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Abstract

 We define a quarter symmetric metric connection in an almost 
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paracontact Riemannian manifold and we consider submanifolds of an almost 
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paracontact Riemannian manifold endowed with a quarter symmetric metric connection. We also obtain Gauss and Codazzi equations, Weingarten equation and curvature tensor for submanifolds of an almost 
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1
Introduction
In [1], R. S. Mishra studied almost complex and almost contact submanifolds. In [2], S. Ali and R. Nivas considered submanifolds of a Riemannian manifold with quarter symmetric connection. Some properties of submanifolds of a Riemannian manifold with quarter symmetric semi-metric connection were studied in [3] by L. S. Das. Moreover, in [4], I. Mihai and K. Matsumoto studied submanifolds of an almost 
[image: image4.wmf]-

r

paracontact Riemannian manifold of 
[image: image5.wmf]-

P

Sasakian type.
Let 
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 be a linear connection in an 
[image: image7.wmf]-

n

dimensional differentiable manifold 
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M

 The torsion tensor 
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 and the curvature tensor 
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 of 
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 are given respectively by
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The connection 
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 is symmetric if its torsion tensor 
[image: image15.wmf]T

 vanishes, otherwise it is non-symmetric. The connection 
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 is metric connection if there is a Riemannian metric 
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 in 
[image: image18.wmf]M

 such that 
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 otherwise it is non-metric. It is well known that a linear connection is symmetric and metric if it is the Levi-Civita connection.


In [5], S. Golab introduced the idea of a quarter-symmetric linear connection if its torsion tensor 
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 is of the form
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where 
[image: image22.wmf]u

 is a 1-form and 
[image: image23.wmf]f

 is a tensor field of the type (1,1). In [6], R. S. Mishra and S. N. Pandey considered a quarter symmetric metic connection and studied some of its properties. In [7], [8], [9], [10] and [11], some kinds of quarter symmetric metric connections were studied.


Let 
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where 
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 are vector fields on 
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 is said to be an almost 
[image: image40.wmf]-
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paracontact Riemannian structure and 
[image: image41.wmf]M

 is an almost 
[image: image42.wmf]-
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paracontact Riemannian manifold [7].

From (1.1) through (1.4), we have
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An almost 
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paracontact Riemannian manifold 
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On almost 
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paracontact Riemannian manifold 
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for all vector fields 
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In this paper, we study quarter symmetric metric connection in an almost 
[image: image63.wmf]-

r

paracontact Riemannian manifold. We consider hypesurfaces and submanifolds of almost 
[image: image64.wmf]-

r

paracontact Riemannian manifold endowed with a quarter symmetric metric connection. We also obtain Gauss and Codazzi equations for hypersurfaces and curvature tensor and Wiengarten equation for submanifolds of almost 
[image: image65.wmf]-

r

paracontact Riemannian manifold with respect to quarter symmetric metric connection.

2     Preliminaries
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 The vector field 
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We now define a quarter symmetric metric connection 
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    Theorem 2.1.  The connection induced on the hypersurface of a Riemannian manifold with a quarter symmetric metric connection with respect to the unit normal is also quarter symmetric metric connection.
    Proof: Let 
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Using (2.5), (2.6) and (2.7) in above equation, we get
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Comparing the tangential and normal vector fields, we get
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Hence the connection 
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 induced on 
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 is a quarter symmetric metric connection [5].
3
Totally umbilical and totally geodesic manifolds
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These are Gauss equations with respect to induced connection 
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           From this we have following definitions:

    Definition 3.1. The hypersurface 
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    Proof: The proof follows from (2.10) easily.
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Gauss, Weingarten and Codazzi equations

In this section we shall obtain Weingarten equation with respect to the quarter symmetric metric connection 
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By virtue of (2.7), (4.4), and (2.11), we get
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Equations (4.7) and (4.8) are the equation of Gauss and Codazzi with respect to the quarter symmetric metric connection.
5.
Submaifolds of codimension 2
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In view of (5.1), (5.2) and (5.5), we find
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Hence the connection 
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Totally geodesic and totally umbilical submanifolds
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    Proof: In view of (5.8), we have
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which proves our assertion.
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    Proof: The proof follows easily from equations (5.8) (a) and (b).
7
Curvature tensor and Weingarten equation


For the Riemannian connection 
[image: image369.wmf],

Ñ

&

 the Weingarten equations are given by [1]

(7.1)          (a)           
[image: image370.wmf]2

1

)

(

1

N

X

BHX

N

BX

+

-

=

Ñ

&

           
and            

    (b)           
[image: image371.wmf]1

2

)

(

1

N

X

BKX

N

BX

+

-

=

Ñ

&

      

where 
[image: image372.wmf]H

 and 
[image: image373.wmf]K

 are tensor fields of type (1,1) such that 

(7.2)          (a)           
[image: image374.wmf]),

,

(

)

,

(

Y

X

h

Y

HX

g

=

                                                     
                 (b)           
[image: image375.wmf]).

,

(

)

,

(

Y

X

k

Y

KX

g

=

 

Also, making use of (2.1) and (7.1) (a), we get                           
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(7.3)                         
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Similarly, from (2.1) and (7.1) (b), we obtain
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Equations (7.3) and (7.4) are Weingarten equations with respect to the quarter symmetric metric connection.
8
 Riemannian curvature tensor for quarter symmetric metric connection
Let 
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Using (7.3), we obtain
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Again using (5.5), (7.3), (7.4) and (5.9), we find
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