019, with approximately 1,470 log-

returns for each stock market index. A valid model should be able to correctly forecast the Value-at-Risk

(VaR) for a specified coverage level. Since we use a family of models that capture time-varying parameters,

we consider a wide rolling window to better forecast the one-ahead Value-at-Risk of 5% based on the models

selected previously. To test the accuracy of VaR coverage, we refer to the Unconditional Coverage (UC)

test of Kupiec (1995)[21] based on the number of VaR violations (or hit) 4, the Conditional Coverage (CC)

test of Christoffersen (1998)[13], and the Dynamic Quantile (DQ) test of Engle and Manganelli (2004)[16]

founded on the number of violations in addition to the fact that the violation variable (It(α)) should be

distributed independently. Meanwhile, we refer to the Basel Committee on Banking Supervision (BCBS)[6]

[7] requirements regarding the internal VaR model validation from a regulatory perspective.

The results presented in Table 5 clearly demonstrate the selected model’s ability to predict the VaR accurately

at the 5% risk level.

Table 5: VaR Back-Test Results for 95% confidence level

Unconditional Coverage Conditional Coverage Dynamic Quantile

uc LRstat uc LRp cc LRstat cc LRp DQstat DQp

S&P500 0.0213 0.884 0.3056 0.858 2.3090 0.941

FTSE 100 1.9537 0.162 3.9809 0.137 4.7031 0.696

CAC40 0.1088 0.742 0.8063 0.668 6.3093 0.504

Nikkei 225 0.0736 0.786 1.7790 0.411 10.3516 0.169

According to the UC, CC, and DQ tests, the results are in accepting the null hypothesis (p-value > 0.05)

of the correct forecasting of the one-ahead VaR at a 5% coverage level. We plot the results of our back-test

in Figure 3. The ability of the selected models to capture the high breaks in log-returns is provided as well.

4It(α) = 1 if rt < VaRt(α) and zero otherwise
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Figure 3: Stock Market Indices Value-at-Risk analysis based on the selected models.

On the other hand, for S&P500 (i.e., the widely popular stock market index), we test the selected model’s

forecasting accuracy to predict the VIX index. VIX is the volatility index that represents as closely as possible

the implied volatility option based on the S&P500 index. Figure 4 clearly shows the flexibility of the MS

GJR-GARCH (1,1) skewed GED distribution model with two regimes in capturing the VIX volatility.

Figure 4: S&P500 MS-GARCH versus VIX volatility evolution
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5. Conclusion

In this paper, we analyzed four stock market indices, namely, S&P500 (USA), FTSE 100 (UK), CAC40

(France), and Nikkei 225 (Japan), based on their daily log-returns from January 1990 until October 2019,

about 30 years of data, in order to identify the optimal number of regimes using two GARCH-type speci-

fications; the standard symmetric GARCH (1,1) against the asymmetry GJR-GARCH (1,1), with different

skewed conditional distributions (Normal, student’s-t and GED), where all parameters switch across a given

number of regimes.

In the empirical part, we estimated models (about 72 models) using the Bayesian approach MCMC avoiding

the path-dependence issue. Thus, we provided a simple comparison between these models from the Deviance

Information Criterion (DIC) point of view, which measures the model’s adequacy by comparing the fitting

quality to model complexity. The stability of estimation is ensured by trying different seeds, where we judge

the model’s convergence by ourselves.

Overall, the results revealed that the asymmetry GJR-GARCH outperforms the standard symmetric GARCH(1,1)

due to the presence of the leverage effect in the conditional variance process. Moreover, the regime-switching

models provide more accuracy than the signal-regime, whatever the specifications are.

Furthermore, the skewed fat-tailed (Student’s-t and GED) distributions are strongly preferred. In addition,

the stock market indices, which are characterized by a high level of volatility (CAC40 and Nikkei 225), require

three-regimes specifications; low, medium volatility regime, and the third one monitoring the high level of

conditional variance with high persistence of volatility.

Finally, the validity of the selected models was verified from the out-of-sample analysis point of view, accord-

ing to specific statistical tests (i.e., UC, CC, and DQ) in parallel with the Basel committee requirements and

the ability to predict the S&P500 implied volatility (VIX).

Based on the empirical results, the main recommendation of the present paper is that the number of regimes

in a conditional variance process should be founded on a statistical test and not chosen randomly.

An interesting topic for future research is to apply the results using the marginal likelihood since the DIC is

sensitive to the prior distributions.
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